
Introduction to Matlab

 By: Mohsen Farrokhi

2016/04/26

1

Outline:

 What is Matlab?

 Matlab Screen

 Variables, array, matrix, indexing

 Operators (Arithmetic, relational, logical)

 Display Facilities

 Flow Control

 Using of M-File

 Writing User Defined Functions

 Conclusion

2

MATLAB Introduction

 MATLAB is both computer programming

language and software environment for

using that language effectively.

 MATLAB is matrix-oriented, so what

would take several statements in C or

Fortran can usually be accomplished in

just a few lines using MATLAB's built-in

matrix and vector operations

MATLAB Introduction

 FORTRAN:

 real*8 A(10,10), B(10,10), C(10,10)
 do i=1,10
 do j=1,10
 C(i,j) = A(i,j) + B(i,j)
 10 continue
 20 continue

 MATLAB:

 C = A + B

What is Matlab?

 Matlab is basically a high level language

which has many specialized toolboxes for

making things easier for us

 How high?

Assembly

High Level
Languages such as

C, Pascal etc.

Matlab

5

MATLAB Introduction

• MATLAB has a number of add-on software modules,

called toolbox , that perform more specialized

computations.

Signal & Image Processing

 Signal Processing- Image Processing

Communications - System Identification -

Wavelet Filter Design

Control Design

 Control System - Fuzzy Logic - Robust Control - µ-

Analysis and Synthesis - LMI Control - Model

Predictive Control Model-Based Calibration

More than 60 toolboxes!

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml
http://www.mathworks.com/products/signal/
http://www.mathworks.com/products/image/
http://www.mathworks.com/products/communications/
http://www.mathworks.com/products/sysid/
http://www.mathworks.com/products/wavelet/
http://www.mathworks.com/products/filterdesign
http://www.mathworks.com/products/control/
http://www.mathworks.com/products/fuzzylogic/
http://www.mathworks.com/products/robust/
http://www.mathworks.com/products/muanalysis/
http://www.mathworks.com/products/muanalysis/
http://www.mathworks.com/products/muanalysis/
http://www.mathworks.com/products/lmi/
http://www.mathworks.com/products/mpc/
http://www.mathworks.com/products/mpc/
http://www.mathworks.com/products/mbc/
http://www.mathworks.com/products/mbc/
http://www.mathworks.com/products/mbc/

What are we interested in?

 Matlab is too broad for our purposes in this

course.

 The features we are going to require is

Matlab

Command
Line

m-files

functions

mat-files

Command execution
like DOS command

window

Series of
Matlab

commands

Input
Output

capability

Data
storage/
loading

7

Matlab Screen

 Command Window

 type commands

 Current Directory

 View folders and m-files

 Workspace

 View program variables

 Double click on a variable

 to see it in the Array Editor

 Command History

 view past commands

 save a whole session

 using diary

8

MATLAB

Command

Window

File

Edit

View

View

View

Web

Help

Plot

Variables

 No need for types. i.e.,

 All variables are created with double precision unless

specified and they are matrices.

 After these statements, the variables are 1x1 matrices

with double precision

int a;
double b;
float c;

Example:
>>x=5;
>>x1=2;

19

20

MATLAB BASICS

Variables and Arrays

 Array: A collection of data values organized into

rows and columns, and known by a single name.

Row 1

Row 2

Row 3

Row 4

Col 1 Col 2 Col 3 Col 4 Col 5

arr(3,2)

21

MATLAB BASICS

Arrays

 The fundamental unit of data in MATLAB

 Scalars are also treated as arrays by MATLAB
(1 row and 1 column).

 Row and column indices of an array start from 1.

 Arrays can be classified as vectors and

matrices.

22

MATLAB BASICS

 Vector: Array with one dimension

 Matrix: Array with more than one dimension

 Size of an array is specified by the number of rows
and the number of columns, with the number of
rows mentioned first (For example: n x m array).

 Total number of elements in an array is the
product of the number of rows and the number of
columns.

Array, Matrix

 a vector x = [1 2 5 1]

 x =

 1 2 5 1

 a matrix x = [1 2 3; 5 1 4; 3 2 -1]

 x =

 1 2 3

 5 1 4

 3 2 -1

 transpose y = x’ y =

 1

 2

 5

 1

23

Long Array, Matrix

 t =1:10

 t =

 1 2 3 4 5 6 7 8 9 10

 k =2:-0.5:-1

 k =

 2 1.5 1 0.5 0 -0.5 -1

 B = [1:4; 5:8]

 x =

 1 2 3 4

 5 6 7 8

24

General Functions

 whos: List current variables and their size

 clear: Clear variables and functions from memory

 cd: Change current working directory

 dir: List files in directory

 pwd: Tells you the current directory you work in

 echo: Echo commands in M-files

 format: Set output format (long, short, etc.)

26

Changing the data format

>> value = 12.345678901234567;

 format short  12.3457

 format long  12.34567890123457

 format short e  1.2346e+001

 format long e  1.234567890123457e+001

 format short g  12.346

 format long g  12.3456789012346

 format rat  1000/81

MATLAB BASICS

27

Initializing with Built-in Functions

• zeros(n) >> a = zeros(2);

• zeros(n,m) >> b = zeros(2, 3);

• zeros(size(arr)) >> c = [1, 2; 3, 4];

• ones(n) >> d = zeros(size(c));

• ones(n,m)

• ones(size(arr))

• eye(n)

• eye(n,m)

• length(arr)

• size(arr)

MATLAB BASICS

Generating Vectors from functions

 zeros(M,N) MxN matrix of zeros

 ones(M,N) MxN matrix of ones

 rand(M,N) MxN matrix of uniformly

 distributed random

 numbers on (0,1)

x = zeros(1,3)

x =

 0 0 0

x = ones(1,3)

x =

 1 1 1

x = rand(1,3)

x =

 0.9501 0.2311 0.6068

28

Matrix Index

 The matrix indices begin from 1 (not 0 (as in C))

 The matrix indices must be positive integer

Given:

A(-2), A(0)

Error: ??? Subscript indices must either be real positive integers or logicals.

A(4,2)

Error: ??? Index exceeds matrix dimensions.

29

Concatenation of Matrices

 x = [1 2], y = [4 5], z=[0 0]

 A = [x y]

 1 2 4 5

 B = [x ; y]

 1 2

 4 5

 C = [x y ;z]

Error:

??? Error using ==> vertcat CAT arguments dimensions are not consistent.

30

The Matrix in MATLAB

4 10 1 6 2

8 1.2 9 4 25

7.2 5 7 1 11

0 0.5 4 5 56

23 83 13 0 10

1

2

Rows (m) 3

4

5

Columns

(n)

1 2 3 4 5
1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

A = A (2,4)

A (17)

Rectangular Matrix:

Scalar: 1-by-1 array

Vector: m-by-1 array

 1-by-n array

Matrix: m-by-n array

Operators (arithmetic)

+ addition

- subtraction

* multiplication

/ division

^ power

„ complex conjugate transpose

32

33

MATLAB BASICS

• variable_name = expression;

– addition a + b  a + b

– subtraction a - b  a - b

– multiplication a x b  a * b

– division a / b  a / b

– exponent ab  a ^ b

Matrices Operations

Given A and B:

Addition Subtraction Product Transpose

34

Operators (Element by Element)

.* element-by-element multiplication

./ element-by-element division

.^ element-by-element power

35

The use of “.” – “Element” Operation

K= x^2

Erorr:

 ??? Error using ==> mpower Matrix must be square.

B=x*y

Erorr:

??? Error using ==> mtimes Inner matrix dimensions must agree.

A = [1 2 3; 5 1 4; 3 2 1]

 A =

 1 2 3

 5 1 4

 3 2 -1

y = A(3 ,:)

y=

 3 4 -1

b = x .* y

b=

 3 8 -3

c = x . / y

c=

 0.33 0.5 -3

d = x .^2

d=

 1 4 9

x = A(1,:)

x=

 1 2 3

36

37

Special Values

• pi:  value up to 15 significant digits

• i, j: sqrt(-1)

• Inf: infinity (such as division by 0)

• NaN: Not-a-Number (division of zero by zero)

• clock: current date and time in the form of a 6-element

row vector containing the year, month, day, hour,

minute, and second

• date: current date as a string such as 16-Feb-2004

• eps: epsilon is the smallest difference between two

numbers

• ans: stores the result of an expression

MATLAB BASICS

38

MATLAB BASICS

The disp(array) function

>> disp('Hello')

Hello

>> disp(5)

 5

>> disp(['Bilkent ' 'University'])

Bilkent University

>> name = 'Alper';

>> disp(['Hello ' name])

Hello Alper

39

MATLAB BASICS

The num2str() and int2str() functions

>> d = [num2str(16) '-Feb-' num2str(2004)];

>> disp(d)

16-Feb-2004

>> x = 23.11;

>> disp(['answer = ' num2str(x)])

answer = 23.11

>> disp(['answer = ' int2str(x)])

answer = 23

40

MATLAB BASICS

The fprintf(format, data) function

– %d integer

– %f floating point format

– %e exponential format

– %g either floating point or exponential

 format, whichever is shorter

– \n new line character

– \t tab character

41

MATLAB BASICS

>> fprintf('Result is %d', 3)
Result is 3
>> fprintf('Area of a circle with radius %d is %f', 3, pi*3^2)
Area of a circle with radius 3 is 28.274334
>> x = 5;
>> fprintf('x = %3d', x)
x = 5
>> x = pi;
>> fprintf('x = %0.2f', x)
x = 3.14
>> fprintf('x = %6.2f', x)
x = 3.14
>> fprintf('x = %d\ny = %d\n', 3, 13)
x = 3
y = 13

42

MATLAB BASICS

Data files

• save filename var1 var2 …

>> save myfile.mat x y  binary

>> save myfile.dat x –ascii  ascii

• load filename

>> load myfile.mat  binary

>> load myfile.dat –ascii  ascii

size(A) - size vector

sum(A) - columns sums vector

sum(sum(A)) - all the elements sum

Visualization and Graphics

 plot(x,y), plot(x,sin(x)) - plot 1-D function

 figure , figure(k) - open a new figure

 hold on, hold off - refreshing

 mesh(x_ax,y_ax,z_mat) - view surface

 contour(z_mat) - view z as top. map

 subplot(3,1,2) - locate several plots in figure

 axis([xmin xmax ymin ymax]) - change axes

 title(‘figure title’) - add title to figure

Basic Task: Plot the function sin(x)

between 0≤x≤4π
 Create an x-array of 100 samples between 0

and 4π.

 Calculate sin(.) of the x-array

 Plot the y-array

>>x=linspace(0,4*pi,100);

>>y=sin(x);

>>plot(y)
0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

44

Plot the function e-x/3sin(x) between

0≤x≤4π

 Create an x-array of 100 samples between 0

and 4π.

 Calculate sin(.) of the x-array

 Calculate e-x/3 of the x-array

 Multiply the arrays y and y1

>>x=linspace(0,4*pi,100);

>>y=sin(x);

>>y1=exp(-x/3);

>>y2=y*y1;

45

Plot the function e-x/3sin(x) between

0≤x≤4π

 Multiply the arrays y and y1 correctly

 Plot the y2-array

>>y2=y.*y1;

>>plot(y2)

0 10 20 30 40 50 60 70 80 90 100
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

46

Display Facilities

 plot(.)

 stem(.)

Example:
>>x=linspace(0,4*pi,100);
>>y=sin(x);
>>plot(y)
>>plot(x,y)

Example:
>>stem(y)
>>stem(x,y)

0 10 20 30 40 50 60 70 80 90 100
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

47

Display Facilities

 title(.)

 xlabel(.)

 ylabel(.)

>>title(‘This is the sinus function’)

>>xlabel(‘x (secs)’)

>>ylabel(‘sin(x)’)
0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
This is the sinus function

x (secs)

s
in

(x
)

48

MATLAB Basics

Plotting Elementary Functions:

The command subplot can be used to partition the screen so that up to
four plots can be viewed simultaneously. See help subplot.

• Example for use of subplot:

• >>% Line plot of a chirp

• >> x=0:0.05:5;

• >> y=sin(x.^2);

• >> subplot(2,2,1), plot(x,y);

• >> % Bar plot of a bell shaped curve

• >> x = -2.9:0.2:2.9;

• >> subplot(2,2,2), bar(x,exp(-x.*x));

• >> % Stem plot

• >> x = 0:0.1:4;

• >> subplot(2,2,3), stem(x,y)

• >> % Polar plot

• >> t=0:.01:2*pi;

• >> subplot(2,2,4), polar(t,abs(sin(2*t).*cos(2*t)));

MATLAB Basics

Plotting

Elementary

Functions:

>>%Example Subplot

Read and Write Images

 I = imread(„colors.jpg');

 imshow(I);

 Indexed Image:

 [x,map] = imread(‘color.png');

 imwrite(I, „newim.jpg‟)

Operators (relational, logical)

 == Equal to

 ~= Not equal to

 < Strictly smaller

 > Strictly greater

 <= Smaller than or equal to

 >= Greater than equal to

 & And operator

 | Or operator

52

Flow Control

 if

 for

 while

 break

 ….

53

Control Structures

 If Statement Syntax

if (Condition_1)

 Matlab Commands

elseif (Condition_2)

 Matlab Commands

elseif (Condition_3)

 Matlab Commands

else

 Matlab Commands

end

Some Dummy Examples

if ((a>3) & (b==5))
 Some Matlab Commands;
end

if (a<3)
 Some Matlab Commands;
elseif (b~=5)
 Some Matlab Commands;
end

if (a<3)
 Some Matlab Commands;
else
 Some Matlab Commands;
end

 54

Control Structures

 For loop syntax

for i=Index_Array

 Matlab Commands

end

Some Dummy Examples

for i=1:100
 Some Matlab Commands;
end

for j=1:3:200
 Some Matlab Commands;
end

for m=13:-0.2:-21
 Some Matlab Commands;
end

for k=[0.1 0.3 -13 12 7 -9.3]
 Some Matlab Commands;
end

55

Control Structures

 While Loop Syntax

while (condition)

 Matlab Commands

end

Dummy Example

while ((a>3) & (b==5))
 Some Matlab Commands;
end

56

Use of M-File

Click to create

a new M-File

• Extension “.m”

• A text file containing script or function or program to run

 57

Use of M-File

If you include “;” at the

end of each statement,

result will not be shown

immediately

Save file as Denem430.m

58

Writing User Defined Functions

 Functions are m-files which can be executed by

specifying some inputs and supply some desired outputs.

 The code telling the Matlab that an m-file is actually a

function is

 You should write this command at the beginning of the

m-file and you should save the m-file with a file name

same as the function name

function out1=functionname(in1)
function out1=functionname(in1,in2,in3)
function [out1,out2]=functionname(in1,in2)

59

Writing User Defined Functions

 Examples

 Write a function : out=squarer (A, ind)

 Which takes the square of the input matrix if the input

indicator is equal to 1

 And takes the element by element square of the input

matrix if the input indicator is equal to 2

Same Name

60

Writing User Defined Functions
 Another function which takes an input array and returns the sum and product

of its elements as outputs

 The function sumprod(.) can be called from command window or an m-file as

61

Notes:

 “%” is the neglect sign for Matlab (equaivalent

of “//” in C). Anything after it on the same line

is neglected by Matlab compiler.

 Sometimes slowing down the execution is

done deliberately for observation purposes.

You can use the command “pause” for this

purpose

pause %wait until any key
pause(3) %wait 3 seconds

62

Useful Commands

 The two commands used most by Matlab

 users are

>>help functionname

>>lookfor keyword

63

Questions

 ?

 ?

 ?

 ?

 ?

64

Thank You…

65

