Chapter 5
Attenuation of High-Frequency Seismic Waves

We will now discuss the attenuation with propagation distance of seismic wave
amplitude in the lithosphere for frequencies mostly higher than 1 Hz. First we
review the frequency dependence of observed amplitude attenuation in the earth’s
lithosphere. We discuss various proposed mechanisms of intrinsic attenuation and
describe their frequency characteristics. We have already discussed the scattering
of seismic waves caused by random heterogeneities as a mechanism to explain
the excitation of S-coda waves. The amplitude decay with travel distance will
now be derived as a natural consequence of the energy conservation; scattering
attenuates the direct wave amplitude and excites coda waves. Taking scalar waves
as an example, we present an approach for calculating the amount of scattering
attenuation in a manner consistent with conventional seismological attenuation
measurements. Then, extending the method to elastic waves, we calculate the
scattering attenuation of P- and S-waves in randomly inhomogeneous elastic media.
The randomness of the lithosphere will then be quantitatively estimated from
S-wave attenuation and S-coda excitation measurements. We will briefly introduce
scattering attenuation due to distributed cracks and cavities.

5.1 Measurements of Attenuation in the Lithosphere

Seismic wave amplitude generally decreases with increasing travel distance through
the earth. Except where wave interference occurs, the observed amplitude usually
decreases exponentially with travel distance, and the decay rates are proportional
to Q;l and le which characterize the spatial attenuation for P- and S-waves,
respectively. For spherically outgoing body waves in a uniform velocity structure in
a 3-D space, there is an additional geometrical spreading factor r~!, so the spectral
amplitudes of P- and S-waves, u” and u5 at frequency £, go roughly as
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154 5 Attenuation of High-Frequency Seismic Waves

A popular method of making attenuation measurements is the spectral decay
method, which uses measurements of spectral amplitudes vs. frequency for at least
two propagation distances. If we know u” (r; f) and u® (ry: f),
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If 07" is assumed to be frequency independent, its value can be determined from the
slope of the left-hand side of (5.2) vs. f from data at a single station. More accurate
measurements are made by using two stations and two sources. Other measurements
have been based on observations of the change in direct-wave amplitude with
distance using the coda-normalization method with data from a single station as
mentioned in Sect. 3.3.3. More recent Q' measurements have been based on the
multiple lapse-time window analysis of whole S-wave seismograms, which will be
discussed in Sect. 8.1.4.

We summarize recent measurements of Qg', Q7' and the ratio 0%'/0%"
in the lithosphere in Figs.5.1, 5.2 and 5.3, respectively. As shown in Fig.5.1,
measurements in North America show that Q"' takes large values in tectonically
active areas as Basin and Range Province and California compared with stable areas
as central and northeastern U.S.A. and southeastern Canada (see lines 2.1-2.3, 30.1-
30.3) (e.g. Benz et al. 1997; Mitchell 1995). Though the scatter is as large as factor
2 or 3, attenuation Qg' roughly takes the maximum value of the order of 0.01
around 1 Hz. Attenuation Q5" decreases with increasing frequency according to a
power of frequency as Q' o« f™", where the exponent n rages from 0.5 to 1.
Attenuation Q' takes the value of the order of 0.001 at 20 Hz. The behavior of
attenuation le bellow 1 Hz is not clear; however, Aki (1980a,b) conjectured that
Q5" decreases with decreasing frequency for frequencies lower than 1 Hz. Later
Kinoshita (1994) observed Q' having a peak around 1 Hz from measurements in
southern Kanto, Japan (line 16). As shown in Fig. 5.2, the number of measurements
of Q7' is not large enough as that of Q§'; however, we find that Q' decreases with
frequency from 1 Hz to 20 Hz. From surface wave measurements, ratio 03'/ Q5"
in the lithosphere has been taken to be constant at 0.4 — 0.47 by many investigators
for frequencies less than 0.05 Hz . For frequencies higher than 1 Hz, however, most
of recent measurements have clearly shown that the ratio Q5'/ Q5" ranges between
1 and 2, and sometimes up to 3.

5.2 Intrinsic Attenuation Mechanisms

The mechanism of seismic wave attenuation has been a topic of interest among
seismologists and rock physicists for many years and numerous physical mecha-
nisms to explain the cause of seismic wave attenuation have been proposed. Seismic
attenuation is usually considered to be caused by two mechanisms, scattering and
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Fig. 5.1 Reported values of Q5! for the lithosphere: 1 Crust of the SL8 global model (Anderson
and Hart 1978), 2.1 Tectonic upper crust, 2.2 Stable upper crust, 2.3 Lower crust (Mitchell 1995),
3 Hindu—Kush (Roecker et al. 1982), 4 Kanto, Japan (Aki 1980a), 5.1 Eastern Kanto, Japan (Sato
and Matsumura 1980), 5.2 Kanto, Japan (Yoshimoto et al. 1993), 6.1 Surface data, 6.2 Borehole
data in S. California (Adams and Abercrombie 1998), 7 Shallow crust at western Nagano, Japan
(Yoshimoto et al. 1998), 8.1 Central California, 8.2 Hawaii, 8.3 Long Valley in California, U.S.A.
(Mayeda et al. 1992), 9 Kanto-Tokai, Japan (Fehler et al. 1992), 10 Kyushu, Japan (Hoshiba 1993),
11.1 Basin and Range Province, 11.2 U. S. Shield (Taylor et al. 1986), 12 Sg and Lg, Utah, U.S.A.
(Brockman and Bollinger 1992), 13 Depth 5-25 km, southern Kurils (Fedotov and Boldyrev 1969),
14 Lg, France (Campillo and Plantet 1991), 15 Imperial fault, California (Singh et al. 1982), 16
Depth < 50 km, southern Kanto, Japan (Kinoshita 1994; Kinoshita and Ohike 2002), 17 E. Honshu,
Japan (Kato et al. 1998), 18 Montenegro, Yugoslavia (Rovelli 1984), 19 Mexico (Ordaz and Singh
1992), 20 Depth < 40 km, northern Caribbean (Frankel 1982), 21 Colombia (Ojeda and Otteméller
2002), 22 Southern Norway (Kvamme and Havskov 1989), 23.1 New York State, U.S.A., 23.2
Southern California (Frankel et al. 1990), 24 Depth < 10km, Arette, Pyrénées (Modiano and
Hatzfeld 1982), 25 San Andreas Fault, California (Kurita 1975), 26 Southern Italy (Rovelli 1983),
27.1, SV, 27.2, SH, Marche, Italy (Castro et al. 1999), 28 SE Korea (Chung and Sato 2001), 29
Bhuj, India (Padhy 2009), 30.1 Basin Range Province, 30.2 South and South Central California,
30.3 Central United States, 30.4 N. E. United States and S.E. Canada (Benz et al. 1997), 31
Kirishima volcano, Kyushu, Japan (Izutani 2000)

intrinsic mechanisms, so that total attenuation is the sum of the two types:
-1 _ Sepp—=1 4 I =1 —1 _ Sep=1 4 I =1
0p ="°0p +70p and Qg ="°05 + 05 . (5.3)

As we have seen, scattering redistributes wave energy within the medium but does
not remove energy from the overall wavefield. Conversely, intrinsic attenuation
refers to various mechanisms that convert vibration energy into heat through



156 5 Attenuation of High-Frequency Seismic Waves

Bl T

o

o

o

—_
T

(67270 )0 o | RN S P S S ST NEY VRN TS N T S N (N P T
0.01 0.1 1 10 100

Frequency [Hz]

Fig. 5.2 Reported values of Q3" for the lithosphere: 1 Depth < 45 km of the SL8 global model
(Anderson and Hart 1978), 2.1 Basin and Range Province, 2.2 U. S. Shield (Taylor et al. 1986), 3
Pn, eastern Canada (Zhu et al. 1991), 4 Pg, France (Campillo and Plantet 1991), 5 Depth < 40 km,
northern Caribbean (Frankel 1982), 6 Depth < 10 km, Arette, Pyrénées (Modiano and Hatzfeld
1982), 7 Depth 5—25km, southern Kurils (Fedotov and Boldyrev 1969), 8 Southern Norway
(Kvamme and Havskov 1989), 9 Kanto, Japan (Yoshimoto et al. 1998), 10 Upper crust of western
Nagano, Japan (Yoshimoto et al. 1998), 11 Crust, SE Korea (Chung and Sato 2001), 12 Marche,
Italy (Castro et al. 1999), 13 Crust, Bhuj, India (Padhy 2009)

friction, viscosity, and thermal relaxation processes. Measurements of attenuation of
direct seismic waves give values for total attenuation. There has been considerable
speculation about which process, intrinsic or scattering, dominates attenuation and
several methods have been proposed to determine the amounts of both scattering
and intrinsic attenuation (Fehler et al. 1992; Jacobson 1987).

Models of seismic attenuation were initially developed to explain an apparently
observed frequency-independence of Q™' at low frequencies. There are several
review papers that discuss proposed mechanisms for intrinsic attenuation that
lead to frequency-independent Q;l and le (e.g. Dziewonski 1979; Jackson and
Anderson 1970; Knopoff 1964). Attenuation has been considered an important
parameter to measure and characterize sedimentary rocks for petroleum explo-
ration, and this has led to an effort to develop models explaining the observed
attenuation in sedimentary rocks (e.g. Mavko et al. 1979; Toksdz and Johnston
1981). Many proposed intrinsic attenuation models are relaxation mechanisms
having characteristic relaxation times that depend on the physical dimensions of
the elements in the rock. The characteristic time leads to a Q™' that peaks at
some frequency and decreases rapidly away from that frequency. By assuming
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Fig. 53 Ratio Q5'/Q5"' for the lithosphere based on measurements of P- and S-wave
attenuation: 1 MMS8 global model (Anderson et al. 1965), 2.1 Basin and Range Province, 2.2
U. S. Shield (Taylor et al. 1986), 3 Depth <45 km of the SL8 global model (Anderson and Hart
1978), 4 Garm, Central Asia (Rautian et al. 1978), 5 Kanto, Japan (Yoshimoto et al. 1993), 6
Pg and Lg, France (Campillo and Plantet 1991), 7 Depth < 40km, northern Caribbean (Frankel
1982), 8 Southern Norway (Kvamme and Havskov 1989), 9 Depth < 10km, Arette, Pyrénées
(Modiano and Hatzfeld 1982), 10 Upper crust, Rio Grande Rift, U.S.A. (Carpenter and Sanford
1985), 11 Depth < 7km, San Andreas Fault (Bakun et al. 1976), 12 Depth < 7km, Swabian
Jura, Germany (Hoang-Trong 1983), 13 Southern Kurils (Fedotov and Boldyrev 1969), 14 Anza,
California (Hough et al. 1988), 15 Upper crust of western Nagano, Japan (Yoshimoto et al. 1998),
16 Western Pacific (Butler et al. 1987), 17.1 P/SV, 17.2 P/SH, Marche, Italy (Castro et al. 1999),
18 Crust, SE Korea (Chung and Sato 2001), 19 Crust, Bhuj, India (Padhy 2009)

that rocks are composed of elements with a range of dimensions, the attenuation
caused by the mechanism can be made frequency-independent over some frequency
range. For seismic waves to remain causal, there must be frequency dependence
in wave velocity and intrinsic attenuation / Q' (Aki and Richards 1980; Azimi
et al. 1968, p.173). The relationship between frequency-dependent attenuation and
velocity dispersion was discussed by Liu et al. (1976).

Although we will not describe all proposed mechanisms of intrinsic attenuation,
we will briefly examine some and give their predicted relation between physical
dimensions and characteristic frequencies. Our discussion follows closely that of
AKki (1980a). Many of the papers we will refer to have been reprinted in Toks6z and
Johnston (1981). Models whose characteristic frequencies are well removed from
the frequency band of observed regional seismic phases cannot be considered as the
dominant attenuation mechanisms in that band. Any viable model must be consistent
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with the observed and partially conjectured frequency-dependence of le having a
peak on the order of 0.01 around 0.5 Hz.

Many proposed mechanisms of intrinsic attenuation are based on the observation
that crustal rocks have microscopic cracks and pores which may contain fluids.
These features have dimensions much smaller than the wavelengths of regional
seismic phases. As discussed in Chap. 2, these cracks can have a profound influence
on the propagation velocity of P- and S-waves through rocks (see Fig.2.1). Crack
aspect ratio d, which is the ratio of width to length of a crack, is one of the
dominant parameters controlling the frequency-dependence of many attenuation
models. Hadley (1976) used a scanning electron microscope to measure crack
lengths and aspect ratios of virgin and prestressed samples of Westerly granite. She
found crack lengths up to 150 microns and aspect ratios of 107 to 10~!. Walsh
(1966) proposed frictional sliding on dry surfaces of thin cracks as an intrinsic
attenuation mechanism. The frictional model predicts that /O~ is frequency-
independent over the frequency range of regional seismic phases. Walsh (1969)
proposed viscous dissipation of energy due to liquid movement through cracks
as another attenuation mechanism. This model predicts a peak in attenuation at
frequency du/2mn, where u is the rigidity of the surrounding rock and 7 is
the viscosity of the fluid. If water fills the pores, the viscosity n= 1072 poise at
20 °C decreases with increasing temperature and increases with increasing pressure
(Keenan et al. 1969). By using i ~ 10'? g/cm? for rocks and the range of aspect
ratios for rocks found by Hadley (1976), this model predicts an attenuation peak
at 10° ~ 10'> Hz. To get a peak frequency at 0.5 Hz would require aspect ratios of
d ~ 3 x 107", which is inconsistent with Hadley’s (1976) measurements.

Nur (1971) proposed viscous dissipation in a zone of partially molten rock to
explain the low velocity and high attenuation zone at the base of the lithosphere.
The addition of water reduces the melting temperature of rocks; however, the
melting temperature at 15kb is 600 °C for granite, and it is 800 °C for peridotite
(Boettcher 1977). At the Moho depths beneath Kanto, Japan, that is located in the
fore-arc side of the VF, the temperature is estimated to be 200 —300°C (Uyeda
and Horai 1964), which is unlikely to melt rocks. Biot (1956a,b) analyzed wave
propagation in isotropic porous solids where the coupling of motion between the
fluid and the solid matrix was considered. He arrived at expressions for attenuation
due to the flow of fluids within non-connecting pores initiated by elastic waves.
White [1965, p.131] discussed Biot’s models and concluded that the attenuation
predicted by this model was extremely small for frequencies less than 100 Hz. He
showed that the model included the loss of elastic energy only through viscous drag
on the fluid at the crack walls and that this loss was too small to be consistent
with seismic measurements. Mavko and Nur (1979) examined the effect of partial
saturation of cracks on attenuation. In their model, fluid movement within cracks
is enhanced by the presence of gas bubbles, and predicted attenuation is larger
than that in Biot’s (1956a; 1956b) models. The partial saturation model has a peak
attenuation at frequency ~' K /ps/2mway, where K is the fluid bulk modulus,
pr the fluid density and a s the hall-length of the fluid drop in the crack: o
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is proportional to w3/? for lower frequencies and to @w™>/2 at higher frequencies.

For water, K ; ~ 10'? g/cm-s> and p; ~ 1g/cm?. For attenuation to peak in the
regional seismic frequency band, a y ~ 10° cm, which is too large. As an alternative
to considering just the effects of fluid movement within one crack, O’Connell
and Budiansky (1977) proposed a model in which fluid moves between closely
spaced adjacent cracks. There is a characteristic frequency corresponding to the
transition from saturated isolated to saturated isobaric behaviors: f ~ Kd?3/2mn,
where K is the bulk modulus of the rock. This frequency is lower than the peak
frequency predicted by Walsh’s (1969) viscous dissipation model. When 1 ~ 1072
poise for water and K ~ 10'?g/cm-s?, a 0.5 Hz attenuation peak in rock requires
aspect ratio d ~ 107>, which is close to a range consistent with Hadley (1976)’s
measurements; however, numerical simulation by O’Connell and Budiansky (1977)
predicts Q3! < QF', which contradicts observations.

After drying an olivine basalt sample in a moderately heated high vacuum,
Tittmann (1977) found that Q7' decreased from 2 x 1072 to 0.9 x 1073 at 56 Hz.
Low attenuation for a dry rock is consistent with the very low attenuation values
measured on lunar rock samples that contain little water (Tittmann et al. 1976).
Gradually adding a small amount of volatile to a dry rock, Tittmann et al. (1980)
measured an increase of Q5' and a change in electric dipole moment which
indicated adsorption of the volatile. They found that the rapid increase of Q7'
was not due to the classical viscous fluid movement through fractures but due
to an interaction between adsorbed water film on the solid surface by thermally
activated motions. This is due to relaxation involving liquid molecules. Controlling
the amount of water, Spencer (1981) identified individual relaxation peaks in rocks.
He found a peak in Q7' at frequencies as low as 17 Hz in limestone, where E is
Young’s modulus. However, the peak frequency is of the order of kHz for other
kinds of rocks. He argued that most rocks have a range of relaxation frequencies
and that the dominant mechanism of attenuation observed in his measurements is a
frequency-dependent softening of the rock due to the bonding of fluid molecules to
crack surfaces.

Karato and Spetzler (1990) reviewed experimental studies on intrinsic absorp-
tion mechanisms of upper mantle peridotite, and they pointed out the impor-
tance of dislocation and/or grain boundary mechanisms (e.g. Anderson and Hart
1978; Lundquist and Cormier 1980). Their frequency dependence is written as
'O~ o« o %exp(—aE*/RT), where E* is activation energy. Parameters for
olivine-dominated rocks have been constrained by several experiments: o ranges
from 0.1 to 0.3 and E* from 400 to 600 kJ/mol (Karato 2008, Chapter 11). Nakajima
and Hasegawa (2003) used this mechanism for the interpretation of frequency-
independent Q' measurement of the order of 10~ beneath the VF and the back-arc
side of northeastern Honshu, Japan (Tsumura et al. 2000); however, the predicted
frequency dependence of this mechanism is too weak.

Spatial temperature differences induced by a passing wave due to adiabatic
compression are reduced by thermal diffusion (Savage 1965; Zener 1948). This
thermoelastic effect removes vibrational energy from a wavefield. Grain-sized het-
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erogeneities in a rock increase the amount of predicted attenuation. Thermoelastic
attenuation peaks at frequency DT/af,, where a, is the grain size and Dy is the
thermal diffusivity. For Dy ~ 5 x 1072cm?/s for quartz and a peak frequency
of 0.5Hz, az ~ 0.3cm, which is reasonable for rocks. The exchange of heat
between adjacent grains plays an important role for Q7'. Because of rock hetero-
geneity, thermoelasticity causes S-wave attenuation, but it causes more attenuation
for compressional waves. Therefore, the model predicts Q7' > Q;l. Savage
(1966) investigated thermoelasticity caused by stress concentrations induced by the
presence of empty cracks having the shape of elliptic cylinders. This model predicts
a peak in attenuation at a frequency given by D7 /a2, where a, is the half-length of
the crack, which yields crack sizes similar to grain sizes predicted by Zener’s (1948)
model. For ordinary materials containing cracks, the theory predicts Q3! > Q;l,
which is consistent with measurements.

Predicted intrinsic attenuation varies with depth, temperature, fracture content,
fracture aspect ratios, pressure, and the presence of fluids. Most of the mechanisms
discussed above can predict le having values in the range of 1073, Aki (1980a)
preferred thermoelasticity as the viable model among various intrinsic attenuation
models to explain attenuation having a peak at around 0.5Hz at lithospheric
temperatures.

5.3 Scattering Attenuation in Random Inhomogeneities

A first step in making a model of attenuation is to determine whether it is
controlled by some characteristic scale in time or space. In Figs. 5.1-5.3 we took
frequency as the abscissa, which allows us to look at characteristic time scales.
Figure 3.32b shows Q;l and Q7' vs. frequency in Kanto, Japan, measured by using
an extension of the coda-normalization method (Yoshimoto et al. 1993). Choosing
wavenumber as the abscissa allows us to investigate the spatial scale of attenuation.
In Fig. 5.4, abscissa is wavenumber, where frequency 0.5 Hz corresponds to S-wave
wavenumber of about 0.8 km™!. The results show good coincidence between Q;l
and Q3. This coincidence implicitly suggests that attenuation is characterized by
a spatial scale.

As shown in Fig.3.31b, attenuation for S-waves Q;l is conjectured to have a
peak of amplitude about 10~2 at about 0.5 Hz and to decrease for both increasing
and decreasing frequency away from 0.5 Hz. Figure 5.4 shows that attenuation per
travel distance 277 f le / Bo is approximately constant for 1 to 20 Hz and has a value
on the order of 1072km™!, which is nearly the same order as the total scattering
coefficient gy of S-waves as shown in Fig. 1.3. The coincidence leads to the idea that
scattering attenuation may be the dominant mechanism for amplitude attenuation of
seismic waves in the lithosphere (Aki 1980a, 1981, 1982).

We may expect that scattering attenuates direct wave amplitude and excites
coda waves; however, we will show that the conventional derivation of amplitude
attenuation using the Born approximation to estimate scattering attenuation leads to
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Fig. 5.5 Scattering attenuation vs. scaled wavenumber ak, for scalar waves in random media
characterized by an exponential ACF, where kg = w/Vj. A dotted line is for the conventional
Born approximation, a solid line (v, = 1/2) and a broken line (v, = 1/4) are for the travel-time
corrected Born approximation

a prediction that le increases with frequency, as shown by a dotted line in Fig. 5.5.
There have been two attempts to resolve the discrepancy between observations
that le decreases with frequency above 0.5 Hz and the scattering theory, which
predicts that le increases with frequency. One improves the statistical averaging
procedure by isolating the effect of the travel-time fluctuation caused by slowly
varying velocity fluctuation from other scattering phenomena that are caused by
more rapidly varying velocity inhomogeneities (Sato 1982a,b); the second attempt
neglects scattering in the forward direction during calculation of the attenuation
(Wu 1982b). Using scalar wave propagation as an example, we will demonstrate
the discrepancy between attenuation observations and the theory based on the
conventional Born approximation and show how the two proposals to resolve the
discrepancy are implemented. We will show that the two approaches are equivalent,
and then we will extend the analysis to elastic waves.
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5.3.1 Travel-Time Corrected Born Approximation
Jor Scalar Waves

5.3.1.1 Problem of Conventional Born Approximation

Here, we study the scattering attenuation of scalar waves that travel through a
randomly inhomogeneous medium. Using an ensemble of random media {£ (x)},
we can statistically calculate the scattering coefficient g from the PSDF using
the Born approximation. The integral over the solid angle of the average of the
squared scattering amplitude over an ensemble of random media is identified as the
scattering energy loss from the incident plane wave. By using (4.26), the scattered
wave energy generated per unit time by a cube of inhomogeneity having volume L>
is given by ®*Vy 95 d2r? (gL3/4J'[7‘2) = ? V()goL3, where the incident energy-
flux having unit amplitude passing through an area L? is >V, L?. The fractional
scattering attenuation of the incident-wave energy per unit travel distance is thus
equal to go. Dividing go by ko, we get the scattering attenuation based on the
conventional Born approximation (Aki and Richards 1980; Chernov 1960, p.742) as

1 1 1 (1 [do
BSc n—1 — — = —(—
07 ) = a0 = o Prae = L < : Q)dﬂ
TP y
- 55 F<|F| )dg - mgﬁf’ (2k0sm3)d9 (5.4)
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_k / P (2k0sin£) sin ydy,
21 0 2

where v is scattering angle. The prefix “BSc” explicitly means the attenuation due
to scattering by distributed random inhomogeneities based on the conventional Born
approximation. We will see the same form (7.45) for the amplitude attenuation of
mean wavefield (coherent wavefield) in random media in Chap. 7.

Exponential ACF

In the case that the random media are characterized by an exponential ACF,
substituting (2.11) for the PSDF, we may write the above integral as

2

© 2sinZcos¥
550~ () = 462’k / 2700y = 482k / v
O (1+ 4a2kisin ) 0 (1+a?kiv?)

—282uk0

1+ a2kjv?

(5.5)

_ 8dky )82k for aky < 1
o 1+4d%k3 26%aky  for ako > 1,
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where v = 2sin (/2) in the first line. The scattering attenuation is proportional
to the MS fractional fluctuation of velocity. The dotted line in Fig.5.5 shows
the predicted scattering attenuation against normalized wavenumber aky. It is
proportional to the cube of wavenumber or frequency for low frequencies, and it
increases linearly with frequency for high frequencies. Even if the MS fractional
fluctuation is small, (5.5) predicts a larger attenuation for large ak, compared to that
for small ak(, which does not agree with observations like those shown in Fig. 5.1.

Theoretically predicted large scattering attenuation for high frequencies is caused
by strong forward scattering. The Born approximation is valid only when the energy
loss per distance L is small (Aki and Richards 1980, p.742): 350~ 1koL < 1.
Replacing L with a, we get the least restrictive condition for the applicability of the
Born approximation as

BSUQ_l(lk() < 1. (56)

At large wavenumbers, this condition is equivalent to that the phase change is small
for the propagation of the range of correlation distance, eaky < 1.

Thought Experiment

To better understand the effects of the slowly varying velocity inhomogeneity on
the prediction of scattering attenuation, consider an ensemble of wave propaga-
tion experiments through 1-D inhomogeneous media whose wave velocities vary
slowly. The experiments are done for high frequencies so we choose the dominant
wavelength of an incident wavelet A,, that is much shorter than the scale length of
the velocity inhomogeneity a. Figure 5.6a is a schematic diagram showing the time
traces (bold curves) u obtained from these experiments for different realizations of
inhomogeneous media. We expect good resemblance in waveform between differing
traces; however, first arrival travel-times are expected to vary considerably from
trace to trace. The bottom trace is the average over the ensemble of the traces,
which corresponds to the mean wavefield (u) It differs greatly from all measured
traces because of travel-time fluctuations. The amplitude of the ensemble average
trace is much smaller than that of individual traces. The wave trace next to the
bottom shows the wave trace u" in the background homogeneous medium. Each fine
broken curve in Fig. 5.6a is the difference between the measured (bold) trace and the
wave trace (next to the bottom) in the background homogeneous medium, which
corresponds to scattered waves u' = u — u”. The ensemble average of the square
of the fine broken traces (not shown), which is used to predict scattering attenuation
by the conventional Born approximation, is large. A blind application of the Born
approximation thus predicts a large attenuation because of the relative travel-time
shift due to the long wavelength structure. Thus, we find a link between the predicted
large attenuation caused by large forward scattering for high frequencies and the
travel-time fluctuation caused by the velocity inhomogeneity.
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Fig. 5.6 Time traces (bold curves) u after traveling through realizations of inhomogeneous media

with wavelengths longer than the dominant wavelength of the propagating wavelet A,,. Fine broken

traces show the differences u' from the time trace in the background homogeneous medium u°,

which is shown next to the bottom. The bottom trace is the ensemble average: (a) conventional
Born approximation, (b) travel-time corrected Born approximation

Seismological attenuation measurements are done by measuring amplitudes of
pulse-like direct waves irrespective of travel-times because travel-time fluctuations
are unobservable on individual seismograms. Ignoring travel-time fluctuations is
similar to correcting for them, so that waveforms “u appear aligned, as illustrated in
Fig. 5.6b. The ensemble average trace after travel-time correction (’u) is shown at
the bottom. The difference between each observed trace and the wave trace in the
homogeneous medium “u' = u — u° has a small amplitude, as shown by a fine bro-
ken curve. Since the difference is small, we find that predicted scattering attenuation
is small. We may say that the amplitude decay of (’u) corresponds to the conven-
tional measurement of amplitude attenuation in seismology (Sato 1982a,b, 1984a,b).

The stochastic treatment of wave propagation through random media has been
extensively studied by using the mean wavefield theory and the smooth perturbation
method (Beaudet 1970; Frisch 1968; Howe 1971a,b; Karal and Keller 1964; Sato
1979), which will be introduced in Chap.7. Wu (1982a) showed that the mean
wavefield (u) decays exponentially due to a loss of coherency at a more rapid
rate than predicted by point measurements made for a single realization of the
random medium. Wu (1982a,b) pointed out that the predicted attenuation of the
mean wavefield is related only to the statistical treatment of the ensemble of random
media and is unrelated to seismological measurement of amplitude attenuation.
The relationship between the stochastic averaging procedure and the attenuation
measurement in seismology has been made clear based on these studies.

We can use the results of the above thought experiment to modify the Born
scattering theory to make a prediction of scattering attenuation consistent with the
manner in which seismological observations are made. The following approach
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is to subtract the travel-time shift caused by the long wavelength components of
velocity fluctuation and then calculate scattering amplitude based on the Born
approximation. Scattering attenuation will then be given by an ensemble average
of the integral over the solid angle of the square of travel-time corrected scattering
amplitude.

5.3.1.2 Travel-Time Corrected Born Approximation
For an incident wave with dominant wavelength A,, we first decompose the

fractional fluctuation of wave velocity £ (x) into long- and short-wavelength
components by choosing a cutoff wavelength A, = A,,/v,:

Ex) =£- () +E (). (5.7)

Figure 5.7 shows the concept of decomposition, which is accomplished by using the
Fourier transform:

1 © ~ .
L — _ imx
£ (x) = 2n) //_oo H (vcko — m) € (m)e'™ dm, (5.82)
1 o0 _ .
S = _ imx
£ (x) = 2n) //_oo H (m —v:ko) € (m)e'™ dm, (5.8b)

where kg = 2m/A,, is the wavenumber of the incident wave and vk is the cutoff
wavenumber for the velocity fluctuation. The corresponding PSDFs are given by

PY(m) = P (m) H (vckg—m) and PS(m) = P (m) H (m —veko). (5.9)
Then the long-wavelength component of velocity fluctuation causes a travel-time

fluctuation whose size is given by a line integral along the incident ray path. For the
plane wave incidence along the third axis,

8[() /XB|:1 1 :| dx’ 1 XBSL(/)d/
X) = - = X3 & — X ) dXx;.
Ray Vo V(x') Long Wavelength Comp. Vo Ray

(5.10)

Travel Time Scattering Loss
Fluctuation Coda Excitation

BE(X) = OE(X) + OE(X)

Fig. 5.7 Decomposition of

the fractional fluctuation of A=A c A<h &

wave velocity into two ’Wﬂm AU C oA
components in the case of

cutoff-wavelength A, = 2A,,, — e

where A,, is the dominant —_—

wavelength Lp
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In differential form,
1 L
0,0t = 751'35 and 8,»8]-& =0, (5.11)
0

where the latter condition is added to ensure that the travel-time correction term is
locally constant on a plane normal to the incident ray and its second derivative with
respect to the propagation direction is also zero since the spatial variation of the
long-wavelength component is small (Yoshimoto et al. 1997a).

Subtracting the travel-time fluctuation §¢ (x), we can define the travel-time
corrected wavefield as

ux,1) = u(x,t + 8t (x)), (5.12)

where prefix “T” denotes the travel-time correction. Substituting (5.12) in (4.4) and
neglecting second-order quantities, we get the wave equation

1 2
(A - —zaf) = — (—zgaf 20,88 010, + Abt - a,) u. (5.13)
Vi V

We decompose the wavefield u as
=’ + ', (5.14)

where |u'| < |u°|. Incident wave u" satisfies the homogeneous wave equation

1
(A - Wa,?) u’ = 0. (5.15)
0

Substituting unit-amplitude plane wave u’ (x, ) = ¢! %0¢¥=0" into (5.13) and using
(5.11), we have

1 .
(A - Waf) ' = 2kgES (x) €' Foer—en), (5.16)
0

Accounting for the travel-time correction gives the result that waves are scattered
only by the short-wavelength components of the inhomogeneity.

We solve the above equation under the condition that the inhomogeneity is
localized in a volume having dimension L around the origin, where L >> a. Using
the retarded Green’s function given by (4.14) and following a procedure like the one
that leads to (4.18), spherically outgoing scattered wave in the far field is given by

ei(kor—wt) _k{Z) ei(kor—a)l)

't (x, 1) = —— (—)ES (koe, — koes) = Y 'F. (5.17)

r 2
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The long-wavelength component £- (x) causes travel-time fluctuation; interaction
with the short-wavelength component £5 (x) excites scattered waves. The travel-
time corrected scattering amplitude can now be written by using the Fourier
transform of the short-wavelength component of the fractional fluctuation:

2 ~
F = (%) £5 (koe, — koes) . (5.18)

Substituting (5.18) into (4.25) we get the travel-time corrected scattering coeffi-
cient as

47 Nk
"t W.to) = F<|TF| > = ;OPS (koe, — koe3)

k4
= ﬁP (koe, — koes) H (|koe, — koes| — vcko)

4
_kp (2k0 sin ﬂ) H®W— ), (5.19)
T 2

where ¥, is the cutoff scattering angle corresponding to the cutoff wavenumber in
(5.8):

Yo = 2sin”! U? (5.20)

Integrating (5.19) over solid angle as (5.4), we get the scattering attenuation as

TSc Q—l (w)

IR O . k[T AW
4nk09§g(w,§,a))dﬂ(w,§)—271/0 P (Zkosmz)smwdlﬁ

2

k3 b4 3
0 P (kov) vdwv,

=5 " P (Zko sin > ) sinydy = oy :
(5.21)

where prefix “T'Sc” denotes scattering attenuation based on the travel-time corrected
Born approximation. Adjusting for the travel-time fluctuation resulted in the
introduction of a lower bound for the integral that reduces the scattering attenuation
for large wavenumbers, that is, the travel-time correction is equivalent to neglecting
the contribution of large forward scattering within a cutoff scattering angle when
calculating scattering attenuation.

e

Exponential ACF

When random media are characterized by an exponential ACF, we have

TSCQ—I (w) — 482a3k3 /2 v dv = 282a3k(3) (4_ U(%)
*J, (1+ u2k§v2)2 (14 v2a?kd) (1 + 4a%k3)
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2(4—v2)e*a’ky for ako < 1,

~ —2) 2 (5.22)
%ag—ko for (lk() > 1.
The resultant scattering attenuation decreases with increasing frequency for high
frequencies. We plot the travel-time corrected scattering attenuation for v, = 1/2
(solid) and 1/4 (broken) in Fig.5.5. As v, decreases, the travel-time correc-
tion becomes weaker and scattering attenuation increases, particularly for larger
wavenumbers. The minimum cutoff wavelength A., for which a wave having
wavelength A,, will have the same sign of travel-time fluctuation over its wavelength,
is 2A,,. This corresponds to v,=1/2 and ¥, = 2 sin~! (ve/2) &~ 29° (Sato 1982a,b).
We will use this value in the following. Then, (5.22) becomes

15624k

(1+ %Lﬂkﬁ,) (1+ 4u2k(2))
15, 3.3
—e*aky for aky <1
~12, (5.23)
15 for ako > 1

or a ,
Zuko 0

TSCQ—I (0)) — 5

where 75¢Q! -~ 1.8¢? at aky ~ 2.2. Thus, correcting for the travel-time
fluctuation, we get scattering attenuation that has a peak whose amplitude is of
the order of the MS fractional fluctuation and that decreases with the reciprocal
of frequency for high frequencies.

For the calculation of attenuation, Chernov [1960, p.56] proposed to integrate
outside of angle ¥, = 1/aky, by arguing that forward scattering causes only
phase fluctuations. Wu (1982b) proposed a method to calculate the scattering
attenuation specifying ¥, = 90° in (5.21) by arguing that this is the back-scattered
energy, which is lost, and that forward scattered energy is not lost. Wu’s (1982b)
proposal corresponds to v, = ~/2, which gives a smaller peak attenuation for the
same fractional velocity fluctuation. Dainty (1984) and Menke (1984a) discussed
the general relationship between the spectra of inhomogeneity and corresponding
scattering attenuation in the frequency domain.

Travel-Time Fluctuation

The travel-time fluctuation (5.10) does not contain diffraction effects. Taking the
third axis as the incident ray direction and writing x = (X_,z), we get the MS
travel-time fluctuation caused by long wavelength velocity fluctuations for travel
distance Z > a as
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(81(2)) = // £ (x) = 0.2) g (x] = 0,2"))dZd?’

Z—z24/2
- dzd/ ch RL(XJ_ZO»Z(])
Z

V() d/2
0 Z+z4/2
+— dzd/ dze RE (x1 = 0,z4)
—24/2
Z o0
= / dZdRL(XJ_ =0,29)(Z —z4) = dzq RL(XJ_ =0,29)
V3 )
V4 © L
= P-(mp,m,=0)ymidm
2711/02/( (my,m;,=0)mydm,
7z vcko
= Pmy ,m,=0midmy, 5.24
2nV02/0 (my,m;=0)ymydmy (5:24)

where 7 = 7. + z4/2 and 7/ = z. — z4/2 in the second line.
For an exponential ACF,

7 1 vcko 8 2.3 2 2 7 2k2 2
(81(2)2):_2_ %demJ—: 86; a g"U; -
Vs 2m Jo (1+a2m?) Ve 14 a’kiu?
(5.25)
2 2
~ S—Zaz for ako>1
0
For a Gaussian ACF,
2 Z 1 vcko 22
<5t (Z) > =—— 23V e M P dm
Vy 2w
(5.26)

for ako > 1.

\/—8 aZ< _e—Ucazk§/4) N JretaZ
Vi Ve

The MS travel-time fluctuation linearly increases with increasing travel distance.
The travel-time fluctuation will be discussed in relation to the phase fluctuation in
the parabolic approximation in Chap. 9.

5.3.2 Travel-Time Corrected Born Approximation
Jor Vector Waves

Following the procedure used for scalar waves, we will now describe the procedure
to correct for travel-time fluctuation due to long wavelength velocity structure to
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estimate scattering attenuation for vector waves that is consistent with seismological
observation methods. We define the travel-time corrected vector wavefield fu, which
is related to vector wavefield u as

ux,t) = a(x,t + 8t (x)), (5.27)

where travel-time fluctuation §¢ = §t¥ or §t5 for incident plane P- or S-waves
propagating to the third direction, respectively. Substituting (5.27) in (4.36), we get
the wave equation for fu as

po'ii; = [Ao0:id;u; + pod; (0:"u; + 0;"u;)]
—8pli; + 0;6A0; Tuj +0d;0u (a,»Tu,- +0; Tui)
+ 610;0; Tuj +6pd; (81-Tuj +0; Tui) (5.28)
+ (ko + po) (0:82 - 0;Tuj + 98¢ - 9; ;) + 200,81 - 9,
+ (ko + po) 39,8t - lit; + poASt - iy,

where terms of the second power of §¢ or higher order and cross terms of §¢ and
fluctuations of elastic coefficients are neglected. We solve (5.28) using the first-
order perturbation method. We decompose the vector wave into the incident plane
wave that satisfies the homogeneous equation (4.42) and the scattered wave having
small amplitude:

Ta =u’ + Tu, (5.29)

where |u'| < [u®|. The perturbation term satisfies
po'ii] — ;T (Ao, pos 'uf) = 8f; (x,1) + “8f; (x,1), (5.30)
where T;; is the stress tensor, the first term on the right-hand side is the equivalent

body force due to the inhomogeneity given by (4.44), and the second term is the
equivalent body force corresponding to the travel-time correction:

§f (x,1) = (Ao + o) (ai& 07l + 051 - a,»u(;) 2410061 - il
+ (Ao + o) ;0781 - it} + poAdt - ). (5.31)

We first decompose the fluctuation of P-wave velocity into long- and short-
wavelength components as

Sa(x) = St (x) + Sa° (x), (5.32)
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where
1 * ~ imx
Sat (x) = Gy //_oo H (vckg — m) o (m) e'™ dm,
Sa (x) = ! / / H (m — v.ko) 8 (m) e™ dm, (5.33)
@n)* J o

where vk is the cutoff wavenumber for a given angular frequency. For a plane
P-wave propagating along the third axis, the travel-time fluctuation satisfies

§ L
8;6¢F = 6,-3% and  9;9,507 = 0. (5.34)
0

The last condition allows us to neglect the second line of (5.31). Combining (5.31)
and (5.34) for an incident plane P-wave of unit amplitude propagating along the
third direction (4.45), we obtain

81,7 (x.1) = 2kowpodat (x) §ze! C0xTn. (5.35)

Solving (5.30) for body forces (5.35) and (4.46), we get scattered waves as
outgoing spherical waves from the inhomogeneity. Then, the travel-time corrected
PP-scattering amplitude having prefix 7" is given as a sum of terms given by (4.57)
and correction terms:

PP PP PP
TFr-W-E =Fy+ CFV‘J/J,{’ (5.36)

9

where the correction terms having prefix “c” are

Cprr ﬁ%cosy/&;ﬂ_ (koe, — koes3)
4 yg o
5 2 @ (koe, — k. .
= 202 cosy (g — ) B0 o) 637
47 v oo

CF,/PP — CFKPP =0.
In the same manner, the fluctuation of S-wave velocity is decomposed to
§B(x) = 86-(x) + 565 (x), (5.38)

where

1
@n)?

§pt(x) = // h H (v.ly —m) 5E(m)eimxdm,



172 5 Attenuation of High-Frequency Seismic Waves

1

56° (x) = P

// H (m — v.ly) §B (m)e™ dm, (5.39)

where v,/ is the cutoff wavenumber for a given angular frequency. For the incidence
of unit amplitude plane S-wave polarized in the first direction propagating along the
third axis, the travel-time fluctuation satisfies

5 L
0,60 = 550X ana a.0,865 = 0, (5.40)

0

and the equivalent body force term is
515 (x,1) = 2lowpobpt (x) 5yl loex=en) (5.41)

Solving (5.30) for body forces (5.41) and (4.48), we get the scattered waves as
outgoing spherical waves from the inhomogeneity. The travel-time corrected SS-
scattering amplitude is given as a sum of terms given by (4.57) and correction terms:

Ss ss Ss
TFr-W-E =Fye+Fye (5.42)

where the correction terms are
3B (loe, — loes)
Bo '

5B (loe, — loes) (5.43)
,3(} ’

12
CF1/§S — LZCOSECOSW H (wf - W)
4

2 .

CFESS _ 4i (=2sind) H (Y — )
T

‘FSS = 0.

The correction terms for both P- and S-waves are nonzero only within a cone in the
forward direction satisfying ¥ < .. Correction terms (5.37) and (5.43) are slightly
different from the corresponding correction terms in Sato (1984a) because of the
second condition of (5.34) and (5.40), but the following results are quantitatively
similar to those given in Sato (1984a, 1990).

We have assumed that the fractional fluctuations for « and 8 are given by one
isotropic and homogeneous random function £ (x) as in (4.58). Using Birch’s law,
the fractional fluctuation of density is taken to be proportional to & (x) as given by
(4.59). Then, combining (4.61) with (5.36), (5.37), (5.42), and (5.43), we obtain
travel-time corrected scattering amplitudes by using the Fourier transform of £ (x),
where the argument is the exchanged wavenumber vector corresponding to each
scattering mode:
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12 ~
TEPP = O Tx PP (g, £) E (koe, — koes)

4
R = % XJS .0 E (o, — koes)
F = % X3P 0§ (koer — loes).
TFI/LES = % TXJTS (W, O) € (loe, — loes) ,
= % XSS (0, )& (loe, — loes). (5.44)

Travel-time correction has been done only for PP- and SS-scattering since it
is necessary only when the scattered wave and the incident wave are the same
wave type. As shown in Fig.4.6, basic scattering patterns X }* for conversion
scattering have no lobes in the forward direction. Here, 7X }* is a function of angle
(¥, ¢) representing the basic scattering pattern including the effect of travel-time
correction:

1 2
TX,.PP .0 =— [v (—1 + cos ¢ + Fsinzl/f) -2
0 0

-|-i2 sin? ¢ + 2cosy H (Ve —W)i|v

Y0
TXJSS (Y, &) =cos¢[v(cosy —cos2y) —2cos2y +2cosy H (Y. — )],
TX§SS (W, &) =sinl[v(cosy — 1) +2cosyy —2 H (Y. — )] . (5.45)

Contrary to the scalar wave case, the travel-time correction for vector waves does
not completely eliminate the contribution of scattering within a cone defined by
cutoff scattering angle v, around the forward direction. However, for angles smaller
than ., the travel-time correction makes the scattering amplitude very small. In
addition, "X,” = 7X35 = "X}$ = 0 at y = 0. This means that the correction
for the travel-time fluctuation is almost the same as neglecting scattering loss within
a cone around the forward direction. Figure 5.8 shows the 1 dependence of basic
scattering patterns for the travel-time corrected Born approximation, where yy =
V/3,v =0.8and v, = 1/2. The backward scattering coefficients remain unchanged
since (5.37) and (5.43) show that the travel-time correction does not affect scattering
for angles larger than the cutoff scattering angle v,.

We imagine an ensemble of media having random fractional fluctuations
described by £ (x). Then, we define scattering coefficients with travel-time
correction as in (4.64):
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Fx“(w,nfz)l "X (w.0)
XPPwo) [t
Sh AW \w
2 A

-3 -2 -1 0 1 2

Fig. 5.8 1 dependence of basic scattering patterns for the travel-time corrected Born approxima-
tion for yy = V3,0 =08, and v, = 1/2 (. ~29°). Compare with Fig. 4.6

1o (W,z;w>z4—7§(lTﬁf’Plz)— B ey e (2.

Yo
2
T SS
L3 ’&’>

I3 (Iryss Ty ss|? .
MGX &’*{%mg) (5.46)

where the ensemble average of the squared scattering amplitude per unit volume is
written by using the PSDF of the random fluctuation. Scattering loss is written as an
integral of the scattering coefficient with travel-time correction over a solid angle

1455 (4, ¢ w) = <’TFSS

0! (@ )—— (™ .G 0) + ¢ G w)]d2 (v.0).

1
Seoy! (w)zm0 [¢%° . Cw) + &5 .G o)]dR (0. (547)

Substituting (5.46) and (4.64) into (5.47), we finally get

TSc volg Ty PP 25 (2l f)
07! @ = 20 |1/ o p (2L

2

Lps 2 (o
A A Ve | P IaS
Sc = _ i SS 2 sS 2 Y
505 () = (4;)295{[]% w0 +|'x; (W,i)’}P(ZlosmE)

J
| XST o P (y—‘j) Vi —ameosy )| a2 wo.

(5.48)
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For PS- and SP-conversion scattering, the argument of the PSDF in (5.48) cannot
take a value smaller than (yy — 1) lo/yo, which means that only the short-wavelength
components of the random inhomogeneity contribute to scattering loss.

Exponential ACF

For the case of an exponential ACF, substituting the PSDF (2.11) in (5.48), we
numerical evaluate scattering attenuation as follows. The peak values are

I8¢ 03 yar = 1.66% at  aw/Bo ~ 3.0,

ISco e ~1.062 at  aw/Bo ~ 2.0. (5.49)

For low frequencies, aw/foy < 1,

aw

3 3
ISeQp! a2 4.7 €2 (ﬂ) and "5°Q5' ~ 7267 (—) : (5.50)
Bo Po
where 75¢ Q3! /15¢ OF! a2 0.66. For high frequencies, aw /By > 1,
ISep7l ~ 1062 (@) and Q5" ~4.6¢” (@) : (5.51)
aw aw

where 7S¢ Q3! /7S¢ Q3! ~ 2.2. Thus, scattering attenuation decreases according to
the reciprocal of frequency for both P- and S-waves.

Figure 5.9 shows the frequency dependence of scattering attenuation for P-waves,
S-waves, and their ratio, where the abscissa is scaled S-wave wavenumber aly =
aw/Bo. Ratio "¢ Q3! /7S¢ Q! is smaller than 1 for lower frequencies; however, it
becomes larger than 1 for higher frequencies. Comparing contributions of different
scattering modes, we find that SS scattering is dominant in S-wave attenuation (see
Sato 1984a, Fig. 10).

We plot the theoretical S-to-S backscattering coefficient g55 (4.68) for an
exponential ACF with ¢2 = 0.01 and ¢ = 2km by a solid curve along
with both backscattering coefficient and total scattering coetfficient measured from
S-coda excitation of local earthquakes from various regions of the world in
Fig.5.10. We plot the theoretical scattering attenuation of S-waves 7S¢ Q;l and ratio
ISc 31 /T5¢ Q5" by solid curves along with worldwide observations in Fig. 5.11.
The theoretical curves provide a good fit to the observed data. The PSDF of
velocity fractional fluctuation corresponding to this estimate is plotted by line 5.1 in
Fig. 1.4.
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Fig. 5.9 (a) Frequency dependence of scattering attenuation 75¢ Q;l (solid curve) and T5¢ Q51
(broken curve) and (b) ratio of 7¢Q7%" to T5¢ Q5! theoretically predicted by the travel-time

corrected Born approximation for an exponential ACF (x = 0.5) for yy = V3,0 =08, and
ve = 1/2 (Y. &29°), where [y = w /By

Fig. 5.10 S-to-S km1]

backscattering coefficient 0.

gﬁs vs. frequency, where

Bo = 4km/s, Yo = ﬁ,

v = 0.8: a solid curve for the

exponential ACF (k = 0.5, 0.01

&2 =10.01and ¢ = 2 km) SS

and a broken curve for the 8 1

von Karman ACF (x = 0.35,

&2 = 0.0072 and

a = 2.1km). Background

shows regional measurements

of g and g, worldwide (see 0.0001

Fig.1.3) 0.01 0.1 1 10 100
Frequency [Hz]

0.001

von Karman ACF

The predicted rate of decrease in Q;l with increasing frequency at high frequency
given by (5.51) appears to be faster than observations (see Fig.5.11a). Using
data collected in the Kanto area, Japan, Sato (1984b, 1990) and Kinoshita (1994)
estimated that Q5" o /7. For the case of a von Kdrman ACF of order «, the
scattering attenuation and the back scattering coefficient are

,30 2k
TSCQ;I7 TSCQEI 10%8 82 (_) ,

aw

&2 faw\T*
¢S5 o & (_) (5.52)
a
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Fig. 5.11 Plots of (a) 75¢Q5" vs. frequency and (b) ratio of 75¢ Q75" to 7S¢ Q5! vs. frequency
predicted by the travel-time corrected Born approximation, where , = 4 km/s, yy = V3.v =
0.8, and v. = 1/2: solid curves for the exponential ACF (x = 0.5, £2 = 0.01 and ¢ = 2km) and
broken curves for the von Karman ACF (¢ = 0.35, €2 = 0.0072 and ¢« = 2.1 km). Background
shows regional measurements worldwide (see Figs. 5.1 and 5.3)
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Fig. 5.12 (a) Frequency-dependence of predicted scattering attenuation for S-wave 7¢ Q¢! and
(b) ratio 7S¢ Q;l /T8¢ Q;l for the von Karman ACF (k = 0.35, broken curve) and the exponential

ACF (k = 0.5, solid curve) for yy = ﬁ v =0.8,and v, = 1/2 (Y, ~29°), where [y = w /By

at high frequencies aw/fo > 1. Figure 5.12 shows the frequency dependence
of S-wave attenuation and the ratio of P- to S-wave attenuation for k = 0.35
and k = 0.5 (exponential ACF). For k = 0.35 the ratio of P- to S-wave
attenuation is 2.03 at high frequencies. The ratio slightly decreases as the x-value
becomes smaller. In Figs. 5.10 and 5.11, broken curves show the best fit theoretical
predictions for the von Karman ACF with k = 0.35, ¢2 =0.0072 and ¢ = 2.1km.
The theoretical curves provide a good fit to the observed data. The PSDF of
velocity fractional fluctuation corresponding to this estimate is plotted by line 5.2 in
Fig. 1.4.

We should note that the above estimation of randomness is the maximum value
since all the attenuation is supposed to be caused only by scattering due to dis-
tributed random inhomogeneities but intrinsic absorption is completely neglected.
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5.3.3 Evaluation of Cutoff Scattering Angle

As shown in Fig. 5.5, the choice of cutoff scattering angle impacts the attenuation
predictions made by the single scattering theory; however, the choice of cutoff
angle is not self evident. Several investigators have evaluated scattering attenuation
using 2-D acoustic finite difference simulations for media having random velocity
fluctuation to estimate the cutoff scattering angle, or the lower bound for the
integral over scattering angle. For the 2-D scalar wave case, the travel-time corrected
scattering attenuation for an exponential ACF is

2 ﬂ 2624242
TSCQ—I (a)):—O/ P(Zkosin%)dw:/ EaTky 3/2d'iﬂ7
m Jy, Ve (1 + 4ak2 sin? %)

(5.53)

where the lower bound of the angular integral /. is the cutoff angle.

Frankel and Clayton (1986) measured the apparent attenuation of direct ampli-
tude with travel distance from their 2-D numerical simulations and plotted apparent
attenuation against the product of wavenumber and correlation distance for the
exponential ACF with ¢ = 10%. They found that apparent attenuation measured
from their simulations roughly follows the theoretical curve given for 0.2 < aky < 6
by (5.53) when ¥, = 30°—45°. The cutoff angle v/, for the calculation of scattering
loss was examined using numerical experiments for a wider range of medium
parameters by Roth and Korn (1993). Changing ¢ from 3% to 9% and using an
exponential ACF, they measured scattering loss from the amplitude change of an
isolated pulse over travel distance in 2-D acoustic random media. Their results are
shown in Fig.5.13. For 0.2 < aky < 20, they concluded that 1, ranges from 20°
to 40°. Studies of Frankel and Clayton (1986) and Roth and Korn (1993) provide
evidence supporting the value of 29° proposed for the 3-D case. Fang and Miiller

10
Fig. 5.13 Plot of scattering
attenuation in 2-D acoustic
random media vs. scaled
wavenumber ak. An irregular 10°
line shows measurements
made from 2-D finite N
difference simulations. &2
Regular lines show 10~} 30°
predictions of (5.53) for 40°
various values of ¥, where
k = w/V,. Random medium
is characterized by an
exponential ACF with L LA LL L
& = 9%. (Roth and Korn X 10° 10! 10?
1993, copyright by Willey) ka

20°

L LiLll

Lol

10-?

=
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(1996) preferred that 1. about 20° for scattering attenuation based on measurements
of the decay of the envelope maximum and spectral amplitude with travel distance.
Kawahara (2002) investigated the constraint by causality on the choice of the cutoff
angle V. for scalar waves in 3-D random media. On the basis of the Kramers-Kronig
relation, he derived a simple relation among . and the phase velocities in the
high- and low-frequency limits co, and co: coo/co = 1 + (£2/2)(cosec(./2) — 1)
irrespective of ACF type. It means ¥, &~ 60° if coo = Vy(1—¢2); however, V. ~ 29°
if Coo = Vo.

For the calculation of scattering attenuation through distributed cracks, the idea
of neglecting scattering energy within a cone around the forward direction is
useful. From the measurement of amplitude attenuation through an aluminum block
containing parallel cylindrical voids, Dubendorff and Menke (1986) found that the
apparent attenuation was well fit by the corrected scattering attenuation model when
the cutoff scattering angle is 10° for P-waves, 6° for SH-waves, and 15° for SV-
waves.

5.3.4 Diffraction Effects

The derivation of scattering attenuation by using the Born approximation can
be viewed as a kind of differential approach since the correction for travel-time
fluctuation is given in differential form in (5.11). Diffraction effects caused by long-
wavelength components of the inhomogeneity were neglected. These diffraction
effects become increasingly important as travel distance increases.

Shapiro and Kneib (1993) investigated this phenomena in detail for isotropic
random acoustic media. They measured the decay of the logarithm of mean-wave
(coherent-wave) amplitude In (1) and that of the mean logarithm of amplitude
(In Ap) with travel distance in a frequency range dominated by forward scattering.
Regressions of (In Ag) vs. travel distance are common methods for measuring
attenuation in the earth. Figure 5.14a shows (In Ay) and In () predicted by the
parabolic approximation (see Chap.9) at 100 Hz against travel distance for short
travel distances in 3-D, where 100 Hz corresponds to a wavelength of 30m and
aky =~ 4.2. In{u) decreases linearly with travel distance. However, (In A4g)
decreases more slowly and is similar to the curve predicted by Wu’s (1982b)
approximation for short travel distances that uses ¥, = 90° and counts scattering
only into the back half-space for the estimation of scattering attenuation. This
means that attenuation of the coherent wavefield is caused mainly by travel-time
fluctuations but that backscattering alone is insufficient to explain the observed
amplitude attenuation. Shapiro and Kneib (1993) also measured (In Ap) from 2-D
finite difference calculations for the scalar wave equation by taking many point
measurements of the wavefield, computing the spectra, and averaging the natural
logarithms. Figure 5.14b plots (In Ay) vs. distance at long travel distances measured
from the numerical simulations. Numerical results, represented by dots, agree well
with the bold convex curve, which is predicted to be due to de-focusing of the
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Fig. 5.14 (a) Plots of logarithm of mean-wave amplitude In (1) (solid curve) vs. travel distance
of 100 Hz waves in a 3-D acoustic random medium of average velocity V, = 3 km/s having an
exponential ACF with ¢ = 20m and ¢ = 3%. A bold convex curve is (In Ap) predicted from
the parabolic approximation theory. A broken curve is the prediction by Wu (1982b) who used
single scattering theory with . = 90°. (b) Plots of logarithm amplitude vs. travel distance of
100 Hz waves in a 2-D acoustic random medium of the same statistical characteristics as in (a).
Dots are (In 4y) measured from numerical simulations. A bold convex curve is (In Ay) predicted
from the parabolic approximation theory, and the horizontal bar corresponds to saturation due to
strong scattering. (Shapiro and Kneib 1993, copyright by Willey)

wavefield by the parabolic approximation for the specific model structure with
akoy >1, where backscattering is neglected. Even though the medium fluctuation
is small, at distances larger than 500 m in the simulation, the mean logarithm
amplitude stays at the same level irrespective of travel distance because of the
dominance of incoherent wavefield due to diffraction and forward scattering. There
is a difference between the global estimate and the local estimate of attenuation.
Shapiro and Kneib (1993) raised concern about the careless use of the linear
regression for a long distance range to estimate the characteristics of random media.

In Chap. 9, we will statistically study the attenuation of the maximum amplitude
and the broadening of envelope for the propagation of an impulsive wavelet through
random media based on the parabolic wave equation.

5.4 Scattering Attenuation Due to Distributed Cracks
and Cavities

As introduced in Chap. 2 microscopic cracks are known to be pervasive in crustal
rocks. Several models for predicting the influence of cracks and inclusions in rocks
on elastic properties have been developed since the pioneering work of Walsh
(1965). Since then several models have been developed to predict the effects of
empty and fluid-filled cracks on intrinsic attenuation as introduced at the beginning
of this Chapter. These models were developed to predict the bulk properties of rocks,
so little attention was paid to the character of the scattered wavefield. It is natural
to imagine a single crack or a distribution of cracks as the heterogeneity and to
investigate the characteristics of the scattered wavefield.
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The finite difference method is the most common for the simulation of wavefields
in an inhomogeneous medium (e.g. Alford et al. 1974; Aminzadeh et al. 1994).
This approach is based on a discretization of the medium and the equations of
motion describing wave propagation. Although this method is reliable for modeling
wave propagation in media having relatively modest spatial variations in elastic
properties, it does not work well in media that are strongly heterogeneous since
derivatives are calculated as averages over many grid points in the medium, which
is equivalent to assuming that the medium varies smoothly rather than having
discontinuous variations in medium properties.

There have been several attempts to solve the boundary value problem for
the scattered wavefield caused by plane waves incident on an isolated spherical
inclusion (e.g. Einspruch et al. 1960; Korneev and Johnson 1993a,b; Yamakawa
1962; Ying and Truell 1956). Gritto et al. (1995) and Korneev and Johnson (1996)
examined conversion scattering characteristics for the incidence of both P- and S-
waves on a spherical inclusion. They pointed out the significant amount of P-to-S
scattering compared with S-to-P scattering.

Kikuchi (1981) analytically calculated elastic wave attenuation due to distributed
cracks of half-length a. in a 2-D medium. A crack is geometrically described as the
limit of an ellipse on which the stress is free. The resultant scattering attenuation
Q3! for P-waves arriving normal to the crack plane has a peak at a ko ~ 0.64, and
the peak value is a few times larger than the peak value of scattering attenuation
Q5" for S waves. Kawahara and Yamashita (1992) used an integral equation to
examine attenuation for waves at oblique incidence on a fracture zone containing
randomly distributed cracks whose planes are aligned parallel to the fracture plane.
Figure 5.15 shows scattering attenuation for SH-waves, where the peak frequency
is almost independent of the incidence angle (Kawahara and Yamashita 1992).
The higher frequency asymptote of scattering attenuation is proportional to the
reciprocal of frequency. Yamashita (1990) used an integral equation to calculate SH-
wave scattering attenuation through a medium composed of a distribution of cracks
whose half-lengths a, obey an inverse power of dimension and whose orientations
are random. He discussed the change in scattering attenuation in relation to the

10

Fig. 5.15 Scattering loss due
to aligned non-opening cracks
with half-length a, for
SH-waves having various
incident angles relative to the
plane of the aligned cracks,
where 7. is the number
density of cracks, and

| = w/Po. (Kawahara and
Yamashita 1992, copyright by
Springer) e [
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power of the crack size distribution. Later, using the boundary integral method,
Murai et al. (1995) numerically simulated SH-wave propagation through a medium
containing 72 distributed parallel plane cracks containing Newtonian viscous fluid.
Matsunami (1990) measured attenuation and amplitude fluctuation of acoustic
waves propagating through an aluminum plate with many clusters of small open
holes. He found a peak in Q! when the wavelength is about 1.5 times the average
diameter of the cluster of holes.

For all models investigated, the crack model predicts a peak in Q' when the
wavelength is of the same order as the dimension of the crack. If we fit the scattering
attenuation to the predicted peak in observed attenuation at 0.5 Hz as suggested in
observed le, the dimension of crack «a, has to be of the order of kilometers.

Scattering attenuation due to distributed cylindrical cavities was analytically
studied by using a scattering matrix by Varadan et al. (1978). Numerical synthesis
of time domain seismograms for waves incident on a distribution of many open
cavities was done by Benites et al. (1992). They used the boundary integral method
to deterministically model multiple scattering of SH-waves in 2-D media containing
a distribution of randomly spaced cylindrical cavities of radius a., as schematically
illustrated in Fig. 5.16.

Since an exact numerical method was employed, they were able to investigate
wave scattering in media containing strong velocity contrasts. The boundary integral
approach used by Benites et al. (1992) was a frequency-domain implementation.
The total SH-wavefield & (x,®) at angular frequency @ obeys the Helmholtz
equation:

(A+13)i(x,0) =0, (5.54)
where wavenumber [y = w/By. The Green’s function for a delta function source

at the origin in a 2-D homogeneous medium satisfying the radiation condition is
written by using the Hankel function of the first kind of the zeroth order as

N i
Gy (x,0) = _Zﬁg” (lor) . (5.55)

x'..
. ﬁ (x ) ) U
. i-th cavity
. . C
Fig. 5.16 Schematic ! y
illustration of distributed
cylindrical cavities and the .

incident SH-wave #° (x, ®), /

where total wavefield is given ~0
by i (x, )
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The solution of (5.54) is written in the form of an indirect integral representation,
where the total wavefield is the sum of the incident wave and scattered waves from
sources located along the boundaries of the M cavities:

nx,0) =i’ (x,0)+ Z 95 Go (x—x,0)A; (X, 0)de (X)), (5.56)

i=1

where x’ is the location of a source A; for the scattered wavefield, dc¢; is an
infinitesimal line element, and circle C;_ is interior to boundary C; of the i-th
cavity. Practically they took the radius of C;_ as 80% of the radius of C; to avoid
the singularity of the Green’s function at the location, where boundary conditions
must be met.

It is necessary to describe the boundary condition to solve (5.56) since it is a
class of indirect integral representation problems. Benites et al. (1992) discretized
the source distribution for the i—th cavity as

N
Ai(x0) =) A (@)8 (x—x;j), (5.57)

j=1

where A;; is a complex constant that represents the strength of the source located
at the j-th point along a circle C;_ of the i-th cavity x;j and N is the number of
sources. The minimum number of sources required is 27wa. /(A,,/4) for wavelength
A Then, they wrote (5.56) as

i(x,0) = i@ (x, a))—l—ZZA,,(w)GO( l],a)). (5.58)
i=1j=1

They imposed the Neumann boundary conditions on the cavity surfaces in a least
square sense. They minimized the square sum of traction along all boundaries:

24 b

where ny, is the outward normal vector to boundary Cj.. Substituting (5.58) in (5.59),
they got a system of simultaneous linear equations for 4;;:

M * o
Z Z (Z¢ ()mn dG(:] de ) — _Zé‘ djl(l):” ((?u(} de, (560)
k=1""%k

i=1 j=1

dck = Min. , (5.59)

where an asterisk stands for complex conjugate and 60,,,,,, means @0 X=X, ®).
The right-hand side represents the interaction between the incident wave and the
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Fig. 5.17 (a) Configuration of 50 cavities of radius « used in numerical simulations, where SH-
waves are vertically incident from below. (b) Scattering loss of direct SH-wave against scaled
wavenumber aly, where [, = w/ ;. Open symbols denote numerical experimental values. A solid
line is according to the Foldy theory. (Kawahara et al. 2009, copyright by the Acoustical Society
of America)

n-th source of the m-th cavity. The left-hand side represents the interaction between
the n-th source of the m-th cavity and the j-th source of the i-th cavity. Solving
these simultaneous linear equations in the angular-frequency domain, they got the
strength of the sources A4;;. By using the inverse Fourier transform of the solutions
obtained for many frequencies, they obtained synthetic seismograms in the time
domain.

Solving the problem for the incidence of a plane wave or a line source, Benites
et al. (1992) numerically synthesized seismograms for the medium containing 50
cavities. They measured the amplitude attenuation of direct SH-wave against travel
distance through an infinite medium that includes a region containing distributed
cavities. Their scattering attenuation measurements are well explained by the
theoretical prediction that is obtained by using the optical theorem. Later Kawahara
et al. (2009) numerically simulated SH waves in distributed cavities for the vertical
incidence as shown in Fig.5.17a. Scattering attenuation of peak amplitude is
compared with the Foldy theory (Foldy 1945) in Fig. 5.17b. Both agree well each
other in the case of small cavity density.

5.5 Further Reading

Barton [2007, Chap. 10] reviews recent measurements of seismic wave attenuation
at many different scales and possible attenuation mechanisms. In Chap. 8, we will
see quantitative measurements of both intrinsic and scattering attenuation from the
balance of coda excitation and the direct wave amplitude attenuation on the basis of
the multiple isotropic scattering model. In Chap. 9, we will see a power-law decay
of the maximum amplitude of a wavelet with distance in random media according
to the stochastic treatment of the parabolic-type equation when the wavelength is
shorter than the correlation distance.



