بسم الله الرحمن الرحيم

آناليز تابعي

دکتر سمیه میرزاده

جلسه چهارم غیر حضوری (۲۰ اسفند ۱۳۹۸)

2.7 Bounded and Continuous Linear Operators

2.7-1 Definition (Bounded linear operator). Let X and Y be normed spaces and $T: \mathfrak{D}(T) \longrightarrow Y$ a linear operator, where $\mathfrak{D}(T) \subset X$. The operator T is said to be *bounded* if there is a real number c such that for all $x \in \mathfrak{D}(T)$,

$$||Tx|| \leq c||x||.$$

Warning. Note that our present use of the word "bounded" is different from that in calculus, where a bounded function is one whose range is a bounded set.

(2)
$$||T|| = \sup_{\substack{x \in \mathcal{D}(T) \\ x \neq 0}} \frac{||Tx||}{||x||}.$$

||T|| is called the **norm** of the operator T. If $\mathfrak{D}(T) = \{0\}$, we define ||T|| = 0; in this (relatively uninteresting) case, T = 0 since T0 = 0 by (3), Sec. 2.6.

Note that (1) with c = ||T|| is

$$||Tx|| \le ||T|| ||x||.$$

2.7-2 Lemma (Norm). Let T be a bounded linear operator as defined in 2.7-1. Then:

(a) An alternative formula for the norm of T is

(4)
$$||T|| = \sup_{\substack{x \in \mathcal{D}(T) \\ ||x|| = 1}} ||Tx||.$$

(b) The norm defined by (2) satisfies (N1) to (N4) in Sec. 2.2.

Proof. (a) We write ||x|| = a and set y = (1/a)x, where $x \ne 0$. Then ||y|| = ||x||/a = 1, and since T is linear, (2) gives

$$||T|| = \sup_{\substack{x \in \mathfrak{D}(T) \\ x \neq 0}} \frac{1}{a} ||Tx|| = \sup_{\substack{x \in \mathfrak{D}(T) \\ x \neq 0}} ||T(\frac{1}{a}x)|| = \sup_{\substack{y \in \mathfrak{D}(T) \\ ||y|| = 1}} ||Ty||.$$

Writing x for y on the right, we have (4).

(b) (N1) is obvious, and so is ||0|| = 0. From ||T|| = 0 we have Tx = 0 for all $x \in \mathfrak{D}(T)$, so that T = 0. Hence (N2) holds. Furthermore, (N3) is obtained from

$$\sup_{\|x\|=1} \|\alpha Tx\| = \sup_{\|x\|=1} |\alpha| \|Tx\| = |\alpha| \sup_{\|x\|=1} \|Tx\|$$

where $x \in \mathfrak{D}(T)$. Finally, (N4) follows from

$$\sup_{\|x\|=1} \|(T_1+T_2)x\| = \sup_{\|x\|=1} \|T_1x+T_2x\| \le \sup_{\|x\|=1} \|T_1x\| + \sup_{\|x\|=1} \|T_2x\|;$$

here, $x \in \mathfrak{D}(T)$.

Examples

- **2.7-3 Identity operator.** The identity operator $I: X \longrightarrow X$ on a normed space $X \neq \{0\}$ is bounded and has norm ||I|| = 1. Cf. 2.6-2.
- **2.7-4 Zero operator.** The zero operator 0: $X \longrightarrow Y$ on a normed space X is bounded and has norm ||0|| = 0. Cf. 2.6-3.
- **2.7-5 Differentiation operator.** Let X be the normed space of all polynomials on J = [0, 1] with norm given $||x|| = \max |x(t)|$, $t \in J$. A differentiation operator T is defined on X by

$$Tx(t) = x'(t)$$

where the prime denotes differentiation with respect to t. This operator is linear but not bounded. Indeed, let $x_n(t) = t^n$, where $n \in \mathbb{N}$. Then $||x_n|| = 1$ and

$$Tx_n(t) = x_n'(t) = nt^{n-1}$$

so that $||Tx_n|| = n$ and $||Tx_n||/||x_n|| = n$. Since $n \in \mathbb{N}$ is arbitrary, this shows that there is no fixed number c such that $||Tx_n||/||x_n|| \le c$. From this and (1) we conclude that T is not bounded.

2.7-6 Integral operator. We can define an integral operator $T: C[0, 1] \longrightarrow C[0, 1]$ by

$$y = Tx$$
 where $y(t) = \int_0^1 k(t, \tau) x(\tau) d\tau$.

Here k is a given function, which is called the *kernel* of T and is assumed to be continuous on the closed square $G = J \times J$ in the $t\tau$ -plane, where J = [0, 1]. This operator is linear.

T is bounded.

To prove this, we first note that the continuity of k on the closed square implies that k is bounded, say, $|k(t, \tau)| \le k_0$ for all $(t, \tau) \in G$, where k_0 is a real number. Furthermore,

$$|x(t)| \le \max_{t \in I} |x(t)| = ||x||.$$

Hence

$$||y|| = ||Tx|| = \max_{t \in J} \left| \int_{0}^{1} k(t, \tau) x(\tau) d\tau \right|$$

$$\leq \max_{t \in J} \int_{0}^{1} |k(t, \tau)| |x(\tau)| d\tau$$

$$\leq k_{0} ||x||.$$

The result is $||Tx|| \le k_0 ||x||$. This is (1) with $c = k_0$. Hence T is bounded.

2.7-7 Matrix. A real matrix $A = (\alpha_{jk})$ with r rows and n columns defines an operator $T: \mathbb{R}^n \longrightarrow \mathbb{R}^r$ by means of

$$(5) y = Ax$$

where $x = (\xi_i)$ and $y = (\eta_i)$ are column vectors with n and r components, respectively, and we used matrix multiplication, as in 2.6-8. In terms of components, (5) becomes

(5')
$$\eta_j = \sum_{k=1}^n \alpha_{jk} \xi_k \qquad (j=1,\cdots,r).$$

T is linear because matrix multiplication is a linear operation. T is bounded.

To prove this, we first remember from 2.2-2 that the norm on \mathbb{R}^n is given by

$$||x|| = \left(\sum_{m=1}^{n} \xi_m^2\right)^{1/2};$$

similarly for $y \in \mathbb{R}^r$. From (5') and the Cauchy-Schwarz inequality (11) in Sec. 1.2 we thus obtain

$$||Tx||^{2} = \sum_{j=1}^{r} \eta_{j}^{2} = \sum_{j=1}^{r} \left[\sum_{k=1}^{n} \alpha_{jk} \xi_{k} \right]^{2}$$

$$\leq \sum_{j=1}^{r} \left[\left(\sum_{k=1}^{n} \alpha_{jk}^{2} \right)^{1/2} \left(\sum_{m=1}^{n} \xi_{m}^{2} \right)^{1/2} \right]^{2}$$

$$= ||x||^{2} \sum_{j=1}^{r} \sum_{k=1}^{n} \alpha_{jk}^{2}.$$

Noting that the double sum in the last line does not depend on x, we can write our result in the form

$$||Tx||^2 \le c^2 ||x||^2$$
 where $c^2 = \sum_{j=1}^r \sum_{k=1}^n \alpha_{jk}^2$.

This gives (1) and completes the proof that T is bounded.

2.7-8 Theorem (Finite dimension). If a normed space X is finite dimensional, then every linear operator on X is bounded.

Proof. Let dim X = n and $\{e_1, \dots, e_n\}$ a basis for X. We take any $x = \sum \xi_j e_j$ and consider any linear operator T on X. Since T is linear,

$$||Tx|| = \left|\left|\sum \xi_j Te_j\right|\right| \le \sum |\xi_j| ||Te_j|| \le \max_k ||Te_k|| \sum |\xi_j|$$

(summations from 1 to n). To the last sum we apply Lemma 2.4-1 with $\alpha_i = \xi_i$ and $x_i = e_i$. Then we obtain

$$\sum |\xi_j| \leq \frac{1}{c} \left\| \sum \xi_j e_j \right\| = \frac{1}{c} \|x\|.$$

Together,

$$||Tx|| \le \gamma ||x||$$
 where $\gamma = \frac{1}{c} \max_{k} ||Te_{k}||$.

From this and (1) we see that T is bounded.

operator T is continuous at an $x_0 \in \mathfrak{D}(T)$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$||Tx - Tx_0|| < \varepsilon$$
 for all $x \in \mathfrak{D}(T)$ satisfying $||x - x_0|| < \delta$.

T is continuous if T is continuous at every $x \in \mathfrak{D}(T)$.

It is a fundamental fact that for a *linear* operator, continuity and boundedness become equivalent concepts.

- **2.7-9 Theorem (Continuity and boundedness).** Let $T: \mathfrak{D}(T) \longrightarrow Y$ be a linear operator, where $\mathfrak{D}(T) \subset X$ and X, Y are normed spaces. Then:
 - (a) T is continuous if and only if T is bounded.
 - **(b)** If T is continuous at a single point, it is continuous.

Proof. (a) For T=0 the statement is trivial. Let $T\neq 0$. Then $||T||\neq 0$. We assume T to be bounded and consider any $x_0\in \mathfrak{D}(T)$. Let any $\varepsilon>0$ be given. Then, since T is linear, for every $x\in \mathfrak{D}(T)$ such that

$$||x-x_0|| < \delta$$
 where $\delta = \frac{\varepsilon}{||T||}$

we obtain

$$||Tx - Tx_0|| = ||T(x - x_0)|| \le ||T|| ||x - x_0|| < ||T|| \delta = \varepsilon.$$

Since $x_0 \in \mathfrak{D}(T)$ was arbitrary, this shows that T is continuous.

Conversely, assume that T is continuous at an arbitrary $x_0 \in \mathfrak{D}(T)$. Then, given any $\varepsilon > 0$, there is a $\delta > 0$ such that

(6)
$$||Tx - Tx_0|| \le \varepsilon$$
 for all $x \in \mathfrak{D}(T)$ satisfying $||x - x_0|| \le \delta$.

We now take any $y \neq 0$ in $\mathfrak{D}(T)$ and set

$$x = x_0 + \frac{\delta}{\|y\|} y$$
. Then $x - x_0 = \frac{\delta}{\|y\|} y$.

Hence $||x - x_0|| = \delta$, so that we may use (6). Since T is linear, we have

$$||Tx - Tx_0|| = ||T(x - x_0)|| = ||T(\frac{\delta}{||y||}y)|| = \frac{\delta}{||y||}||Ty||$$

and (6) implies

$$\frac{\delta}{\|y\|} \|Ty\| \le \varepsilon.$$
 Thus $\|Ty\| \le \frac{\varepsilon}{\delta} \|y\|.$

This can be written $||Ty|| \le c||y||$, where $c = \varepsilon/\delta$, and shows that T is bounded.

(b) Continuity of T at a point implies boundedness of T by the second part of the proof of (a), which in turn implies continuity of T by (a).

2.7-10 Corollary (Continuity, null space). Let T be a bounded linear operator. Then:

- (a) $x_n \longrightarrow x$ [where $x_n, x \in \mathfrak{D}(T)$] implies $Tx_n \longrightarrow Tx$.
- **(b)** The null space $\mathcal{N}(T)$ is closed.

Proof. (a) follows from Theorems 2.7-9(a) and 1.4-8 or directly from (3) because, as $n \longrightarrow \infty$,

$$||Tx_n - Tx|| = ||T(x_n - x)|| \le ||T|| ||x_n - x|| \longrightarrow 0.$$

(b) For every $x \in \overline{\mathcal{N}(T)}$ there is a sequence (x_n) in $\mathcal{N}(T)$ such that $x_n \longrightarrow x$; cf. 1.4-6(a). Hence $Tx_n \longrightarrow Tx$ by part (a) of this Corollary. Also Tx = 0 since $Tx_n = 0$, so that $x \in \mathcal{N}(T)$. Since $x \in \overline{\mathcal{N}(T)}$ was arbitrary, $\mathcal{N}(T)$ is closed.

It is worth noting that the range of a bounded linear operator may not be closed. Cf. Prob. 6.

The reader may give the simple proof of another useful formula, namely,

(7)
$$||T_1T_2|| \le ||T_1|| ||T_2||, ||T^n|| \le ||T||^n (n \in \mathbb{N})$$

valid for bounded linear operators $T_2: X \longrightarrow Y$, $T_1: Y \longrightarrow Z$ and $T: X \longrightarrow X$, where X, Y, Z are normed spaces.

Two operators T_1 and T_2 are defined to be **equal**, written

$$T_1 = T_2$$

if they have the same domain $\mathfrak{D}(T_1) = \mathfrak{D}(T_2)$ and if $T_1x = T_2x$ for all $x \in \mathfrak{D}(T_1) = \mathfrak{D}(T_2)$.

The **restriction** of an operator $T: \mathcal{D}(T) \longrightarrow Y$ to a subset $B \subset \mathcal{D}(T)$ is denoted by

$$T|_{B}$$

and is the operator defined by

$$T|_B: B \longrightarrow Y,$$

$$T|_{B}x = Tx$$
 for all $x \in B$.

An extension of T to a set $M \supset \mathfrak{D}(T)$ is an operator

$$\tilde{T}: M \longrightarrow Y$$
 such that $\tilde{T}|_{\mathfrak{D}(T)} = T$,

$$\tilde{T}|_{\mathfrak{D}(T)}=T,$$

that is, Tx = Tx for all $x \in \mathfrak{D}(T)$. [Hence T is the restriction of T to $\mathfrak{D}(T)$.]

2.7-11 Theorem (Bounded linear extension). Let

$$T: \mathfrak{D}(T) \longrightarrow Y$$

be a bounded linear operator, where $\mathfrak{D}(T)$ lies in a normed space X and Y is a Banach space. Then T has an extension

$$\tilde{T}: \overline{\mathfrak{D}(T)} \longrightarrow Y$$

where \tilde{T} is a bounded linear operator of norm

$$\|\tilde{T}\| = \|T\|.$$

Proof. We consider any $x \in \overline{\mathfrak{D}(T)}$. By Theorem 1.4-6(a) there is a sequence (x_n) in $\mathfrak{D}(T)$ such that $x_n \longrightarrow x$. Since T is linear and bounded, we have

$$||Tx_n - Tx_m|| = ||T(x_n - x_m)|| \le ||T|| ||x_n - x_m||.$$

This shows that (Tx_n) is Cauchy because (x_n) converges. By assumption, Y is complete, so that (Tx_n) converges, say,

$$Tx_n \longrightarrow y \in Y$$
.

We define \tilde{T} by

$$\tilde{T}x = y$$
.

We show that this definition is independent of the particular choice of a sequence in $\mathfrak{D}(T)$ converging to x. Suppose that $x_n \longrightarrow x$ and $z_n \longrightarrow x$. Then $v_m \longrightarrow x$, where (v_m) is the sequence

$$(x_1, z_1, x_2, z_2, \cdots).$$

Hence (Tv_m) converges by 2.7-10(a), and the two subsequences (Tx_n) and (Tz_n) of (Tv_m) must have the same limit. This proves that \tilde{T} is uniquely defined at every $x \in \mathfrak{D}(T)$.

Clearly, \tilde{T} is linear and $\tilde{T}x = Tx$ for every $x \in \mathfrak{D}(T)$, so that \tilde{T} is an extension of T. We now use

$$||Tx_n|| \leq ||T|| ||x_n||$$

and let $n \longrightarrow \infty$. Then $Tx_n \longrightarrow y = \tilde{T}x$. Since $x \longmapsto ||x||$ defines a continuous mapping (cf. Sec. 2.2), we thus obtain

$$\|\tilde{T}x\| \leq \|T\| \|x\|.$$

Hence \tilde{T} is bounded and $\|\tilde{T}\| \le \|T\|$. Of course, $\|\tilde{T}\| \ge \|T\|$ because the norm, being defined by a supremum, cannot decrease in an extension. Together we have $\|\tilde{T}\| = \|T\|$.

پایان

با تشکر