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2.7 Bounded and Continuous Linear Operators

2.7-1 Definition (Bounded linear operator). Let X and Y be normed
spaces and T: 9(T)—— Y a linear operator, where %(T)< X. The

operator T is said to be bounded if there is a real number ¢ such that
for all xea(T),

(1) |1 Tx[| = cllx]. i

Warning. Note that our present use of the word “bounded” is
different from that in calculus. where a bounded function is one whose

range i1s a bounded set.



Tx
(2) |IT||= sup u-
x€a(T) ||x||
x#0

IT|| is called the morm of the operator T. If @(T)={0}, we define
|T||=0; in this (relatively uninteresting) case, T=0 since TO=0
by (3), Sec. 2.6.

Note that (1) with ¢ = |T|| is

3) ITx| =T x|

2.7-2 Lemma (Norm). Let T be a bounded linear operator as defined
in 2.7-1. Then:

(a) An alternative formula for the norm of T is

@ ITl= sup |Tx].

(b) The norm defined by (2) satisfies (N1) to (N4) in Sec. 2.2.



Proof. (a) We write ||x||=a and set y =(1/a)x, where x# 0. Then
lyll=||x||/a =1, and since T is linear, (2) gives

1
ITll= sup —||Tx||* sup T(—- x) = sup |Ty|.
xea(T) A x €(T) a yeD(T)
x#0 ' x#0 Iyll=1

Writing x for y on the right, we have (4).

(b) (N1) is obvious, and so is ||0||=0. From ||T||=0 we
have Tx =0 for all x e @(T), so that T=0. Hence (N2) holds. Further-
more, (N3) is obtained from

sup [laTx||= sup |a||Tx|=|e| sup ||Tx]|

lx|l=1 lIx|[=1 lIx[[=1

where x € 9(T). Finally, (N4) follows from

sup (T} + T)x||= sup ||T1x + Tox|| = sup || Tyx||+ sup || Tox|;

[lcll=1 lIx{[=1 lIxll=1 [Ix]l=1

here, xe(T). 1



Examples

2.7-3 Identity operator. The identity operator I: X—— X on a
normed space X {0} is bounded and has norm [Ij|=1. Cf. 2.6-2.

2.7-4 Zero operator. The zero operator 0: X —— Y on a normed
space X is bounded and has norm ||0|=0. Cf. 2.6-3.

2.7-5 Differentiation operator. lLet X be the normed space of all
polynomials on J=[0,1] with norm given [|x||=max [x(?)|, teJ. A
differentiation operator T is defined on X by

Tx(t) = x'(t)

where the prime denotes differentiation with respect to . This operator
is linear but not bounded. Indeed, lct x,(¢)=1t", where neN. Then
x| =1 and

Txa () = x,'(t) = nt" ™"

so that | Tx,||=n and || Tx,|/||x.||= n. Since n € N is arbitrary, this shows
that there is no fixed number ¢ such that ||Tx,||/||x.||= c. From this and
(1) we conclude that T is not bounded.



2.7-6 Integral operator. We can define an integral operator
T: C[0,1]—C[O0, 1] by

y=TXx where y(t) = j k(t, )x(7) dr.

0

Here k is a given function, which is called the kernel of T and is
assumed to be continuous on the closed square G =J XJ 1in the
tt-plane, where J=[0, 1]. This operator is linear.

T is bounded.

To prove this, we first note that the continuity of Kk on the closed
square implies that k is bounded, say, |k(t, 7)|= ko for all (¢, 7)e G,
where ko i1s a real number. Furthermore,

|x (D] = max [x ()] = ||x]|.

Hence

jl k(t, v)x(7) dr

lyll =Tl = max
1

= max j \k(t, T)| |x(7)| dr

(0]

= k() ”X”

The result is | Tx||= ko ||x|. This is (1) with ¢ = ko. Hence T is bounded.



2.7-7 Matrix. A real matrix A = (&) with r rows and n columns
defines an operator 7T: R —— R’™ by means of

s) y = Ax

where x = (&) and y = (mn;) are column vectors with n and r compo-
nents, respectively, and we used matrix multiplication, as in 2.6-8. In
terms of components, (5) becomes

(5" N — Z o & G=1,---,nr).

k=1

T 1is linear because matrix multiplication is a linear operation.

T is bounded.

To prove this, we first remember from 2.2-2 that the normm on R"
is given by

similarly for y e R". From (5’) and the Cauchy-Schwarz inequality (11)
in Sec. 1.2 we thus obtain

r n >
ITxlP = 3% m2 = 3 | 35 s
2 L2

2 =) (X )7
—IxIP 3 3 an’.

i=1 k=1

I

Noting that the double sum in the last line does not depend on x, we
can write our result in the form -

NTx|I? = c?l|x]||? where c® = Z > ol

This gives (1) and completes the proof that T is bounded. §



2.7-8 Theorem (Finite dimension). If a normed space X is finite
dimensional, then every linear operator on X is bounded.

Proof. Letdim X =n and {e;, - - -, e,} a basis for X. We take any
x =), &e; and consider any linear operator T on X. Since T is linear,

=¥ 151 | Tejl| = max | Ted| T 1)

7= | &7

(summations from 1 to n). To the last sum we apply Lemma 2.4-1 with
o; = & and x; = e¢;. Then we obtain

1
2. l‘filé“g’lzfiei

1
=— x|l

C

Together,

1
ITx)= v I+l where y = max||Te,].

From this and (1) we see that T is bounded. 1



operator T is continuous at an xo€ %(T) if for every £ >0 there is a
6 >0 such that

I Tx — Txo| < € for all x € %(T) satisfying Ix — x| < 8.
T is continuous if T is continuous at every x € %(T).

It is 2 fundamental fact that for a Fnear
operator, continuity and boundedness become equivalent concepts.

2.7-9 Theorem (Continuity and boundedness). Let T: 9(T)— Y
be a linear’ operator, where H(T)c X and X, Y are normed spaces.
Then:

(a) T is continuous if and only if T is bounded.

(b) If T is continuous at a single point, it is continuous.



Proof. (a) For T=0 the statement is trivial. Let T#0. Then
|T|#0. We assume T to be bounded and consider any x,€%(T). Let
any € >0 be given. Then, since T is linear, for every x € 9(T) such that

lx = xol| < where §=—

IT|

we obtain
| Tx = Txol| = | TCx — xo)|| = | T [lx — xol| <[| T} = e.

Since xo€ %(T) was arbitrary, this shows that T is continuous.



o -

Conversely, assume that T is continuous at an arbitrary xo€ @(T).

Then, given any £ >0, there is a 6 > 0 such that

| Tx — Txo||= & for all x € @(T) satisfying |x — xol| = 8.

We now take any y# 0 in @(T) and set

o)
X = Xo+ Then x—xo=my.

o
Il

Hence ||x — xof| = 8, so that we may use (6). Since T is linear, we have

Fo) o
o= st [1{:2 )] - 2
I Tx — Txoll = | T(x — x0)| ]] )| =i
and (6) implies

o

E
Ty||=< e. Th Tyll== vl
|Iy|||I y[|= e us | Tyl aliyll

This can be written ||Ty||= c|ly|, where ¢ = ¢/5, and shows that T is
bounded.

(b) Continuity of T at a point implies boundedness of T
by the second part of the proof of (a), which in turn implies continuity

of T by (a). 1



2.7-10 Corollary (Continuity, null space). Let T be a bounded linear
operator. Then:

(a) x, —> x [where x,,, x € D(T)] implies Tx, —> Tx.

(b) The null space N(T) is closed.

Proof. (a) follows from Theorems 2.7-9(a) and 1.4-8 or directly
from (3) because, as n —> ®,

| T, — T|| = T(x0 = x)]| =[ T}, = %[ — .

(b) For every x EW there is a sequence (x,) in N(T)
such that x, — x; cf. 1.4-6(a). Hence Tx, — Tx by part (a) of this
Corollary. Also Tx =0 since Tx, =0, so that x e N(T). Since x € N(T)
was arbitrary, N(T) is closed. |



It is worth noting that the range of a bounded linear operator may
not be closed. Cf. Prob. 6.

/" The reader may give the simple proof of another useful formula,
namely,

n  [LTIETIT) Tl (neN

valid for bounded linear operators T; X— Y, T} Y— Z and
. T: X— X where X, Y, Z are normed spaces.




Two operators T; and T, are defined to be equal, written
Tl — T2a

if they have the same domain %(T,)=%(T>) and if T;x = T>x for all
X e QD(TI) = @(Tz).

The restriction of an operator T: 9(T)—Y to a subset
B < %(T) is denoted by

Tls

and is the operator defined by

Tlz: B— Y, T|gx = Tx for all x€B.



An extension of T to a set M >%(T) is an operator

-

T:- M— Y such that ﬂ@(n =T,

that is, Tx = Tx for all x€9(T). [Hence T is the restriction of T to
a(T).]

2.7-11 Theorem (Bounded linear extension). Let
T: (T)— Y

be a bounded linear operator, where %(T) lies in a normed space X and
Y is a Banach space. Then T has an extension

T: H(T)—> Y
where T is a bounded linear operator of norm

Il =1l



Proof. We consider any x € 9(T). By Theorem 1.4-6(a) there is a
sequence (x,) in @(T) such that x, — x. Since T is linear and
bounded, we have

1T, — Tl = [ T = x| = (T3 — il

This shows that (Tx,) is Cauchy because (x,,) converges. By assump-
tion, Y is complete, so that (Tx,) converges, say,

Ix,—> yeY.

We define T by

-’

Tx =y.
We show that this definition is independent of the particular choice of

a sequence in 9(T) converging to x. Suppose that x, —— x and
z, — x. Then v,, — x, where (v,,) is the sequence

(xla Z1, X2, 22, " ° .)'



Hence (Tv,,) converges by 2.7-10(a), and the two subsequences (Tx,)
and (Tz,) of (Tv,.) must have the same limit. This proves that T is
uniquely defined at every x € (7).

Clearly, T is linear and Tx = Tx for every x € @(T), so that T is an
extension of T. We now use

| T | = 1T [0

and let n—> . Then Tx, — y=Tx. Since x+—> ||x| defines a
continuous mapping (cf. Sec. 2.2), we thus obtain

| Txl| =Tl
Hence T is bounded and |T||=||T]||. Of course, ||T||=[T]| because the

norm, being defined by a supremum, cannot decrease in an extension.
Together we have ||T|=||T].






