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2.6 Linear Operators

In calculus we consider\the real line R and real-valued functions on R
(or on a subset of R). Obviously, any such function is a mapping’ of its
domain into R. In functional analysis we consider more general spaces,

such as metric spaces and normed spaces, and mappings of these
spaces.

In the case of vector spaces and, in particular, normed spaces, a
mapping is called an operator.

2.6-1 Definition (Linear operator). A linear operator T is an
operator such that

(i) the domain 9(T) of T is a vector space and the range R(T)
lies 1n a vector space over the same field,



(ii) for all x, ye %(T) and scalars «,

Tx+y)=Tx+Ty

(1)
T(ax)=aTx.

we write Tx instead of T'(x)

%(T) denotes the domain of T.
R(T) denotes the range of T.
N(T) denotes the null space of T.

By definition, the null space of T is the set of all xe%(T) such that
Tx=0. (Another word for null space is “kernel.” We shall not adopt




We should also say som/efthing about the use of arrows in con-
nection with operators. Let 2(T) < X and R(T)< Y, where X and Y are
vector spaces, both real or both complex. Then T is an operator from
(or mapping of) @(T) onto R(T), written

T: (T)— R(T),
or from %(T) into Y, written
T: 9(T)—— Y.

If 9(T) is the whole space X, then—and only then—we write

T: X— Y.
Clearly, (1) is equivalent to
2) T(ax+By)=aTlx+ BTy.

By taking @ =0 in (1) we obtain the following formula which we
shall need many times in our further work:

3) TO0=0.



Examples

2.6-2 Identity operator. The identity operator I.: X —> X is defined
by Ixx = x for all x e X. We also write simply I for Ix; thus, Ix = x.

2.6-3 Zero operator. The zero operator 0: X —— Y is defined by
Ox=0 for all xe X.

2.6-4 Differentiation. ILet X be the vector space of all polynomials
on [a, b]. We may define a linear operator T on X by setting

Tx(t)=x'(t)

for every x € X, where the prime denotes differentiation with respect to
t. This operator T maps X onto itself.

2.6-5 Imtegration. A linear operator T from C[a, b] into itself can be
defined by

Tx(t)= jt x(7) dr tela, b].

2.6-6 Multiplication by #. Another linear operator from C[a, b] into
itself is defined by

Tx(t)=tx(t).



2.6-7 Elementary vector algebra. The cross product with one factor
kept fixed defines a linear operator T;: R> —— R>. Similarly, the dot
product with one fixed factor defines a linear operator T>: R> —— R,

say,
Tox =x-a=&a1t+é&axt+ Esas

where a = (a;) eR? is fixed.

2.6-8 Matrices. A real matrix A = («;.) with r rows and n columns

defines an operator T: R" —— R’ by means of

y = Ax

where x = (&) has n components and y =(m,) has r components and
both vectors are written as column vectors because of the usual

convention of matrix multiplication; writing y = Ax out, we have
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T is linear because matrix multiplication is a linear operation. If A
were complex, it would define a linear operator from C" into C'. A
detailed discussion of the role of matrices in connection with linear

operators follows in Sec. 2.9. 1



2.6-9 Theorem (Range and null space). Let T be a linear operator.
Then:

(a) The range R(T) is a vector space.
(b) If dim (T)=n <x, then dim R(T) = n.

(¢) The null space N(T) is a vector space.

Proof. (a)Wetakeanyy, y,€ &(T)andshow thatay; + By, e R(T)
for any scalars a«,B. Since y;,y,€R(T), we have y,=Tx,
y, = Tx, for some x1, x,€B(T), and ax;+Bx,€(T) because U(T) is a
vector space. The linearity of T yields

T(axl + BXz) = aTx1 + Bsz = QY + 3)}2

Hence ay,+ By, e R(T). Since y;, y,€ R(T) were arbitrary and so were
the scalars, this proves that R(T) is a vector space.



(b) We choose n+1 elements yy,- -+, y,.1 of R(T) in an
arbitrary fashion. Then we have y;=Txy,* **, Yn+1 = TX,41 for some
X1, ", Xo4q 10 D(T). Since dim D(T)=n, this set {xi,* -, Xp+1}
must be linearly dependent. Hence

a1x1+ "t +an+1xn+1 — O

for some scalars ay,- -, a,+1, not all zero. Since T is linear and
T0=0, application of T on both sides gives

T(a1x1+ s +an+1xn+1): a1y;t - T a1 Yn+1 = 0.

This shows that {y;, - -+, y.+1} is a linearly dependent set because the
a;’s are not all zero. Remembering that this subset of R(T) was chosen
in an arbitrary fashion, we conclude that R (T) has no linearly independ-

ent subsets of n+1 or more elements. By the definition this means
that dim R(T)=n.



(c) We take any x;, x,€ N(T). Then Tx,=Tx,=0. Since
T 1s linear, for any scalars , B we have

T(ox, + Bx,)= aTx, + BTx, = 0.

This shows that ax; +Bx, € N(T). Hence N(T) is a vector space. 1

An immediate consequence of part (b) of the proof 1s worth
noting;

Linear operators preserve linear dependence.



Let us turn to the mverse of a linear operator. We first remember
that a mapping T: 9(T)— Y is said to be injective or one-to-one if

different points in the domain have different images, that is, if for any
X1, X2 € @('1—'):

(4) X, 7 X2 = Tx, 7= Txs;
equivalently,
4™) Tx, = Tx> —_— X1 = X>.

In this case there exists the mapping

T ': R(T) —— (1)

(5
YobH—> Xgo (yo = Txo)

which maps every yo € R(T) onto that xo € @9(T) for which Txo = yo. See
Fig. 20. The mapping 7T ' is called the inverse® of T.

/ ‘——'-N*__‘ yD = Txo
X0

X Y

Fig. 20. Notations in connection with the inverse of a mapping; cf. (5)



T 'Tx=x for ali xe%(T)
TT 'y=y for all yeR(T).

2.6-10 Theorem (Inverse operator). Let X, Y be vector spaces, both

real or both complex. Let T: %(T)— Y be a linear operator with
domain 9(T)< X and range R(T)< Y. Then:

(a) The inverse T~ R(T) —> B(T) exists if and only if

Tx =0 e x=0.

(b) If T " exists, it is a linear operator.

() If dimW(T)=n< and T exists, then dim R(T) = dim H(T).



Proof. (a) Suppose that Tx=0 implies x=0. Let Tx;= Tx,.
Since T is linear,

T(x1 — x2) = Tx1 — TXz = O,

so that x;—x, =0 by the hypothesis. Hence Tx,= Tx, implies x; = x,,
and T~ ' exists by (4%). Conversely, if T~ exists, then (4*) holds. From
(4™) with x,=0 and (3) we obtain

Tx1=TO‘—“O :i x1=0.

This completes the proof of (a).



(b) We assume that T~ ' exists and show that T~ ! is linear.
The domain of T~ ' is ®R(T) and is a vector space by Theorem 2.6-9(a).
We consider any x;, x,€9%(T) and their images

y1= Tx, and v, = Tx,.
Then
X1= lel and Xy = T"lyz.
T is linear, so that for any scalars @ and 8 we have
ay,+By.=aTx,+ BTx, = T(ax, + Bx.).
Since x; =T 'y;, this implies
T '(ay:+By.)=ax;+Bx.=aT 'y, +BT 'y,

and proves that T~ ' is linear.



(¢) We have dimR(T)=dim B(T) by Theorem 2.6-9(b),
and dim 9(T) Sdim(T) by the same theorem applied to T~ |

2.0-11 Lemma (Inverse of product), LetT: X —Yand S: Y—7Z7
be bijective linear operators, where X, Y, Z are vector spaces (see

Fig. 21). Then the inverse (ST)™': Z—> X of the product (the compos-
ite) ST exists, and

(6) (ST '=T"'s7".



Proof. The operator ST: X —— Z is bijective, so that (ST)™ '
exists. We thus have

ST(ST) '=1.

where I is the identity operator on Z. Applying S™' and using
S 'S = Iy (the identity operator on Y), we obtain

STIST(ST) '=T(ST) '=S""'I.=8"".

(sT)
Fig. 21. Notations in Lemma 2.6-11
Applying T ' and using T 'T = Ix, we obtain the desired result
T'T(ST) ' =(ST) '=T 'S

This completes the proof. §






