The motorcycle in Figure starts from rest at $t=0$ on a circular track of 400 m radius. The tangential component of its acceleration is $a_{t}=(2+0.2 t) \mathrm{m} / \mathrm{s}^{2}$. At $t=10 \mathrm{~s}$, determine: (a) The distance it has moved along the track; (b) the magnitude of its acceleration (c) obtain the vector of acceleration.

$$
a_{t}=\frac{d r}{d r}=(2+0.2 t) \frac{\mathrm{m}}{\mathrm{~s} 2} \Rightarrow d r=(2+0.2 t) d t \Rightarrow \int_{r_{0}=n}^{r} d r=\int_{0}^{t}(2+0.2 t) d t
$$

$$
\begin{aligned}
& \Rightarrow V_{0}=\left.\left(2 t+0.1 t^{2}\right)\right|_{0} ^{t} \Rightarrow V=\left(2 t+0.1 t^{2}\right) \frac{m}{s} \\
& V=\frac{d s}{d t}=2 t+0.1 t^{2} \Rightarrow d s=\left(2 t+0.1 t^{2}\right) d t \Rightarrow \int_{s_{0}}^{s} d s=\int_{0}^{t}\left(2 t+0.1 t^{2}\right) d t \\
& \left.s\right|_{S_{0}=0} ^{S}=\left.\left(t^{2}+\frac{0.1}{3} t^{3}\right)\right|_{0} ^{t} \Rightarrow S=t^{2}+\frac{1}{30} t^{3} \\
& D t=105 \Rightarrow\left\{\begin{array}{l}
\left.s\right|_{t=10 s}=10^{2}+\frac{1}{30} \times 10^{3}=133.333 \mathrm{~m} \\
\left.\checkmark\right|_{t .10}=2 \times 10+0.1 \times 10^{2}=30 \mathrm{~m} / \mathrm{s}
\end{array}\right. \\
& \left.a_{t}\right|_{t=10}=2+0.2 \times 10=4 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{n}=\frac{r^{2}}{r}=\frac{30^{2}}{400}=2.25 \mathrm{~m} / \mathrm{s}^{2} \Rightarrow|\vec{a}|: \sqrt{a_{t}^{2}+a_{n}^{2}}=\sqrt{4^{2}+2.25^{2}}=\frac{4.5814}{\mathrm{~m} / \mathrm{s}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\theta & =0.3333 \mathrm{rad}=19.0986^{\circ} \\
a & =a_{n}(\sin \theta \hat{i}-\cos \theta \hat{j})+a_{z}(-\cos \theta \hat{i}-\sin \theta \hat{j}) \\
& =2.25(\sin 19.0986 \hat{i}-\cos 19.0986 \hat{j})+4(-\cos 19.0986 \hat{i} \sin 19.0986 \hat{j}) \\
& \Rightarrow \vec{a}=-3.0436 \hat{i}-3.4349 \hat{j} \quad\left(\frac{m}{s^{2}}\right)
\end{aligned}
$$

