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Preface to the Third Edition

The second edition of Statistical Mechanics was published in 1996. The new material added at
that time focused on phase transitions, critical phenomena, and the renormalization group —
topics that had undergone vast transformations during the years following the publication of
the first edition in 1972. In 2009, R. K. Pathria (R.K.P.) and the publishers agreed it was time for
a third edition to incorporate the important changes that had occurred in the field since the
publication of the second edition and invited Paul B. Beale (P.D.B.) to join as coauthor. The two
authors agreed on the scope of the additions and changes and P.D.B. wrote the first draft of
the new sections except for Appendix F which was written by R.K.P. Both authors worked very
closely together editing the drafts and finalizing this third edition.

The new topics added to this edition are:

. Bose–Einstein condensation and degenerate Fermi gas behavior in ultracold atomic gases:
Sections 7.2, 8.4, 11.2.A, and 11.9. The creation of Bose–Einstein condensates in ultracold
gases during the 1990s and in degenerate Fermi gases during the 2000s led to a revolution
in atomic, molecular, and optical physics, and provided a valuable link to the quantum
behavior of condensed matter systems. Several of P.D.B.’s friends and colleagues in physics
and JILA at the University of Colorado have been leaders in this exciting new field.. Finite-size scaling behavior of Bose–Einstein condensates: Appendix F. We develop an
analytical theory for the behavior of Bose–Einstein condensates in a finite system, which
provides a rigorous justification for singling out the ground state in the calculation of the
properties of the Bose–Einstein condensate.. Thermodynamics of the early universe: Chapter 9. The sequence of thermodynamic
transitions that the universe went though shortly after the Big Bang left behind mileposts
that astrophysicists have exploited to look back into the universe’s earliest moments. Major
advances in astronomy over the past 20 years have provided a vast body of observational
data about the early evolution of the universe. These include the Hubble Space Telescope’s
deep space measurements of the expansion of the universe, the Cosmic Background
Explorer’s precise measurements of the temperature of the cosmic microwave background,
and the Wilkinson Microwave Anisotropy Probe’s mapping of the angular variations in the
cosmic microwave background. These data sets have led to precise determinations of the
age of the universe, its composition and early evolution. Coincidentally, P.D.B.’s faculty
office is located in the tower named after George Gamow, a member of the faculty at the
University of Colorado in the 1950s and 1960s and a leader in the theory of nucleosynthesis
in the early universe.. Chemical equilibrium: Section 6.6. Chemical potentials determine the conditions
necessary for chemical equilibrium. This is an important topic in its own right, but also
plays a critical role in our discussion of the thermodynamics of the early universe in
Chapter 9.
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xiv Preface to the Third Edition

. Monte Carlo and molecular dynamics simulations: Chapter 16. Computer simulations have
become an important tool in modern statistical mechanics. We provide here a brief
introduction to Monte Carlo and molecular dynamics techniques and algorithms.. Correlation functions and scattering: Section 10.7. Correlation functions are central to the
understanding of thermodynamic phases, phase transitions, and critical phenomena. The
differences between thermodynamic phases are often most conspicuous in the behavior
of correlation functions and the closely related static structure factors. We have collected
discussions from the second edition into one place and added new material.. Fluctuation–dissipation theorem and the dynamical structure factor: Sections 15.3.A.,
15.6.A, and 15.6.B. The fluctuation–dissipation theorem describes the relation between
natural equilibrium thermodynamic fluctuations in a system and the response of the
system to small disturbances from equilibrium, and it is one of the cornerstones of
nonequilibrium statistical mechanics. We have expanded the discussion of the
fluctuation–dissipation theorem to include a derivation of the key results from linear
response theory, a discussion of the dynamical structure factor, and analysis of the
Brownian motion of harmonic oscillators that provides useful practical examples.. Phase equilibrium and the Clausius–Clapeyron equation: Sections 4.6 and 4.7. Much of the
text is devoted to using statistical mechanics methods to determine the properties of
thermodynamic phases and phase transitions. This brief overview of phase equilibrium
and the structure of phase diagrams lays the groundwork for later discussions.. Exact solutions of one-dimensional fluid models: Section 13.1. One-dimensional fluid
models with short-range interactions do not exhibit phase transitions but they do display
short-range correlations and other behaviors typical of dense fluids.. Exact solution of the two-dimensional Ising model on a finite lattice: Section 13.4.A. This
solution entails an exact counting of the microstates of the microcanonical ensemble and
provides analytical results for the energy distribution, internal energy, and heat capacity of
the system. This solution also describes the finite-size scaling behavior of the Ising model
near the transition point and provides an exact framework that can be
used to test Monte Carlo methods.. Summary of thermodynamic assemblies and associated statistical ensembles: Appendix H.
We provide a summary of thermodynamic relations and their connections to statistical
mechanical ensembles. Most of this information can be found elsewhere in the text, but we
thought it would be helpful to provide a rundown of these important connections in one
place.. Pseudorandom number generators: Appendix I. Pseudorandom number generators are
indispensable in computer simulations. We provide simple algorithms for generating
uniform and Gaussian pseudorandom numbers and discuss their properties.. Dozens of new homework problems.

The remainder of the text is largely unchanged.
The completion of this task has left us indebted to many a friend and colleague. R.K.P. has

already expressed his indebtedness to a good number of people on two previous occasions —
in 1972 and in 1996 — so, at this time, he will simply reiterate the many words of gratitude he
has already written. In addition though, he would like to thank Paul Beale for his willingness to
be a partner in this project and for his diligence in carrying out the task at hand both arduously
and meticulously.

On his part, P.D.B. would like to thank his friends at the University of Colorado at Boulder
for the many conversations he has had with them over the years about research and pedagogy
of statistical mechanics, especially Noel Clark, Tom DeGrand, John Price, Chuck Rogers, Mike
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Dubson, and Leo Radzihovsky. He would also like to thank the faculty of the Department of
Physics for according him the honor of serving as the chair of this outstanding department.

Special thanks are also due to many friends and colleagues who have read sections of
the manuscript and have offered many valuable suggestions and corrections, especially Tom
DeGrand, Michael Shull, David Nesbitt, Jamie Nagle, Matt Glaser, Murray Holland, Leo Radzi-
hovsky, Victor Gurarie, Edmond Meyer, Matthew Grau, Andrew Sisler, Michael Foss-Feig, Allan
Franklin, Shantha deAlwis, Dmitri Reznik, and Eric Cornell.

P.D.B. would like to take this opportunity to extend his thanks and best wishes to Professor
Michael E. Fisher whose graduate statistical mechanics course at Cornell introduced him to this
elegant field. He would also like to express his gratitude to Raj Pathria for inviting him to be part
of this project, and for the fun and engaging discussions they have had during the preparation
of this new edition. Raj’s thoughtful counsel always proved to be valuable in improving the text.

P.D.B.’s greatest thanks go to Matthew, Melanie, and Erika for their love and support.

R.K.P.
P.D.B.





Preface to the Second Edition

The first edition of this book was prepared over the years 1966 to 1970 when the subject of phase
transitions was undergoing a complete overhaul. The concepts of scaling and universality had
just taken root but the renormalization group approach, which converted these concepts into
a calculational tool, was still obscure. Not surprisingly, my text of that time could not do justice
to these emerging developments. Over the intervening years I have felt increasingly conscious
of this rather serious deficiency in the text; so when the time came to prepare a new edition, my
major effort went toward correcting that deficiency.

Despite the aforementioned shortcoming, the first edition of this book has continued to
be popular over the last 20 years or so. I, therefore, decided not to tinker with it unnecessar-
ily. Nevertheless, to make room for the new material, I had to remove some sections from the
present text which, I felt, were not being used by the readers as much as the rest of the book was.
This may turn out to be a disappointment to some individuals but I trust they will understand
the logic behind it and, if need be, will go back to a copy of the first edition for reference. I, on
my part, hope that a good majority of the users will not be inconvenienced by these deletions.
As for the material retained, I have confined myself to making only editorial changes. The sub-
ject of phase transitions and critical phenomena, which has been my main focus of revision,
has been treated in three new chapters that provide a respectable coverage of the subject and
essentially bring the book up to date. These chapters, along with a collection of more than 60
homework problems, will, I believe, enhance the usefulness of the book for both students and
instructors.

The completion of this task has left me indebted to many. First of all, as mentioned in
the Preface to the first edition, I owe a considerable debt to those who have written on this
subject before and from whose writings I have benefited greatly. It is difficult to thank them
all individually; the bibliography at the end of the book is an obvious tribute to them. As for
definitive help, I am most grateful to Dr Surjit Singh who advised me expertly and assisted me
generously in the selection of the material that comprises Chapters 11 to 13 of the new text;
without his help, the final product might not have been as coherent as it now appears to be. On
the technical side, I am very thankful to Mrs. Debbie Guenther who typed the manuscript with
exceptional skill and proof read it with extreme care; her task was clearly an arduous one but
she performed it with good cheer — for which I admire her greatly.

Finally, I wish to express my heartfelt appreciation for my wife who let me devote myself
fully to this task over a rather long period of time and waited for its completion ungrudgingly.

R.K.P.
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© 2011 Elsevier Ltd. All rights reserved.

xvii





Preface to the First Edition

This book has arisen out of the notes of lectures that I gave to the graduate students at
the McMaster University (1964–1965), the University of Alberta (1965–1967), the University of
Waterloo (1969–1971), and the University of Windsor (1970–1971). While the subject matter, in
its finer details, has changed considerably during the preparation of the manuscript, the style
of presentation remains the same as followed in these lectures.

Statistical mechanics is an indispensable tool for studying physical properties of matter
“in bulk” on the basis of the dynamical behavior of its “microscopic” constituents. Founded
on the well-laid principles of mathematical statistics on one hand and Hamiltonian mechanics
on the other, the formalism of statistical mechanics has proved to be of immense value to the
physics of the last 100 years. In view of the universality of its appeal, a basic knowledge of this
subject is considered essential for every student of physics, irrespective of the area(s) in which
he/she may be planning to specialize. To provide this knowledge, in a manner that brings out
the essence of the subject with due rigor but without undue pain, is the main purpose of this
work.

The fact that the dynamics of a physical system is represented by a set of quantum states
and the assertion that the thermodynamics of the system is determined by the multiplicity of
these states constitute the basis of our treatment. The fundamental connection between the
microscopic and the macroscopic descriptions of a system is uncovered by investigating the
conditions for equilibrium between two physical systems in thermodynamic contact. This is
best accomplished by working in the spirit of the quantum theory right from the beginning;
the entropy and other thermodynamic variables of the system then follow in a most natural
manner. After the formalism is developed, one may (if the situation permits) go over to the
limit of the classical statistics. This message may not be new, but here I have tried to follow it as
far as is reasonably possible in a textbook. In doing so, an attempt has been made to keep the
level of presentation fairly uniform so that the reader does not encounter fluctuations of too
wild a character.

This text is confined to the study of the equilibrium states of physical systems and is
intended to be used for a graduate course in statistical mechanics. Within these bounds, the
coverage is fairly wide and provides enough material for tailoring a good two-semester course.
The final choice always rests with the individual instructor; I, for one, regard Chapters 1 to 9
(minus a few sections from these chapters plus a few sections from Chapter 13) as the “essential
part” of such a course. The contents of Chapters 10 to 12 are relatively advanced (not necessar-
ily difficult); the choice of material out of these chapters will depend entirely on the taste of
the instructor. To facilitate the understanding of the subject, the text has been illustrated with
a large number of graphs; to assess the understanding, a large number of problems have been
included. I hope these features are found useful.

Traveling Wave Analysis of Partial Differential Equations
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xx Preface to the First Edition

I feel that one of the most essential aspects of teaching is to arouse the curiosity of the
students in their subject, and one of the most effective ways of doing this is to discuss with them
(in a reasonable measure, of course) the circumstances that led to the emergence of the subject.
One would, therefore, like to stop occasionally to reflect upon the manner in which the various
developments really came about; at the same time, one may not like the flow of the text to be
hampered by the discontinuities arising from an intermittent addition of historical material.
Accordingly, I decided to include in this account a historical introduction to the subject which
stands separate from the main text. I trust the readers, especially the instructors, will find it of
interest.

For those who wish to continue their study of statistical mechanics beyond the confines
of this book, a fairly extensive bibliography is included. It contains a variety of references — old
as well as new, experimental as well as theoretical, technical as well as pedagogical. I hope that
this will make the book useful for a wider readership.

The completion of this task has left me indebted to many. Like most authors, I owe con-
siderable debt to those who have written on the subject before. The bibliography at the end of
the book is the most obvious tribute to them; nevertheless, I would like to mention, in particu-
lar, the works of the Ehrenfests, Fowler, Guggenheim, Schrödinger, Rushbrooke, ter Haar, Hill,
Landau and Lifshitz, Huang, and Kubo, which have been my constant reference for several years
and have influenced my understanding of the subject in a variety of ways. As for the preparation
of the text, I am indebted to Robert Teshima who drew most of the graphs and checked most of
the problems, to Ravindar Bansal, Vishwa Mittar, and Surjit Singh who went through the entire
manuscript and made several suggestions that helped me unkink the exposition at a number
of points, to Mary Annetts who typed the manuscript with exceptional patience, diligence and
care, and to Fred Hetzel, Jim Briante, and Larry Kry who provided technical help during the
preparation of the final version.

As this work progressed I felt increasingly gratified toward Professors F. C. Auluck and
D. S. Kothari of the University of Delhi with whom I started my career and who initiated me
into the study of this subject, and toward Professor R. C. Majumdar who took keen interest
in my work on this and every other project that I have undertaken from time to time. I am
grateful to Dr. D. ter Haar of the University of Oxford who, as the general editor of this series,
gave valuable advice on various aspects of the preparation of the manuscript and made several
useful suggestions toward the improvement of the text. I am thankful to Professors J. W. Leech,
J. Grindlay, and A. D. Singh Nagi of the University of Waterloo for their interest and hospitality
that went a long way in making this task a pleasant one.

The final tribute must go to my wife whose cooperation and understanding, at all stages
of this project and against all odds, have been simply overwhelming.

R.K.P.



Historical Introduction

Statistical mechanics is a formalism that aims at explaining the physical properties of matter
in bulk on the basis of the dynamical behavior of its microscopic constituents. The scope of the
formalism is almost as unlimited as the very range of the natural phenomena, for in principle it
is applicable to matter in any state whatsoever. It has, in fact, been applied, with considerable
success, to the study of matter in the solid state, the liquid state, or the gaseous state, mat-
ter composed of several phases and/or several components, matter under extreme conditions
of density and temperature, matter in equilibrium with radiation (as, for example, in astro-
physics), matter in the form of a biological specimen, and so on. Furthermore, the formalism
of statistical mechanics enables us to investigate the nonequilibrium states of matter as well as
the equilibrium states; indeed, these investigations help us to understand the manner in which
a physical system that happens to be “out of equilibrium” at a given time t approaches a “state
of equilibrium” as time passes.

In contrast with the present status of its development, the success of its applications, and
the breadth of its scope, the beginnings of statistical mechanics were rather modest. Barring
certain primitive references, such as those of Gassendi, Hooke, and so on, the real work on this
subject started with the contemplations of Bernoulli (1738), Herapath (1821), and Joule (1851)
who, in their own individual ways, attempted to lay a foundation for the so-called kinetic the-
ory of gases — a discipline that finally turned out to be the forerunner of statistical mechanics.
The pioneering work of these investigators established the fact that the pressure of a gas arose
from the motion of its molecules and could, therefore, be computed by considering the dynam-
ical influence of the molecular bombardment on the walls of the container. Thus, Bernoulli
and Herapath could show that, if temperature remained constant, the pressure P of an ordi-
nary gas was inversely proportional to the volume V of the container (Boyle’s law), and that it
was essentially independent of the shape of the container. This, of course, involved the explicit
assumption that, at a given temperature T , the (mean) speed of the molecules was independent
of both pressure and volume. Bernoulli even attempted to determine the (first-order) correc-
tion to this law, arising from the finite size of the molecules, and showed that the volume V
appearing in the statement of the law should be replaced by (V −b), where b is the “actual”
volume of the molecules.1

Joule was the first to show that the pressure P was directly proportional to the square of
the molecular speed c, which he had initially assumed to be the same for all molecules. Krönig
(1856) went a step further. Introducing the “quasistatistical” assumption that, at any time t,

1As is well known, this “correction” was correctly evaluated, much later, by van der Waals (1873) who showed that,
for large V , b is four times the “actual” volume of the molecules; see Problem 1.4.
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xxii Historical Introduction

one-sixth of the molecules could be assumed to be flying in each of the six “independent”
directions, namely+x,−x,+y,−y,+z, and−z, he derived the equation

P =
1
3

nmc2, (1)

where n is the number density of the molecules and m the molecular mass. Krönig, too,
assumed the molecular speed c to be the same for all molecules; so from (1), he inferred that
the kinetic energy of the molecules should be directly proportional to the absolute temperature
of the gas.

Krönig justified his method in these words: “The path of each molecule must be so irreg-
ular that it will defy all attempts at calculation. However, according to the laws of probability,
one could assume a completely regular motion in place of a completely irregular one!” It must,
however, be noted that it is only because of the special form of the summations appearing in the
calculation of the pressure that Krönig’s argument leads to the same result as the one following
from more refined models. In other problems, such as the ones involving diffusion, viscosity, or
heat conduction, this is no longer the case.

It was at this stage that Clausius entered the field. First of all, in 1857, he derived the
ideal-gas law under assumptions far less stringent than Krönig’s. He discarded both leading
assumptions of Krönig and showed that equation (1) was still true; of course, c2 now became
the mean square speed of the molecules. In a later paper (1859), Clausius introduced the con-
cept of the mean free path and thus became the first to analyze transport phenomena. It was in
these studies that he introduced the famous “Stosszahlansatz” — the hypothesis on the number
of collisions (among the molecules) — which, later on, played a prominent role in the monu-
mental work of Boltzmann.2 With Clausius, the introduction of the microscopic and statistical
points of view into the physical theory was definitive, rather than speculative. Accordingly,
Maxwell, in a popular article entitled “Molecules,” written for the Encyclopedia Britannica,
referred to Clausius as the “principal founder of the kinetic theory of gases,” while Gibbs, in
his Clausius obituary notice, called him the “father of statistical mechanics.”3

The work of Clausius attracted Maxwell to the field. He made his first appearance with
the memoir “Illustrations in the dynamical theory of gases” (1860), in which he went much
farther than his predecessors by deriving his famous law of the “distribution of molecular
speeds.” Maxwell’s derivation was based on elementary principles of probability and was
clearly inspired by the Gaussian law of “distribution of random errors.” A derivation based on
the requirement that “the equilibrium distribution of molecular speeds, once acquired, should
remain invariant under molecular collisions” appeared in 1867. This led Maxwell to establish
what is known as Maxwell’s transport equation which, if skilfully used, leads to the same results
as one gets from the more fundamental equation due to Boltzmann.4

Maxwell’s contributions to the subject diminished considerably after his appointment,
in 1871, as the Cavendish Professor at Cambridge. By that time Boltzmann had already made
his first strides. In the period 1868–1871 he generalized Maxwell’s distribution law to poly-
atomic gases, also taking into account the presence of external forces, if any; this gave rise
to the famous Boltzmann factor exp(−βε), where ε denotes the total energy of a molecule.
These investigations also led to the equipartition theorem. Boltzmann further showed that, just

2For an excellent review of this and related topics, see Ehrenfest and Ehrenfest (1912).
3For further details, refer to Montroll (1963) where an account is also given of the pioneering work of Waterston (1846,

1892).
4This equivalence has been demonstrated in Guggenheim (1960) where the coefficients of viscosity, thermal

conductivity, and diffusion of a gas of hard spheres have been calculated on the basis of Maxwell’s transport equation.
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like the original distribution of Maxwell, the generalized distribution (which we now call the
Maxwell–Boltzmann distribution) is stationary with respect to molecular collisions.

In 1872 came the celebrated H-theorem, which provided a molecular basis for the natural
tendency of physical systems to approach, and stay in, a state of equilibrium. This established
a connection between the microscopic approach (which characterizes statistical mechan-
ics) and the phenomenological approach (which characterized thermodynamics) much more
transparently than ever before; it also provided a direct method for computing the entropy
of a given physical system from purely microscopic considerations. As a corollary to the H-
theorem, Boltzmann showed that the Maxwell–Boltzmann distribution is the only distribution
that stays invariant under molecular collisions and that any other distribution, under the influ-
ence of molecular collisions, will ultimately go over to a Maxwell–Boltzmann distribution. In
1876 Boltzmann derived his famous transport equation, which, in the hands of Chapman and
Enskog (1916–1917), has proved to be an extremely powerful tool for investigating macroscopic
properties of systems in nonequilibrium states.

Things, however, proved quite harsh for Boltzmann. His H-theorem, and the consequent
irreversible behavior of physical systems, came under heavy attack, mainly from Loschmidt
(1876–1877) and Zermelo (1896). While Loschmidt wondered how the consequences of this
theorem could be reconciled with the reversible character of the basic equations of motion
of the molecules, Zermelo wondered how these consequences could be made to fit with the
quasiperiodic behavior of closed systems (which arose in view of the so-called Poincaré cycles).
Boltzmann defended himself against these attacks with all his might but, unfortunately, could
not convince his opponents of the correctness of his viewpoint. At the same time, the energeti-
cists, led by Mach and Ostwald, were criticizing the very (molecular) basis of the kinetic theory,5

while Kelvin was emphasizing the “nineteenth-century clouds hovering over the dynamical
theory of light and heat.”6

All this left Boltzmann in a state of despair and induced in him a persecution complex.7

He wrote in the introduction to the second volume of his treatise Vorlesungen über Gastheorie
(1898):8

I am convinced that the attacks (on the kinetic theory) rest on misunderstandings and
that the role of the kinetic theory is not yet played out. In my opinion it would be a blow
to science if contemporary opposition were to cause kinetic theory to sink into the oblivion
which was the fate suffered by the wave theory of light through the authority of Newton.
I am aware of the weakness of one individual against the prevailing currents of opinion.
In order to insure that not too much will have to be rediscovered when people return to
the study of kinetic theory I will present the most difficult and misunderstood parts of the
subject in as clear a manner as I can.

We shall not dwell any further on the kinetic theory; we would rather move on to the
development of the more sophisticated approach known as the ensemble theory, which may in
fact be regarded as the statistical mechanics proper.9 In this approach, the dynamical state of a

5These critics were silenced by Einstein whose work on the Brownian motion (1905b) established atomic theory once
and for all.

6The first of these clouds was concerned with the mysteries of the “aether,” and was dispelled by the theory of relativ-
ity. The second was concerned with the inadequacy of the “equipartition theorem,” and was dispelled by the quantum
theory.

7Some people attribute Boltzmann’s suicide on September 5, 1906 to this cause.
8Quotation from Montroll (1963).
9For a review of the historical development of kinetic theory leading to statistical mechanics, see Brush (1957, 1958,

1961a,b, 1965–1966).



xxiv Historical Introduction

given system, as characterized by the generalized coordinates qi and the generalized momenta
pi, is represented by a phase point G(qi,pi) in a phase space of appropriate dimensionality. The
evolution of the dynamical state in time is depicted by the trajectory of the G-point in the phase
space, the “geometry” of the trajectory being governed by the equations of motion of the system
and by the nature of the physical constraints imposed on it. To develop an appropriate formal-
ism, one considers the given system along with an infinitely large number of “mental copies”
thereof; that is, an ensemble of similar systems under identical physical constraints (though, at
any time t, the various systems in the ensemble would differ widely in respect of their dynam-
ical states). In the phase space, then, one has a swarm of infinitely many G-points (which, at
any time t, are widely dispersed and, with time, move along their respective trajectories). The
fiction of a host of infinitely many, identical but independent, systems allows one to replace
certain dubious assumptions of the kinetic theory of gases by readily acceptable statements of
statistical mechanics. The explicit formulation of these statements was first given by Maxwell
(1879) who on this occasion used the word “statistico-mechanical” to describe the study of
ensembles (of gaseous systems) — though, eight years earlier, Boltzmann (1871) had already
worked with essentially the same kind of ensembles.

The most important quantity in the ensemble theory is the density function, ρ(qi,pi; t),
of the G-points in the phase space; a stationary distribution (∂ρ/∂t = 0) characterizes a sta-
tionary ensemble, which in tum represents a system in equilibrium. Maxwell and Boltzmann
confined their study to ensembles for which the function ρ depended solely on the energy E of
the system. This included the special case of ergodic systems, which were so defined that “the
undisturbed motion of such a system, if pursued for an unlimited time, would ultimately tra-
verse (the neighborhood of) each and every phase point compatible with the fixed value E of
the energy.” Consequently, the ensemble average, 〈f 〉, of a physical quantity f , taken at any given
time t, would be the same as the long-time average, f , pertaining to any given member of the
ensemble. Now, f is the value we expect to obtain for the quantity in question when we make
an appropriate measurement on the system; the result of this measurement should, there-
fore, agree with the theoretical estimate 〈f 〉. We thus acquire a recipe to bring about a direct
contact between theory and experiment. At the same time, we lay down a rational basis for a
microscopic theory of matter as an alternative to the empirical approach of thermodynamics!

A significant advance in this direction was made by Gibbs who, with his Elementary Prin-
ciples of Statistical Mechanics (1902), turned ensemble theory into a most efficient tool for the
theorist. He emphasized the use of “generalized” ensembles and developed schemes which, in
principle, enabled one to compute a complete set of thermodynamic quantities of a given sys-
tem from purely mechanical properties of its microscopic constituents.10 In its methods and
results, the work of Gibbs turned out to be much more general than any preceding treatment
of the subject; it applied to any physical system that met the simple-minded requirements
that (i) it was mechanical in structure and (ii) it obeyed Lagrange’s and Hamilton’s equa-
tions of motion. In this respect, Gibbs’s work may be considered to have accomplished for
thermodynamics as much as Maxwell’s had accomplished for electrodynamics.

These developments almost coincided with the great revolution that Planck’s work of
1900 brought into physics. As is well known, Planck’s quantum hypothesis successfully resolved
the essential mysteries of the black-body radiation — a subject where the three best-established
disciplines of the nineteenth century, namely mechanics, electrodynamics, and thermodynam-
ics, were all focused. At the same time, it uncovered both the strengths and the weaknesses
of these disciplines. It would have been surprising if statistical mechanics, which linked
thermodynamics with mechanics, could have escaped the repercussions of this revolution.

10In much the same way as Gibbs, but quite independently of him, Einstein (1902, 1903) also developed the theory of
ensembles.
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The subsequent work of Einstein (1905a) on the photoelectric effect and of Compton
(1923a,b) on the scattering of x-rays established, so to say, the “existence” of the quan-
tum of radiation, or the photon as we now call it.11 It was then natural for someone to
derive Planck’s radiation formula by treating black-body radiation as a gas of photons in the
same way as Maxwell had derived his law of distribution of molecular speeds for a gas of
conventional molecules. But, then, does a gas of photons differ so radically from a gas of
conventional molecules that the two laws of distribution should be so different from one
another?

The answer to this question was provided by the manner in which Planck’s formula was
derived by Bose. In his historic paper of 1924, Bose treated black-body radiation as a gas of pho-
tons; however, instead of considering the allocation of the “individual” photons to the various
energy states of the system, he fixed his attention on the number of states that contained “a par-
ticular number” of photons. Einstein, who seems to have translated Bose’s paper into German
from an English manuscript sent to him by the author, at once recognized the importance of
this approach and added the following note to his translation: “Bose’s derivation of Planck’s
formula is in my opinion an important step forward. The method employed here would also
yield the quantum theory of an ideal gas, which I propose to demonstrate elsewhere.”

Implicit in Bose’s approach was the fact that in the case of photons what really mat-
tered was “the set of numbers of photons in various energy states of the system” and not the
specification as to “which photon was in which state”; in other words, photons were mutu-
ally indistinguishable. Einstein argued that what Bose had implied for photons should be
true for material particles as well (for the property of indistinguishability arose essentially
from the wave character of these entities and, according to de Broglie, material particles also
possessed that character).12 In two papers, which appeared soon after, Einstein (1924, 1925)
applied Bose’s method to the study of an ideal gas and thereby developed what we now call
Bose–Einstein statistics. In the second of these papers, the fundamental difference between
the new statistics and the classical Maxwell–Boltzmann statistics comes out so transparently
in terms of the indistinguishability of the molecules.13 In the same paper, Einstein discovered
the phenomenon of Bose–Einstein condensation which, 13 years later, was adopted by London
(1938a,b) as the basis for a microscopic understanding of the curious properties of liquid He4

at low temperatures.
Following the enunciation of Pauli’s exclusion principle (1925), Fermi (1926) showed that

certain physical systems would obey a different kind of statistics, namely the Fermi–Dirac
statistics, in which not more than one particle could occupy the same energy state (ni = 0,1). It
seems important to mention here that Bose’s method of 1924 leads to the Fermi–Dirac dis-
tribution as well, provided that one limits the occupancy of an energy state to at most one
particle.14

11Strictly speaking, it might be somewhat misleading to cite Einstein’s work on the photoelectric effect as a proof of
the existence of photons. In fact, many of the effects (including the photoelectric effect), for which it seems necessary
to invoke photons, can be explained away on the basis of a wave theory of radiation. The only phenomena for which
photons seem indispensable are the ones involving fluctuations, such as the Hanbury Brown–Twiss effect or the Lamb
shift. For the relevance of fluctuations to the problem of radiation, see ter Haar (1967, 1968).

12Of course, in the case of material particles, the total number N (of the particles) will also have to be conserved; this
had not to be done in the case of photons. For details, see Section 6.1.

13It is here that one encounters the correct method of counting “the number of distinct ways in which gi energy states
can accommodate ni particles,” depending on whether the particles are (i) distinguishable or (ii) indistinguishable. The
occupancy of the individual states was, in each case, unrestricted, that is, ni = 0,1,2, . . ..

14Dirac, who was the first to investigate the connection between statistics and wave mechanics, showed, in 1926, that
the wave functions describing a system of identical particles obeying Bose–Einstein (or Fermi–Dirac) statistics must be
symmetric (or antisymmetric) with respect to an interchange of two particles.
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Soon after its appearance, the Fermi–Dirac statistics were applied by Fowler (1926) to
discuss the equilibrium states of white dwarf stars and by Pauli (1927) to explain the weak,
temperature-independent paramagnetism of alkali metals; in each case, one had to deal with a
“highly degenerate” gas of electrons that obey Fermi–Dirac statistics. In the wake of this, Som-
merfeld produced his monumental work of 1928 that not only put the electron theory of metals
on a physically secure foundation but also gave it a fresh start in the right direction. Thus, Som-
merfeld could explain practically all the major properties of metals that arose from conduction
electrons and, in each case, obtained results that showed much better agreement with exper-
iment than the ones following from the classical theories of Riecke (1898), Drude (1900), and
Lorentz (1904–1905). Around the same time, Thomas (1927) and Fermi (1928) investigated the
electron distribution in heavier atoms and obtained theoretical estimates for the relevant bind-
ing energies; these investigations led to the development of the so-called Thomas–Fermi model
of the atom, which was later extended so that it could be applied to molecules, solids, and nuclei
as well.15

Thus, the whole structure of statistical mechanics was overhauled by the introduction
of the concept of indistinguishability of (identical) particles.16 The statistical aspect of the
problem, which was already there in view of the large number of particles present, was now
augmented by another statistical aspect that arose from the probabilistic nature of the wave
mechanical description. One had, therefore, to carry out a two-fold averaging of the dynamical
variables over the states of the given system in order to obtain the relevant expectation val-
ues. That sort of a situation was bound to necessitate a reformulation of the ensemble theory
itself, which was carried out step by step. First, Landau (1927) and von Neumann (1927) intro-
duced the so-called density matrix, which was the quantum-mechanical analogue of the density
function of the classical phase space; this was elaborated, both from statistical and quantum-
mechanical points of view, by Dirac (1929–1931). Guided by the classical ensemble theory, these
authors considered both microcanonical and canonical ensembles; the introduction of grand
canonical ensembles in quantum statistics was made by Pauli (1927).17

The important question as to which particles would obey Bose–Einstein statistics and
which Fermi–Dirac remained theoretically unsettled until Belinfante (1939) and Pauli (1940)
discovered the vital connection between spin and statistics.18 It turns out that those particles
whose spin is an integral multiple of ~ obey Bose–Einstein statistics while those whose spin
is a half-odd integral multiple of ~ obey Fermi–Dirac statistics. To date, no third category of
particles has been discovered.

Apart from the foregoing milestones, several notable contributions toward the devel-
opment of statistical mechanics have been made from time to time; however, most of those
contributions were concerned with the development or perfection of mathematical techniques
that make application of the basic formalism to actual physical problems more fruitful. A review
of these developments is out of place here; they will be discussed at their appropriate place in
the text.

15For an excellent review of this model, see March (1957).
16Of course, in many a situation where the wave nature of the particles is not so important, classical statistics continue

to apply.
17A detailed treatment of this development has been given by Kramers (1938).
18See also Lüders and Zumino (1958).



1
The Statistical Basis
of Thermodynamics

In the annals of thermal physics, the 1850s mark a very definite epoch. By that time the
science of thermodynamics, which grew essentially out of an experimental study of the
macroscopic behavior of physical systems, had become, through the work of Carnot, Joule,
Clausius, and Kelvin, a secure and stable discipline of physics. The theoretical conclusions
following from the first two laws of thermodynamics were found to be in very good agree-
ment with the corresponding experimental results.1 At the same time, the kinetic theory of
gases, which aimed at explaining the macroscopic behavior of gaseous systems in terms of
the motion of their molecules and had so far thrived more on speculation than calculation,
began to emerge as a real, mathematical theory. Its initial successes were glaring; however,
a real contact with thermodynamics could not be made until about 1872 when Boltzmann
developed his H-theorem and thereby established a direct connection between entropy on
one hand and molecular dynamics on the other. Almost simultaneously, the conventional
(kinetic) theory began giving way to its more sophisticated successor — the ensemble the-
ory. The power of the techniques that finally emerged reduced thermodynamics to the
status of an “essential” consequence of the get-together of the statistics and the mechan-
ics of the molecules constituting a given physical system. It was then natural to give the
resulting formalism the name Statistical Mechanics.

As a preparation toward the development of the formal theory, we start with a few
general considerations regarding the statistical nature of a macroscopic system. These
considerations will provide ground for a statistical interpretation of thermodynamics. It
may be mentioned here that, unless a statement is made to the contrary, the system under
study is supposed to be in one of its equilibrium states.

1.1 The macroscopic and the microscopic states
We consider a physical system composed of N identical particles confined to a space of
volume V . In a typical case, N would be an extremely large number — generally, of order
1023. In view of this, it is customary to carry out analysis in the so-called thermodynamic
limit, namely N→∞,V →∞ (such that the ratio N/V , which represents the particle den-
sity n, stays fixed at a preassigned value). In this limit, the extensive properties of the system

1The third law, which is also known as Nernst’s heat theorem, did not arrive until about 1906. For a general discussion
of this law, see Simon (1930) and Wilks (1961); these references also provide an extensive bibliography on this subject.
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2 Chapter 1 . The Statistical Basis of Thermodynamics

become directly proportional to the size of the system (i.e., proportional to N or to V ),
while the intensive properties become independent thereof; the particle density, of course,
remains an important parameter for all physical properties of the system.

Next we consider the total energy E of the system. If the particles comprising the system
could be regarded as noninteracting, the total energy E would be equal to the sum of the
energies εi of the individual particles:

E =
∑

i

niεi, (1)

where ni denotes the number of particles each with energy εi. Clearly,

N =
∑

i

ni. (2)

According to quantum mechanics, the single-particle energies εi are discrete and their val-
ues depend crucially on the volume V to which the particles are confined. Accordingly, the
possible values of the total energy E are also discrete. However, for large V , the spacing of
the different energy values is so small in comparison with the total energy of the system
that the parameter E might well be regarded as a continuous variable. This would be true
even if the particles were mutually interacting; of course, in that case the total energy E
cannot be written in the form (1).

The specification of the actual values of the parameters N ,V , and E then defines a
macrostate of the given system.

At the molecular level, however, a large number of possibilities still exist because at
that level there will in general be a large number of different ways in which the macrostate
(N ,V ,E) of the given system can be realized. In the case of a noninteracting system, since
the total energy E consists of a simple sum of the N single-particle energies εi, there will
obviously be a large number of different ways in which the individual εi can be chosen so as
to make the total energy equal to E. In other words, there will be a large number of different
ways in which the total energy E of the system can be distributed among the N particles
constituting it. Each of these (different) ways specifies a microstate, or complexion, of the
given system. In general, the various microstates, or complexions, of a given system can
be identified with the independent solutions ψ(r1, . . . , rN ) of the Schrödinger equation of
the system, corresponding to the eigenvalue E of the relevant Hamiltonian. In any case,
to a given macrostate of the system there does in general correspond a large number of
microstates and it seems natural to assume, when there are no other constraints, that at
any time t the system is equally likely to be in any one of these microstates. This assump-
tion forms the backbone of our formalism and is generally referred to as the postulate of
“equal a priori probabilities” for all microstates consistent with a given macrostate.

The actual number of all possible microstates will, of course, be a function of N ,V ,
and E and may be denoted by the symbol �(N ,V ,E); the dependence on V comes in
because the possible values εi of the single-particle energy ε are themselves a function
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of this parameter.2 Remarkably enough, it is from the magnitude of the number �, and
from its dependence on the parameters N ,V , and E, that complete thermodynamics of
the given system can be derived!

We shall not stop here to discuss the ways in which the number�(N ,V ,E) can be com-
puted; we shall do that only after we have developed our considerations sufficiently so that
we can carry out further derivations from it. First we have to discover the manner in which
this number is related to any of the leading thermodynamic quantities. To do this, we con-
sider the problem of “thermal contact” between two given physical systems, in the hope
that this consideration will bring out the true nature of the number�.

1.2 Contact between statistics and thermodynamics:
physical significance of the number �(N ,V ,E)

We consider two physical systems, A1 and A2, which are separately in equilibrium; see
Figure 1.1. Let the macrostate of A1 be represented by the parameters N1,V1, and E1 so
that it has �1(N1,V1,E1) possible microstates, and the macrostate of A2 be represented by
the parameters N2,V2, and E2 so that it has �2(N2,V2,E2) possible microstates. The math-
ematical form of the function �1 may not be the same as that of the function �2, because
that ultimately depends on the nature of the system. We do, of course, believe that all
thermodynamic properties of the systems A1 and A2 can be derived from the functions
�1(N1,V1,E1) and�2(N2,V2,E2), respectively.

We now bring the two systems into thermal contact with each other, thus allowing the
possibility of exchange of energy between the two; this can be done by sliding in a con-
ducting wall and removing the impervious one. For simplicity, the two systems are still
separated by a rigid, impenetrable wall, so that the respective volumes V1 and V2 and the
respective particle numbers N1 and N2 remain fixed. The energies E1 and E2, however,
become variable and the only condition that restricts their variation is

E(0) = E1+E2 = const. (1)

A1

(N1, V1, E1)
A2

(N2, V2, E2)

FIGURE 1.1 Two physical systems being brought into thermal contact.

2It may be noted that the manner in which the εi depend on V is itself determined by the nature of the system. For
instance, it is not the same for relativistic systems as it is for nonrelativistic ones; compare, for instance, the cases dealt
with in Section 1.4 and in Problem 1.7. We should also note that, in principle, the dependence of � on V arises from
the fact that it is the physical dimensions of the container that appear in the boundary conditions imposed on the wave
functions of the system.
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Here, E(0) denotes the energy of the composite system A(0)(≡ A1+A2); the energy of inter-
action between A1 and A2, if any, is being neglected. Now, at any time t, the subsystem A1 is
equally likely to be in any one of the �1(E1) microstates while the subsystem A2 is equally
likely to be in any one of the �2(E2) microstates; therefore, the composite system A(0) is
equally likely to be in any one of the

�1(E1)�2(E2)=�1(E1)�2(E
(0)
−E1)=�

(0)(E(0),E1) (2)

microstates.3 Clearly, the number �(0) itself varies with E1. The question now arises: at
what value of E1 will the composite system be in equilibrium? In other words, how far
will the energy exchange go in order to bring the subsystems A1 and A2 into mutual
equilibrium?

We assert that this will happen at that value of E1 which maximizes the number
�(0)(E(0),E1). The philosophy behind this assertion is that a physical system, left to itself,
proceeds naturally in a direction that enables it to assume an ever-increasing number
of microstates until it finally settles down in a macrostate that affords the largest pos-
sible number of microstates. Statistically speaking, we regard a macrostate with a larger
number of microstates as a more probable state, and the one with the largest number of
microstates as the most probable one. Detailed studies show that, for a typical system,
the number of microstates pertaining to any macrostate that departs even slightly from
the most probable one is “orders of magnitude” smaller than the number pertaining to
the latter. Thus, the most probable state of a system is the macrostate in which the system
spends an “overwhelmingly” large fraction of its time. It is then natural to identify this state
with the equilibrium state of the system.

Denoting the equilibrium value of E1 by E1 (and that of E2 by E2), we obtain, on
maximizing�(0), (

∂�1(E1)

∂E1

)
E1=E1

�2(E2)+�1(E1)

(
∂�2(E2)

∂E2

)
E2=E2

·
∂E2

∂E1
= 0.

Since ∂E2/∂E1 =−1, see equation (1), the foregoing condition can be written as(
∂ ln�1(E1)

∂E1

)
E1=E1

=

(
∂ ln�2(E2)

∂E2

)
E2=E2

.

Thus, our condition for equilibrium reduces to the equality of the parameters β1 and β2

of the subsystems A1 and A2, respectively, where β is defined by

β ≡

(
∂ ln�(N ,V ,E)

∂E

)
N ,V ,E=E

. (3)

3It is obvious that the macrostate of the composite system A(0) has to be defined by two energies, namely E1 and E2

(or else E(0) and E1).
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We thus find that when two physical systems are brought into thermal contact, which
allows an exchange of energy between them, this exchange continues until the equilibrium
values E1 and E2 of the variables E1 and E2 are reached. Once these values are reached,
there is no more net exchange of energy between the two systems; the systems are then
said to have attained a state of thermal equilibrium. According to our analysis, this hap-
pens only when the respective values of the parameter β, namely β1 and β2, become
equal.4 It is then natural to expect that the parameter β is somehow related to the ther-
modynamic temperature T of a given system. To determine this relationship, we recall the
thermodynamic formula (

∂S
∂E

)
N ,V
=

1
T

, (4)

where S is the entropy of the system in question. Comparing equations (3) and (4), we
conclude that an intimate relationship exists between the thermodynamic quantity S and
the statistical quantity�; we may, in fact, write for any physical system

1S
1(ln�)

=
1
βT
= const. (5)

This correspondence was first established by Boltzmann who also believed that, since
the relationship between the thermodynamic approach and the statistical approach seems
to be of a fundamental character, the constant appearing in (5) must be a universal
constant. It was Planck who first wrote the explicit formula

S= k ln�, (6)

without any additive constant S0. As it stands, formula (6) determines the absolute value of
the entropy of a given physical system in terms of the total number of microstates acces-
sible to it in conformity with the given macrostate. The zero of entropy then corresponds
to the special state for which only one microstate is accessible (�= 1) — the so-called
“unique configuration”; the statistical approach thus provides a theoretical basis for the
third law of thermodynamics as well. Formula (6) is of fundamental importance in physics;
it provides a bridge between the microscopic and the macroscopic.

Now, in the study of the second law of thermodynamics we are told that the law of
increase of entropy is related to the fact that the energy content of the universe, in its
natural course, is becoming less and less available for conversion into work; accordingly,
the entropy of a given system may be regarded as a measure of the so-called disorder or
chaos prevailing in the system. Formula (6) tells us how disorder arises microscopically.
Clearly, disorder is a manifestation of the largeness of the number of microstates the sys-
tem can have. The larger the choice of microstates, the lesser the degree of predictability
and hence the increased level of disorder in the system. Complete order prevails when and

4This result may be compared with the so-called “zeroth law of thermodynamics,” which stipulates the existence of
a common parameter T for two or more physical systems in thermal equilibrium.
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only when the system has no other choice but to be in a unique state (�= 1); this, in turn,
corresponds to a state of vanishing entropy.

By equations (5) and (6), we also have

β =
1

kT
. (7)

The universal constant k is generally referred to as the Boltzmann constant. In Section 1.4
we shall discover how k is related to the gas constant R and the Avogadro number NA; see
equation (1.4.3).5

1.3 Further contact between statistics
and thermodynamics

In continuation of the preceding considerations, we now examine a more elaborate
exchange between the subsystems A1 and A2. If we assume that the wall separating the
two subsystems is movable as well as conducting, then the respective volumes V1 and V2

(of subsystems A1 and A2) also become variable; indeed, the total volume V (0)(= V1 + V2)

remains constant, so that effectively we have only one more independent variable. Of
course, the wall is still assumed to be impenetrable to particles, so the numbers N1 and
N2 remain fixed. Arguing as before, the state of equilibrium for the composite system A(0)

will obtain when the number �(0)(V (0),E(0);V1,E1) attains its largest value; that is, when
not only (

∂ ln�1

∂E1

)
N1,V1; E1=E1

=

(
∂ ln�2

∂E2

)
N2,V2; E2=E2

, (1a)

but also (
∂ ln�1

∂V1

)
N1,E1; V1=V 1

=

(
∂ ln�2

∂V2

)
N2,E2; V2=V 2

. (1b)

Our conditions for equilibrium now take the form of an equality between the pair of
parameters (β1,η1) of the subsystem A1 and the parameters (β2,η2) of the subsystem A2

where, by definition,

η ≡

(
∂ ln�(N ,V ,E)

∂V

)
N ,E,V=V

. (2)

Similarly, if A1 and A2 came into contact through a wall that allowed an exchange of parti-
cles as well, the conditions for equilibrium would be further augmented by the equality

5We follow the notation whereby equation (1.4.3) means equation (3) of Section 1.4. However, while referring to an
equation in the same section, we will omit the mention of the section number.
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of the parameter ζ1 of subsystem A1 and the parameter ζ2 of subsystem A2 where, by
definition,

ζ ≡

(
∂ ln�(N ,V ,E)

∂N

)
V ,E,N=N

. (3)

To determine the physical meaning of the parameters η and ζ , we make use of equa-
tion (1.2.6) and the basic formula of thermodynamics, namely

dE = T dS−P dV +µdN , (4)

where P is the thermodynamic pressure and µ the chemical potential of the given system.
It follows that

η =
P

kT
and ζ =−

µ

kT
. (5)

From a physical point of view, these results are completely satisfactory because, thermo-
dynamically as well, the conditions of equilibrium between two systems A1 and A2, if the
wall separating them is both conducting and movable (thus making their respective ener-
gies and volumes variable), are indeed the same as the ones contained in equations (1a)
and (1b), namely

T1 = T2 and P1 = P2. (6)

On the other hand, if the two systems can exchange particles as well as energy but
have their volumes fixed, the conditions of equilibrium, obtained thermodynamically, are
indeed

T1 = T2 and µ1 = µ2. (7)

And finally, if the exchange is such that all three (macroscopic) parameters become
variable, then the conditions of equilibrium become

T1 = T2, P1 = P2, and µ1 = µ2. (8)6

It is gratifying that these conclusions are identical to the ones following from statistical
considerations.

Combining the results of the foregoing discussion, we arrive at the following recipe
for deriving thermodynamics from a statistical beginning: determine, for the macrostate
(N ,V ,E) of the given system, the number of all possible microstates accessible to the sys-
tem; call this number�(N ,V ,E). Then, the entropy of the system in that state follows from

6It may be noted that the same would be true for any two parts of a single thermodynamic system; consequently, in
equilibrium, the parameters T ,P, and µwould be constant throughout the system.
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the fundamental formula

S(N ,V ,E)= k ln�(N ,V ,E), (9)

while the leading intensive fields, namely temperature, pressure, and chemical potential,
are given by (

∂S
∂E

)
N ,V
=

1
T

;
(
∂S
∂V

)
N ,E
=

P
T

;
(
∂S
∂N

)
V ,E
=−

µ

T
. (10)

Alternatively, we can write7

P =
(
∂S
∂V

)
N ,E

/(
∂S
∂E

)
N ,V
=−

(
∂E
∂V

)
N ,S

(11)

and

µ=−

(
∂S
∂N

)
V ,E

/(
∂S
∂E

)
N ,V
=

(
∂E
∂N

)
V ,S

, (12)

while

T =
(
∂E
∂S

)
N ,V

. (13)

Formulae (11) through (13) follow equally well from equation (4). The evaluation of P,µ,
and T from these formulae indeed requires that the energy E be expressed as a function
of the quantities N ,V , and S; this should, in principle, be possible once S is known as a
function of N ,V , and E.

The rest of the thermodynamics follows straightforwardly; see Appendix H. For
instance, the Helmholtz free energy A, the Gibbs free energy G, and the enthalpy H are
given by

A= E−TS, (14)

G = A+PV = E−TS+PV

= µN (15)8

7In writing these formulae, we have made use of the well-known relationship in partial differential calculus, namely
that “if three variables x, y, and z are mutually related, then (see Appendix H)(

∂x
∂y

)
z

(
∂y
∂z

)
x

(
∂z
∂x

)
y
=−1.”

8The relation E−TS+PV = µN follows directly from (4). For this, all we have to do is to regard the given system
as having grown to its present size in a gradual manner, such that the intensive parameters, T ,P, and µ stayed constant
throughout the process while the extensive parameters N , V , and E (and hence S) grew proportionately with one another.
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and

H = E+PV = G+TS. (16)

The specific heat at constant volume, CV , and the one at constant pressure, CP, would be
given by

CV ≡ T
(
∂S
∂T

)
N ,V
=

(
∂E
∂T

)
N ,V

(17)

and

CP ≡ T
(
∂S
∂T

)
N ,P
=

(
∂(E+PV )

∂T

)
N ,P
=

(
∂H
∂T

)
N ,P

. (18)

1.4 The classical ideal gas
To illustrate the approach developed in the preceding sections, we shall now derive
the various thermodynamic properties of a classical ideal gas composed of monatomic
molecules. The main reason why we choose this highly specialized system for considera-
tion is that it affords an explicit, though asymptotic, evaluation of the number �(N ,V ,E).
This example becomes all the more instructive when we find that its study enables us,
in a most straightforward manner, to identify the Boltzmann constant k in terms of
other physical constants; see equation (3). Moreover, the behavior of this system serves
as a useful reference with which the behavior of other physical systems, especially real
gases (with or without quantum effects), can be compared. And, indeed, in the limit of
high temperatures and low densities the ideal-gas behavior becomes typical of most real
systems.

Before undertaking a detailed study of this case it appears worthwhile to make a remark
that applies to all classical systems composed of noninteracting particles, irrespective
of the internal structure of the particles. This remark is related to the explicit dependence
of the number �(N ,V ,E) on V and hence to the equation of state of these systems. Now,
if there do not exist any spatial correlations among the particles, that is, if the probability
of any one of them being found in a particular region of the available space is completely
independent of the location of the other particles,9 then the total number of ways in which
the N particles can be spatially distributed in the system will be simply equal to the prod-
uct of the numbers of ways in which the individual particles can be accommodated in the
same space independently of one another. With N and E fixed, each of these numbers will
be directly proportional to V , the volume of the container; accordingly, the total number
of ways will be directly proportional to the Nth power of V :

�(N ,E,V )∝ V N . (1)

9This will be true if (i) the mutual interactions among particles are negligible, and (ii) the wave packets of individual
particles do not significantly overlap (or, in other words, the quantum effects are also negligible).
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Combined with equations (1.3.9) and (1.3.10), this gives

P
T
= k

(
∂ ln�(N ,E,V )

∂V

)
N ,E
= k

N
V

. (2)

If the system contains n moles of the gas, then N = nNA, where NA is the Avogadro number.
Equation (2) then becomes

PV =NkT = nRT (R= kNA), (3)

which is the famous ideal-gas law, R being the gas constant per mole. Thus, for any
classical system composed of noninteracting particles the ideal-gas law holds.

For deriving other thermodynamic properties of this system, we require a detailed
knowledge of the way � depends on the parameters N ,V , and E. The problem essen-
tially reduces to determining the total number of ways in which equations (1.1.1) and
(1.1.2) can be mutually satisfied. In other words, we have to determine the total number of
(independent) ways of satisfying the equation

3N∑
r=1

εr = E, (4)

where εr are the energies associated with the various degrees of freedom of the N par-
ticles. The reason why this number should depend on the parameters N and E is quite
obvious. Nevertheless, this number also depends on the “spectrum of values” that the vari-
ables εr can assume; it is through this spectrum that the dependence on V comes in. Now,
the energy eigenvalues for a free, nonrelativistic particle confined to a cubical box of side
L (V = L3), under the condition that the wave function ψ(r) vanishes everywhere on the
boundary, are given by

ε(nx,ny ,nz)=
h2

8mL2
(n2

x+n2
y +n2

z); nx,ny ,nz = 1,2,3, . . . , (5)

where h is Planck’s constant and m the mass of the particle. The number of distinct
eigenfunctions (or microstates) for a particle of energy ε would, therefore, be equal to the
number of independent, positive-integral solutions of the equation

(
n2

x+n2
y +n2

z

)
=

8mV 2/3ε

h2
= ε∗. (6)

We may denote this number by �(1,ε,V ). Extending the argument, it follows that the
desired number �(N ,E,V ) would be equal to the number of independent, positive-
integral solutions of the equation

3N∑
r=1

n2
r =

8mV 2/3E

h2
= E∗, say. (7)
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An important result follows straightforwardly from equation (7), even before the number
�(N ,E,V ) is explicitly evaluated. From the nature of the expression appearing on the right
side of this equation, we conclude that the volume V and the energy E of the system enter
into the expression for� in the form of the combination (V 2/3E). Consequently,

S(N ,V ,E)≡ S
(

N ,V 2/3E
)

. (8)

Hence, for the constancy of S and N , which defines a reversible adiabatic process,

V 2/3E = const. (9)

Equation (1.3.11) then gives

P =−
(
∂E
∂V

)
N ,S
=

2
3

E
V

, (10)

that is, the pressure of a system of nonrelativistic, noninteracting particles is precisely
equal to two-thirds of its energy density.10 It should be noted here that, since an explicit
computation of the number � has not yet been done, results (9) and (10) hold for quan-
tum as well as classical statistics; equally general is the result obtained by combining these,
namely

PV 5/3
= const., (11)

which tells us how P varies with V during a reversible adiabatic process.
We shall now attempt to evaluate the number �. In this evaluation we shall explicitly

assume the particles to be distinguishable, so that if a particle in state i gets interchanged
with a particle in state j the resulting microstate is counted as distinct. Consequently, the
number�(N ,V ,E), or better�N (E∗) (see equation (7)), is equal to the number of positive-
integral lattice points lying on the surface of a 3N-dimensional sphere of radius

√
E∗.11

Clearly, this number will be an extremely irregular function of E∗, in that for two given
values of E∗ that may be very close to one another, the values of this number could be very
different. In contrast, the number 6N (E∗), which denotes the number of positive-integral
lattice points lying on or within the surface of a 3N-dimensional sphere of radius

√
E∗,

will be much less irregular. In terms of our physical problem, this would correspond to
the number,6(N ,V ,E), of microstates of the given system consistent with all macrostates
characterized by the specified values of the parameters N and V but having energy less

10Combining (10) with (2), we obtain for the classical ideal gas: E = 3
2 NkT . Accordingly, equation (9) reduces to the

well-known thermodynamic relationship: V γ−1T = const., which holds during a reversible adiabatic process, with γ = 5
3 .

11If the particles are regarded as indistinguishable, the evaluation of the number�by counting lattice points becomes
quite intricate. The problem is then solved by having recourse to the theory of “partitions of numbers”; see Auluck and
Kothari (1946).
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than or equal to E; that is,

6(N ,V ,E)=
∑

E′≤E

�(N ,V ,E′) (12)

or

6N (E
∗)=

∑
E∗
′
≤E∗

�N (E
∗
′

). (13)

Of course, the number 6 will also be somewhat irregular; however, we expect that its
asymptotic behavior, as E∗→∞, will be a lot smoother than that of �. We shall see in
the sequel that the thermodynamics of the system follows equally well from the number6
as from�.

To appreciate the point made here, let us digress a little to examine the behavior of
the numbers �1(ε

∗) and 61(ε
∗), which correspond to the case of a single particle con-

fined to the given volume V . The exact values of these numbers, for ε∗ ≤ 10,000, can be
extracted from a table compiled by Gupta (1947). The wild irregularities of the number
�1(ε

∗) can hardly be missed. The number 61(ε
∗), on the other hand, exhibits a much

smoother asymptotic behavior. From the geometry of the problem, we note that, asymp-
totically, 61(ε

∗) should be equal to the volume of an octant of a three-dimensional sphere
of radius

√
ε∗, that is,

lim
ε∗→∞

61(ε
∗)

(π/6)ε∗3/2
= 1. (14)

A more detailed analysis shows that, to the next approximation (see Pathria, 1966),

61(ε
∗)≈

π

6
ε∗3/2

−
3π
8
ε∗; (15)

the correction term arises from the fact that the volume of an octant somewhat overes-
timates the number of desired lattice points, for it includes, partly though, some points
with one or more coordinates equal to zero. Figure 1.2 shows a histogram of the actual val-
ues of 61(ε

∗) for ε∗ lying between 200 and 300; the theoretical estimate (15) is also shown.
In the figure, we have also included a histogram of the actual values of the corresponding
number of microstates,6′1(ε

∗), when the quantum numbers nx, ny, and nz can assume the
value zero as well. In the latter case, the volume of an octant somewhat underestimates the
number of desired lattice points; we now have

6′1(ε
∗)≈

π

6
ε∗3/2

+
3π
8
ε∗. (16)

Asymptotically, however, the number6′1(ε
∗) also satisfies equation (14).

Returning to the N-particle problem, the number 6N (E∗) should be asymptotically
equal to the “volume” of the “positive compartment” of a 3N-dimensional sphere of
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FIGURE 1.2 Histograms showing the actual number of microstates available to a particle in a cubical enclosure; the
lower histogram corresponds to the so-called Dirichlet boundary conditions, while the upper one corresponds to
the Neumann boundary conditions (see Appendix A). The corresponding theoretical estimates, (15) and (16), are
shown by dashed lines; the customary estimate, equation (14), is shown by a solid line.

radius
√

E∗. Referring to equation (C.7a) of Appendix C, we obtain

6N (E
∗)≈

(
1
2

)3N
{
π3N/2

(3N/2)!
E∗3N/2

}

which, on substitution for E∗, gives

6(N ,V ,E)≈
(

V

h3

)N
(2πmE)3N/2

(3N/2)!
. (17)

Taking logarithms and applying Stirling’s formula, (B.29) in Appendix B,

ln(n!)≈ n lnn−n (n� 1), (18)
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we get

ln6(N ,V ,E)≈N ln

[
V

h3

(
4πmE

3N

)3/2
]
+

3
2

N . (19)

For deriving the thermodynamic properties of the given system we must somehow fix
the precise value of, or limits for, the energy of the system. In view of the extremely irreg-
ular nature of the function �(N ,V ,E), the specification of a precise value for the energy
of the system cannot be justified on physical grounds, for that would never yield well-
behaved expressions for the thermodynamic functions of the system. From a practical
point of view, too, an absolutely isolated system is too much of an idealization. In the real
world, almost every system has some contact with its surroundings, however little it may
be; as a result, its energy cannot be defined sharply.12 Of course, the effective width of the
range over which the energy may vary would, in general, be small in comparison with the

mean value of the energy. Let us specify this range by the limits
(

E− 1
21
)

and
(

E+ 1
21
)

where, by assumption, 1� E; typically, 1/E =O(1/
√

N). The corresponding number of
microstates, 0(N ,V ,E;1), is then given by

0(N ,V ,E;1)'
∂6(N ,V ,E)

∂E
1≈

3N
2
1

E
6(N ,V ,E), (17a)

which gives

ln0(N ,V ,E;1)≈N ln

[
V

h3

(
4πmE

3N

)3/2
]
+

3
2

N +
{

ln
(

3N
2

)
+ ln

(
1

E

)}
. (19a)

Now, for N � 1, the first term in the curly bracket is negligible in comparison with any
of the terms outside this bracket, for lim

N→∞
(lnN)/N = 0. Furthermore, for any reasonable

value of 1/E, the same is true of the second term in this bracket.13 Hence, for all practical
purposes,

ln0 ≈ ln6 ≈N ln

[
V

h3

(
4πmE

3N

)3/2
]
+

3
2

N . (20)

We thus arrive at the baffling result that, for all practical purposes, the actual width of the
range allowed for the energy of the system does not make much difference; the energy

could lie between
(

E− 1
21
)

and
(

E+ 1
21
)

or equally well between 0 and E. The reason

underlying this situation is that the rate at which the number of microstates of the system

12Actually, the very act of making measurements on a system brings about, inevitably, a contact between the system
and its surroundings.

13It should be clear that, while 1/E is much less than 1, it must not tend to 0, for that would make 0→ 0 and ln0→
−∞. A situation of that kind would be too artificial and would have nothing to do with reality. Actually, in most physical
systems, 1/E =O(N−1/2), whereby ln(1/E) becomes of order lnN , which again is negligible in comparison with the
terms outside the curly bracket.
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increases with energy is so fantastic, see equation (17), that even if we allow all values of
energy between zero and a particular value E, it is only the “immediate neighborhood” of
E that makes an overwhelmingly dominant contribution to this number! And since we
are finally concerned only with the logarithm of this number, even the “width” of that
neighborhood is inconsequential!

The stage is now set for deriving the thermodynamics of our system. First of all, we
have

S(N ,V ,E)= k ln0 =Nk ln

[
V

h3

(
4πmE

3N

)3/2
]
+

3
2

Nk, (21)14

which can be inverted to give

E(S,V ,N)=
3h2N

4πmV 2/3
exp

(
2S

3Nk
− 1

)
. (22)

The temperature of the gas then follows with the help of formula (1.3.10) or (1.3.13),
which leads to the energy–temperature relationship

E =N
(

3
2

kT
)
= n

(
3
2

RT
)

, (23)

where n is the number of moles of the gas. The specific heat at constant volume now
follows with the help of formula (1.3.17):

CV =

(
∂E
∂T

)
N ,V
=

3
2

Nk =
3
2

nR. (24)

For the equation of state, we obtain

P =−
(
∂E
∂V

)
N ,S
=

2
3

E
V

, (25)

which agrees with our earlier result (10). Combined with (23), this gives

P =
NkT

V
or PV = nRT , (26)

which is the same as (3). The specific heat at constant pressure is given by, see (1.3.18),

CP =

(
∂(E+PV )

∂T

)
N ,P
=

5
2

nR, (27)

14Henceforth, we shall replace the sign≈, which characterizes the asymptotic character of a relationship, by the sign
of equality because for most physical systems the asymptotic results are as good as exact.
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so that, for the ratio of the two specific heats, we have

γ = CP/CV =
5
3

. (28)

Now, suppose that the gas undergoes an isothermal change of state (T = const. and
N = const.); then, according to (23), the total energy of the gas would remain constant
while, according to (26), its pressure would vary inversely with volume (Boyle’s law). The
change in the entropy of the gas, between the initial state i and the final state f , would then
be, see equation (21),

Sf − Si =Nk ln(Vf /Vi). (29)

On the other hand, if the gas undergoes a reversible adiabatic change of state (S= const.
and N = const.), then, according to (22) and (23), both E and T would vary as V−2/3; so,
according to (25) or (26), P would vary as V−5/3. These results agree with the conventional
thermodynamic ones, namely

PV γ
= const. and TV γ−1

= const., (30)

with γ = 5
3 . It may be noted that, thermodynamically, the change in E during an adiabatic

process arises solely from the external work done by the gas on the surroundings or vice
versa:

(dE)adiab =−PdV =−
2E
3V

dV ; (31)

see equations (1.3.4) and (25). The dependence of E on V follows readily from this
relationship.

The considerations of this section have clearly demonstrated the manner in which
the thermodynamics of a macroscopic system can be derived from the multiplicity of its
microstates (as represented by the number � or 0 or 6). The whole problem then hinges
on an asymptotic enumeration of these numbers, which unfortunately is tractable only
in a few idealized cases, such as the one considered in this section; see also Problems 1.7
and 1.8. Even in an idealized case like this, there remains an inadequacy that could not be
detected in the derivations made so far; this relates to the explicit dependence of S on N .
The discussion of the next section is intended not only to bring out this inadequacy but
also to provide the necessary remedy for it.

1.5 The entropy of mixing and the Gibbs
paradox

One thing we readily observe from expression (1.4.21) is that, contrary to what is logi-
cally desired, the entropy of an ideal gas, as given by this expression, is not an extensive
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(N1, V1; T ) (N2, V2; T )

FIGURE 1.3 The mixing together of two ideal gases 1 and 2.

property of the system! That is, if we increase the size of the system by a factor α, keep-
ing the intensive variables unchanged,15 then the entropy of the system, which should
also increase by the same factor α, does not do so; the presence of the lnV term in the
expression affects the result adversely. This in a way means that the entropy of this system
is different from the sum of the entropies of its parts, which is quite unphysical. A more
common way of looking at this problem is to consider the so-called Gibbs paradox.

Gibbs visualized the mixing of two ideal gases 1 and 2, both being initially at the same
temperature T ; see Figure 1.3. Clearly, the temperature of the mixture would also be the
same. Now, before the mixing took place, the respective entropies of the two gases were,
see equations (1.4.21) and (1.4.23),

Si =Nik lnVi+
3
2

Nik
{

1+ ln
(

2πmikT

h2

)}
; i= 1,2. (1)

After the mixing has taken place, the total entropy would be

ST =

2∑
i=1

[
Nik lnV +

3
2

Nik
{

1+ ln
(

2πmikT

h2

)}]
, (2)

where V = V1+V2. Thus, the net increase in the value of S, which may be called the entropy
of mixing, is given by

(1S)= ST −

2∑
i=1

Si = k
[

N1 ln
V1+V2

V1
+N2 ln

V1+V2

V2

]
; (3)

the quantity 1S is indeed positive, as it must be for an irreversible process like mixing.
Now, in the special case when the initial particle densities of the two gases (and, hence, the
particle density of the mixture) are also the same, equation (3) becomes

(1S)∗ = k
[

N1 ln
N1+N2

N1
+N2 ln

N1+N2

N2

]
, (4)

which is again positive.

15This means an increase of the parameters N , V , and E to αN , αV , and αE, so that the energy per particle and the
volume per particle remain unchanged.
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So far, it seems all right. However, a paradoxical situation arises if we consider the mix-
ing of two samples of the same gas. Once again, the entropies of the individual samples
will be given by (1); of course, now m1 =m2 =m, say. And the entropy after mixing will be
given by

ST =Nk lnV +
3
2

Nk
{

1+ ln
(

2πmkT

h2

)}
, (2a)

where N =N1+N2; note that this expression is numerically the same as (2), with mi =m.
Therefore, the entropy of mixing in this case will also be given by expression (3) and, if
N1/V1 =N2/V2 = (N1+N2)/(V1+V2), by expression (4). The last conclusion, however, is
unacceptable because the mixing of two samples of the same gas, with a common initial
temperature T and a common initial particle density n, is clearly a reversible process, for
we can simply reinsert the partitioning wall into the system and obtain a situation that is
in no way different from the one we had before mixing. Of course, we tacitly imply that
in dealing with a system of identical particles we cannot track them down individually;
all we can reckon with is their numbers. When two dissimilar gases, even with a common
initial temperature T , and a common initial particle density n, mixed together the process
was irreversible, for by reinserting the partitioning wall one would obtain two samples of
the mixture and not the two gases that were originally present; to that case, expression (4)
would indeed apply. However, in the present case, the corresponding result should be

(1S)∗1≡2 = 0. (4a)16

The foregoing result would also be consistent with the requirement that the entropy of a
given system is equal to the sum of the entropies of its parts. Of course, we had already
noticed that this is not ensured by expression (1.4.21). Thus, once again we are led to
believe that there is something basically wrong with that expression.

To see how the above paradoxical situation can be avoided, we recall that, for the
entropy of mixing of two samples of the same gas, with a common T and a common n,
we were led to result (4), which can also be written as

(1S)∗ = ST − (S1+ S2)≈ k[ln{(N1+N2)! }− ln(N1!)− ln(N2!)], (4)

instead of the logical result (4a). A closer look at this expression shows that we would
indeed obtain the correct result if our original expression for S were diminished by an
ad hoc term, k ln(N !), for that would diminish S1 by k ln(N1!),S2 by k ln(N2!) and ST by
k ln {(N1+N2)!}, with the result that (1S)∗ would turn out to be zero instead of the expres-
sion appearing in (4). Clearly, this would amount to an ad hoc reduction of the statistical
numbers 0 and 6 by a factor N !. This is precisely the remedy proposed by Gibbs to avoid
the paradox in question.

16In view of this, we fear that expression (3) may also be inapplicable to this case.
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If we agree with the foregoing suggestion, then the modified expression for the entropy
of a classical ideal gas would be

S(N ,V ,E)=Nk ln

[
V

Nh3

(
4πmE

3N

)3/2
]
+

5
2

Nk (1.4.21a)

=Nk ln
(

V
N

)
+

3
2

Nk
{

5
3
+ ln

(
2πmkT

h2

)}
, (1a)

which indeed is truly extensive! If we now mix two samples of the same gas at a common
initial temperature T , the entropy of mixing would be

(1S)1≡2 = k
[
(N1+N2) ln

(
V1+V2

N1+N2

)
−N1 ln

(
V1

N1

)
−N2 ln

(
V2

N2

)]
(3a)

and, if the initial particle densities of the samples were also equal, the result would be

(1S)∗1≡2 = 0. (4a)

It may be noted that for the mixing of two dissimilar gases, the original expressions (3) and
(4) would continue to hold even when (1.4.21) is replaced by (1.4.21a).17 The paradox of
Gibbs is thereby resolved.

Equation (1a) is generally referred to as the Sackur–Tetrode equation. We reiterate the
fact that, by this equation, the entropy of the system does indeed become a truly extensive
quantity. Thus, the very root of the trouble has been eliminated by the recipe of Gibbs. We
shall discuss the physical implications of this recipe in Section 1.6; here, let us jot down
some of its immediate consequences.

First of all, we note that the expression for the energy E of the gas, written as a function
of N , V , and S, is also modified. We now have

E(N ,V ,S)=
3h2N5/3

4πmV 2/3
exp

(
2S

3Nk
−

5
3

)
, (1.4.22a)

which, unlike its predecessor (1.4.22), makes energy too a truly extensive quantity. Of
course, the thermodynamic results (1.4.23) through (1.4.31), derived in the previous
section, remain unchanged. However, there are some that were intentionally left out, for
they would come out correct only from the modified expression for S(N ,V ,E) or E(S,V ,N).
The most important of these is the chemical potential of the gas, for which we obtain

µ≡

(
∂E
∂N

)
V ,S
= E

[
5

3N
−

2S

3N2k

]
. (5)

17Because, in this case, the entropy ST of the mixture would be diminished by k ln(N1!N2!), rather than by
k ln{(N1+N2)! }.
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In view of equations (1.4.23) and (1.4.25), this becomes

µ=
1
N

[E+PV −TS]≡
G
N

, (6)

where G is the Gibbs free energy of the system. In terms of the variables N ,V , and T ,
expression (5) takes the form

µ(N ,V ,T)= kT ln

N
V

(
h2

2πmkT

)3/2
. (7)

Another quantity of importance is the Helmholtz free energy:

A= E−TS= G−PV =NkT

ln

N
V

(
h2

2πmkT

)3/2
− 1

. (8)

It will be noted that, while A is an extensive property of the system, µ is intensive.

1.6 The “correct” enumeration of the microstates
In the preceding section we saw that an ad hoc diminution in the entropy of an N-particle
system by an amount k ln(N !), which implies an ad hoc reduction in the number of
microstates accessible to the system by a factor (N !), was able to correct the unphysical fea-
tures of some of our former expressions. It is now natural to ask: why, in principle, should
the number of microstates, computed in Section 1.4, be reduced in this manner? The phys-
ical reason for doing so is that the particles constituting the given system are not only
identical but also indistinguishable; accordingly, it is unphysical to label them as No. 1,
No. 2, No. 3, and so on and to speak of their being individually in the various single-particle
states εi. All we can sensibly speak of is their distribution over the states εi by numbers, that
is, n1 particles being in the state ε1, n2 in the state ε2, and so on. Thus, the correct way of
specifying a microstate of the system is through the distribution numbers {nj}, and not
through the statement as to “which particle is in which state.” To elaborate the point, we
may say that if we consider two microstates that differ from one another merely in an inter-
change of two particles in different energy states, then according to our original mode of
counting we would regard these microstates as distinct; in view of the indistinguishability
of the particles, however, these microstates are not distinct (for, physically, there exists no
way whatsoever of distinguishing between them).18

18Of course, if an interchange took place among particles in the same energy state, then even our original mode of
counting did not regard the two microstates as distinct.
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Now, the total number of permutations that can be effected among N particles,
distributed according to the set {ni}, is

N !
n1!n2! . . .

, (1)

where the ni must be consistent with the basic constraints (1.1.1) and (1.1.2).19 If our parti-
cles were distinguishable, then all these permutations would lead to “distinct” microstates.
However, in view of the indistinguishability of the particles, these permutations must be
regarded as leading to one and the same thing; consequently, for any distribution set {ni},
we have one, and only one, distinct microstate. As a result, the total number of distinct
microstates accessible to the system, consistent with a given macrostate (N ,V ,E), would
be severely cut down. However, since factor (1) itself depends on the numbers ni consti-
tuting a particular distribution set and for a given macrostate there will be many such sets,
there is no straightforward way to “correct down” the number of microstates computed on
the basis of the classical concept of “distinguishability” of the particles.

The recipe of Gibbs clearly amounts to disregarding the details of the numbers ni and
slashing the whole sequence of microstates by a common factor N !; this is correct for situa-
tions in which all N particles happen to be in different energy states but is certainly wrong
for other situations. We must keep in mind that by adopting this recipe we are still using a
spurious weight factor,

w{ni} =
1

n1!n2! . . .
, (2)

for the distribution set {ni} whereas in principle we should use a factor of unity, irre-
spective of the values of the numbers ni.20 Nonetheless, the recipe of Gibbs does correct
the situation in a gross manner, though in matters of detail it is still inadequate. In fact,
it is only by taking w{ni} to be equal to unity (or zero) that we obtain true quantum
statistics!

We thus see that the recipe of Gibbs corrects the enumeration of the microstates, as
necessitated by the indistinguishability of the particles, only in a gross manner. Numeri-
cally, this would approach closer and closer to reality as the probability of the ni being
greater than 1 becomes less and less. This in turn happens when the given system is
at a sufficiently high temperature (so that many more energy states become accessible)
and has a sufficiently low density (so that there are not as many particles to accommo-
date). It follows that the “corrected” classical statistics represents truth more closely if the
expectation values of the occupation numbers ni are much less than unity:

〈ni〉 � 1, (3)

19The presence of the factors (ni !) in the denominator is related to the comment made in the preceding note.
20Or a factor of zero if the distribution set {ni} is disallowed on certain physical grounds, such as the Pauli exclusion

principle.
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that is, if the numbers ni are generally 0, occasionally 1, and rarely greater than 1. Condition
(3) in a way defines the classical limit. We must, however, remember that it is because of the
application of the correction factor 1/N !, which replaces (1) by (2), that our results agree
with reality at least in the classical limit.

In Section 5.5 we shall demonstrate, in an independent manner, that the factor by
which the number of microstates, as computed for the “labeled” molecules, be reduced so
that the formalism of classical statistical mechanics becomes a true limit of the formalism
of quantum statistical mechanics is indeed N !.

Problems
1.1. (a) Show that, for two large systems in thermal contact, the number�(0)(E(0),E1) of Section 1.2

can be expressed as a Gaussian in the variable E1. Determine the root-mean-square deviation
of E1 from the mean value E1 in terms of other quantities pertaining to the problem.

(b) Make an explicit evaluation of the root-mean-square deviation of E1 in the special case when
the systems A1 and A2 are ideal classical gases.

1.2. Assuming that the entropy S and the statistical number� of a physical system are related through
an arbitrary functional form

S= f (�),

show that the additive character of S and the multiplicative character of� necessarily require that
the function f (�) be of the form (1.2.6).

1.3. Two systems A and B, of identical composition, are brought together and allowed to exchange both
energy and particles, keeping volumes VA and VB constant. Show that the minimum value of the
quantity (dEA/dNA) is given by

µATB−µBTA

TB−TA
,

where the µ’s and the T ’s are the respective chemical potentials and temperatures.
1.4. In a classical gas of hard spheres (of diameter D), the spatial distribution of the particles is no

longer uncorrelated. Roughly speaking, the presence of n particles in the system leaves only
a volume (V −nv0) available for the (n+ 1)th particle; clearly, v0 would be proportional to
D3. Assuming that Nv0� V , determine the dependence of�(N ,V ,E) on V (compare to
equation (1.4.1)) and show that, as a result of this, V in the ideal-gas law (1.4.3) gets replaced
by (V −b), where b is four times the actual volume occupied by the particles.

1.5. Read Appendix A and establish formulae (1.4.15) and (1.4.16). Estimate the importance of the
linear term in these formulae, relative to the main term (π/6)ε∗3/2, for an oxygen molecule
confined to a cube of side 10 cm; take ε = 0.05 eV.

1.6. A cylindrical vessel 1 m long and 0.1 m in diameter is filled with a monatomic gas at P = 1 atm and
T = 300 K. The gas is heated by an electrical discharge, along the axis of the vessel, which releases
an energy of 104 joules. What will the temperature of the gas be immediately after the discharge?

1.7. Study the statistical mechanics of an extreme relativisitic gas characterized by the single-particle
energy states

ε(nx,ny ,nz)=
hc
2L

(
n2

x +n2
y +n2

z

)1/2
,

instead of (1.4.5), along the lines followed in Section 1.4. Show that the ratio CP/CV in this case is
4/3, instead of 5/3.

1.8. Consider a system of quasiparticles whose energy eigenvalues are given by

ε(n)= nhν; n= 0,1,2, . . . .
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Obtain an asymptotic expression for the number� of this system for a given number N of the
quasiparticles and a given total energy E. Determine the temperature T of the system as a function
of E/N and hν, and examine the situation for which E/(Nhν)� 1.

1.9. Making use of the fact that the entropy S(N ,V ,E) of a thermodynamic system is an extensive
quantity, show that

N
(
∂S
∂N

)
V ,E
+V

(
∂S
∂V

)
N ,E
+E

(
∂S
∂E

)
N ,V
= S.

Note that this result implies that (−Nµ+PV +E)/T = S, that is, Nµ= E+PV −TS.
1.10. A mole of argon and a mole of helium are contained in vessels of equal volume. If argon is at 300 K,

what should the temperature of helium be so that the two have the same entropy?
1.11. Four moles of nitrogen and one mole of oxygen at P = 1 atm and T = 300K are mixed together to

form air at the same pressure and temperature. Calculate the entropy of mixing per mole of the air
formed.

1.12. Show that the various expressions for the entropy of mixing, derived in Section 1.5, satisfy the
following relations:
(a) For all N1,V1,N2, and V2,

(1S)1≡2 = {(1S)− (1S)∗} ≥ 0,

the equality holding when and only when N1/V1 =N2/V2.
(b) For a given value of (N1+N2),

(1S)∗ ≤ (N1+N2)k ln2,

the equality holding when and only when N1 =N2.
1.13. If the two gases considered in the mixing process of Section 1.5 were initially at different

temperatures, say T1 and T2, what would the entropy of mixing be in that case? Would the
contribution arising from this cause depend on whether the two gases were different or identical?

1.14. Show that for an ideal gas composed of monatomic molecules the entropy change, between any
two temperatures, when the pressure is kept constant is 5/3 times the corresponding entropy
change when the volume is kept constant. Verify this result numerically by calculating the actual
values of (1S)P and (1S)V per mole of an ideal gas whose temperature is raised from 300 K to 400 K.

1.15. We have seen that the (P, V )-relationship during a reversible adiabatic process in an ideal gas is
governed by the exponent γ , such that

PV γ
= const.

Consider a mixture of two ideal gases, with mole fractions f1 and f2 and respective exponents γ1
and γ2. Show that the effective exponent γ for the mixture is given by

1
γ − 1

=
f1

γ1− 1
+

f2

γ2− 1
.

1.16. Establish thermodynamically the formulae

V
(
∂P
∂T

)
µ

= S and V
(
∂P
∂µ

)
T
=N .

Express the pressure P of an ideal classical gas in terms of the variables µ and T , and verify the
above formulae.



2
Elements of Ensemble Theory

In the preceding chapter we noted that, for a given macrostate (N ,V ,E), a statistical
system, at any time t, is equally likely to be in any one of an extremely large number of
distinct microstates. As time passes, the system continually switches from one microstate
to another, with the result that, over a reasonable span of time, all one observes is a behav-
ior “averaged” over the variety of microstates through which the system passes. It may,
therefore, make sense if we consider, at a single instant of time, a rather large number of
systems — all being some sort of “mental copies” of the given system — which are charac-
terized by the same macrostate as the original system but are, naturally enough, in all sorts
of possible microstates. Then, under ordinary circumstances, we may expect that the aver-
age behavior of any system in this collection, which we call an ensemble, would be identical
to the time-averaged behavior of the given system. It is on the basis of this expectation that
we proceed to develop the so-called ensemble theory.

For classical systems, the most appropriate framework for developing the desired for-
malism is provided by the phase space. Accordingly, we begin our study of the various
ensembles with an analysis of the basic features of this space.

2.1 Phase space of a classical system
The microstate of a given classical system, at any time t, may be defined by specifying the
instantaneous positions and momenta of all the particles constituting the system. Thus,
if N is the number of particles in the system, the definition of a microstate requires the
specification of 3N position coordinates q1,q2, . . . ,q3N and 3N momentum coordinates
p1,p2, . . . ,p3N . Geometrically, the set of coordinates (qi,pi), where i= 1,2, . . . ,3N , may be
regarded as a point in a space of 6N dimensions. We refer to this space as the phase space,
and the phase point (qi,pi) as a representative point, of the given system.

Of course, the coordinates qi and pi are functions of the time t; the precise manner in
which they vary with t is determined by the canonical equations of motion,

q̇i =
∂H(qi,pi)

∂pi

ṗi =−
∂H(qi,pi)

∂qi

 i= 1,2, . . . ,3N , (1)

where H(qi,pi) is the Hamiltonian of the system. Now, as time passes, the set of
coordinates (qi,pi), which also defines the microstate of the system, undergoes a continual
change. Correspondingly, our representative point in the phase space carves out a

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00002-5
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trajectory whose direction, at any time t, is determined by the velocity vector v ≡ (q̇i, ṗi),
which in turn is given by the equations of motion (1). It is not difficult to see that the
trajectory of the representative point must remain within a limited region of the phase
space; this is so because a finite volume V directly limits the values of the coordinates qi,
while a finite energy E limits the values of both the qi and the pi [through the Hamiltonian
H(qi, pi)]. In particular, if the total energy of the system is known to have a precise value,
say E, the corresponding trajectory will be restricted to the “hypersurface”

H(qi,pi)= E (2)

of the phase space; on the other hand, if the total energy may lie anywhere in the range(
E− 1

21,E+ 1
21
)
, the corresponding trajectory will be restricted to the “hypershell”

defined by these limits.
Now, if we consider an ensemble of systems (i.e., the given system, along with a large

number of mental copies of it) then, at any time t, the various members of the ensem-
ble will be in all sorts of possible microstates; indeed, each one of these microstates must
be consistent with the given macrostate that is supposed to be common to all members
of the ensemble. In the phase space, the corresponding picture will consist of a swarm of
representative points, one for each member of the ensemble, all lying within the “allowed”
region of this space. As time passes, every member of the ensemble undergoes a continual
change of microstates; correspondingly, the representative points constituting the swarm
continually move along their respective trajectories. The overall picture of this movement
possesses some important features that are best illustrated in terms of what we call a
density function ρ(q,p; t).1 This function is such that, at any time t, the number of repre-
sentative points in the “volume element” (d3N q d3N p) around the point (q,p) of the phase
space is given by the product ρ(q,p; t)d3N q d3N p. Clearly, the density function ρ(q,p; t)
symbolizes the manner in which the members of the ensemble are distributed over all
possible microstates at different instants of time. Accordingly, the ensemble average 〈 f 〉 of a
given physical quantity f (q,p), which may be different for systems in different microstates,
would be given by

〈 f 〉 =

∫
f (q,p)ρ(q,p; t)d3N q d3N p∫
ρ(q,p; t)d3N q d3N p

. (3)

The integrations in (3) extend over the whole of the phase space; however, it is only
the populated regions of the phase space (ρ 6= 0) that really contribute. We note that, in
general, the ensemble average 〈 f 〉may itself be a function of time.

An ensemble is said to be stationary if ρ does not depend explicitly on time, that is, at
all times

∂ρ

∂t
= 0. (4)

1Note that (q,p) is an abbreviation of (qi,pi)≡ (q1, . . . ,q3N ,p1, . . . ,p3N ).
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Clearly, for such an ensemble the average value 〈 f 〉 of any physical quantity f (q,p) will
be independent of time. Naturally, a stationary ensemble qualifies to represent a system in
equilibrium. To determine the circumstances under which equation (4) may hold, we have
to make a rather detailed study of the movement of the representative points in the phase
space.

2.2 Liouville’s theorem and its consequences
Consider an arbitrary “volume” ω in the relevant region of the phase space and let the
“surface” enclosing this volume be denoted by σ ; see Figure 2.1. Then, the rate at which
the number of representative points in this volume increases with time is written as

∂

∂t

∫
ω

ρdω, (1)

where dω ≡
(
d3N q d3N p

)
. On the other hand, the net rate at which the representative points

“flow” out of ω (across the bounding surface σ ) is given by∫
σ

ρ v · n̂ dσ ; (2)

here, v is the velocity vector of the representative points in the region of the surface
element dσ while n̂ is the (outward) unit vector normal to this element. By the divergence
theorem, (2) can be written as ∫

ω

div(ρv)dω; (3)

of course, the operation of divergence here means

div(ρv)≡
3N∑
i=1

{
∂

∂qi
(ρq̇i)+

∂

∂pi
(ρṗi)

}
. (4)

�
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n̂

v

�

FIGURE 2.1 The “hydrodynamics” of the representative points in the phase space.
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In view of the fact that there are no “sources” or “sinks” in the phase space and hence the
total number of representative points remains conserved,2 we have, by (1) and (3),

∂

∂t

∫
ω

ρdω =−
∫
ω

div(ρv)dω, (5)

that is, ∫
ω

{
∂ρ

∂t
+div(ρv)

}
dω = 0. (6)

Now, the necessary and sufficient condition that integral (6) vanish for all arbitrary
volumes ω is that the integrand itself vanish everywhere in the relevant region of the phase
space. Thus, we must have

∂ρ

∂t
+div(ρv)= 0, (7)

which is the equation of continuity for the swarm of the representative points.
Combining (4) and (7), we obtain

∂ρ

∂t
+

3N∑
i=1

(
∂ρ

∂qi
q̇i+

∂ρ

∂pi
ṗi

)
+ ρ

3N∑
i=1

(
∂q̇i

∂qi
+
∂ṗi

∂pi

)
= 0. (8)

The last group of terms vanishes identically because, by the equations of motion, we have,
for all i,

∂q̇i

∂qi
=
∂2H(qi,pi)

∂qi∂pi
≡
∂2H(qi,pi)

∂pi∂qi
=−

∂ṗi

∂pi
. (9)

Further, since ρ ≡ ρ (q,p; t), the remaining terms in (8) may be combined to form the
“total” time derivative of ρ, with the result that

dρ
dt
=
∂ρ

∂t
+ [ρ,H]= 0. (10)3

Equation (10) embodies Liouville’s theorem (1838). According to this theorem, the “local”
density of the representative points, as viewed by an observer moving with a representa-
tive point, stays constant in time. Thus, the swarm of the representative points moves in

2This means that in the ensemble under consideration neither are any new members being added nor are any old
ones being removed.

3We recall that the Poisson bracket [ρ,H] stands for the sum

3N∑
i=1

(
∂ρ

∂qi

∂H
∂pi
−
∂ρ

∂pi

∂H
∂qi

)
,

which is identical to the group of terms in the middle of (8).
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the phase space in essentially the same manner as an incompressible fluid moves in the
physical space!

A distinction must be made, however, between equation (10) on one hand and
equation (2.1.4) on the other. While the former derives from the basic mechanics of the
particles and is therefore quite generally true, the latter is only a requirement for equi-
librium which, in a given case, may or may not be satisfied. The condition that ensures
simultaneous validity of the two equations is clearly

[ρ,H]=
3N∑
i=1

(
∂ρ

∂qi
q̇i+

∂ρ

∂pi
ṗi

)
= 0. (11)

Now, one possible way of satisfying (11) is to assume that ρ, which is already assumed
to have no explicit dependence on time, is independent of the coordinates (q,p) as well,
that is,

ρ(q,p)= const. (12)

over the relevant region of the phase space (and, of course, is zero everywhere else). Physi-
cally, this choice corresponds to an ensemble of systems that at all times are uniformly
distributed over all possible microstates. The ensemble average (2.1.3) then reduces to

〈 f 〉 =
1
ω

∫
ω

f (q,p)dω; (13)

here, ω denotes the total “volume” of the relevant region of the phase space. Clearly, in
this case, any member of the ensemble is equally likely to be in any one of the various
possible microstates, inasmuch as any representative point in the swarm is equally likely
to be in the neighborhood of any phase point in the allowed region of the phase space.
This statement is usually referred to as the postulate of “equal a priori probabilities” for
the various possible microstates (or for the various volume elements in the allowed region
of the phase space); the resulting ensemble is referred to as the microcanonical ensemble.

A more general way of satisfying (11) is to assume that the dependence of ρ on (q,p)
comes only through an explicit dependence on the Hamiltonian H(q,p), that is,

ρ(q,p)= ρ[H(q,p)]; (14)

condition (11) is then identically satisfied. Equation (14) provides a class of density func-
tions for which the corresponding ensemble is stationary. In Chapter 3 we shall see that
the most natural choice in this class of ensembles is the one for which

ρ(q,p)∝ exp[−H(q,p)/kT ]. (15)

The ensemble so defined is referred to as the canonical ensemble.
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2.3 The microcanonical ensemble
In this ensemble the macrostate of a system is defined by the number of molecules N ,
the volume V , and the energy E. However, in view of the considerations expressed in
Section 1.4, we may prefer to specify a range of energy values, say from

(
E− 1

21
)

to(
E+ 1

21
)
, rather than a sharply defined value E. With the macrostate specified, a choice

still remains for the systems of the ensemble to be in any one of a large number of pos-
sible microstates. In the phase space, correspondingly, the representative points of the
ensemble have a choice to lie anywhere within a “hypershell” defined by the condition(

E−
1
2
1

)
≤H(q,p)≤

(
E+

1
2
1

)
. (1)

The volume of the phase space enclosed within this shell is given by

ω =

′∫
dω ≡

′∫ (
d3N q d3N p

)
, (2)

where the primed integration extends only over that part of the phase space which con-
forms to condition (1). It is clear that ω will be a function of the parameters N ,V ,E,
and1.

Now, the microcanonical ensemble is a collection of systems for which the density
function ρ is, at all times, given by

ρ(q,p)= const. if
(

E− 1
21
)
≤H(q,p)≤

(
E+ 1

21
)

0 otherwise

 . (3)

Accordingly, the expectation value of the number of representative points lying in a vol-
ume element dω of the relevant hypershell is simply proportional to dω. In other words, the
a priori probability of finding a representative point in a given volume element dω is the
same as that of finding a representative point in an equivalent volume element dω located
anywhere in the hypershell. In our original parlance, this means an equal a priori probabil-
ity for a given member of the ensemble to be in any one of the various possible microstates.
In view of these considerations, the ensemble average 〈 f 〉, as given by equation (2.2.13),
acquires a simple physical meaning. To see this, we proceed as follows.

Since the ensemble under study is a stationary one, the ensemble average of any phy-
sical quantity f will be independent of time; accordingly, taking a time average thereof will
not produce any new result. Thus

〈 f 〉 ≡ the ensemble average of f

= the time average of (the ensemble average of f ).
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Now, the processes of time averaging and ensemble averaging are completely indepen-
dent, so the order in which they are performed may be reversed without causing any
change in the value of 〈 f 〉. Thus

〈 f 〉 = the ensemble average of (the time average of f ).

Now, the time average of any physical quantity, taken over a sufficiently long interval of
time, must be the same for every member of the ensemble, for after all we are dealing
with only mental copies of a given system.4 Therefore, taking an ensemble average thereof
should be inconsequential, and we may write

〈 f 〉 = the long-time average of f ,

where the latter may be taken over any member of the ensemble. Furthermore, the long-
time average of a physical quantity is all one obtains by making a measurement of that
quantity on the given system; therefore, it may be identified with the value one expects to
obtain through experiment. Thus, we finally have

〈 f 〉 = fexp. (4)

This brings us to the most important result: the ensemble average of any physical quantity
f is identical to the value one expects to obtain on making an appropriate measurement on
the given system.

The next thing we look for is the establishment of a connection between the mechanics
of the microcanonical ensemble and the thermodynamics of the member systems. To do
this, we observe that there exists a direct correspondence between the various microstates
of the given system and the various locations in the phase space. The volume ω (of the
allowed region of the phase space) is, therefore, a direct measure of the multiplicity0 of the
microstates accessible to the system. To establish a numerical correspondence between ω

4To provide a rigorous justification for this assertion is not trivial. One can readily see that if, for any particular mem-
ber of the ensemble, the quantity f is averaged only over a short span of time, the result is bound to depend on the
relevant “subset of microstates” through which the system passes during that time. In the phase space, this will mean
an averaging over only a “part of the allowed region.” However, if we employ instead a sufficiently long interval of time,
the system may be expected to pass through almost all possible microstates “without fear or favor”; consequently, the
result of the averaging process would depend only on the macrostate of the system, and not on a subset of microstates.
Correspondingly, the averaging in the phase space would go over practically all parts of the allowed region, again “with-
out fear or favor.” In other words, the representative point of our system will have traversed each and every part of the
allowed region almost uniformly. This statement embodies the so-called ergodic theorem or ergodic hypothesis, which
was first introduced by Boltzmann (1871). According to this hypothesis, the trajectory of a representative point passes,
in the course of time, through each and every point of the relevant region of the phase space. A little reflection, however,
shows that the statement as such requires a qualification; we better replace it by the so-called quasiergodic hypothesis,
according to which the trajectory of a representative point traverses, in the course of time, any neighborhood of any point
of the relevant region. For further details, see ter Haar (1954, 1955), Farquhar (1964).

Now, when we consider an ensemble of systems, the foregoing statement should hold for every member of the
ensemble; thus, irrespective of the initial (and final) states of the various systems, the long-time average of any physical
quantity f should be the same for every member system.
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and0, we need to discover a fundamental volume ω0 that could be regarded as “equivalent
to one microstate.” Once this is done, we may say that, asymptotically,

0 = ω/ω0. (5)

The thermodynamics of the system would then follow in the same way as in Sections 1.2–
1.4, namely through the relationship

S= k ln0 = k ln(ω/ω0), etc. (6)

The basic problem then consists in determining ω0. From dimensional considerations,
see (2), ω0 must be in the nature of an “angular momentum raised to the power 3N .” To
determine it exactly, we consider certain simplified systems, both from the point of view
of the phase space and from the point of view of the distribution of quantum states.

2.4 Examples
We consider, first of all, the problem of a classical ideal gas composed of monatomic par-
ticles; see Section 1.4. In the microcanonical ensemble, the volume ω of the phase space
accessible to the representative points of the (member) systems is given by

ω =

′∫
. . .

′∫ (
d3N q d3N p

)
, (1)

where the integrations are restricted by the conditions that (i) the particles of the system
are confined in physical space to volume V , and (ii) the total energy of the system lies
between the limits

(
E− 1

21
)

and
(
E+ 1

21
)
. Since the Hamiltonian in this case is a function

of the pi alone, integrations over the qi can be carried out straightforwardly; these give a
factor of V N . The remaining integral is∫

. . .

∫
(

E− 1
21

)
≤

3N∑
i=1

(
p2

i /2m
)
≤

(
E+ 1

21
)

d3N p=
∫
. . .

∫
2m

(
E− 1

21
)
≤

3N∑
i=1

y2
i ≤2m

(
E+ 1

21
)

d3N y,

which is equal to the volume of a 3N-dimensional hypershell, bounded by hyperspheres
of radii

√[
2m

(
E+

1
2
1

)]
and

√[
2m

(
E−

1
2
1

)]
.

For1� E, this is given by the thickness of the shell, which is almost equal to1(m/2E)1/2,
multiplied by the surface area of a 3N-dimensional hypersphere of radius

√
(2mE). By
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equation (7) of Appendix C, we obtain for this integral

1
( m

2E

)1/2
{

2π3N/2

[(3N/2)− 1]!
(2mE)(3N−1)/2

}
,

which gives

ω '
1

E
V N (2πmE)3N/2

[(3N/2)− 1]!
. (2)

Comparing (2) with (1.4.17 and 1.4.17a), we obtain the desired correspondence, namely

(ω/0)asymp ≡ ω0 = h3N ;

see also Problem 2.9. Quite generally, if the system under study has N degrees of freedom,
the desired conversion factor is

ω0 = hN . (3)

In the case of a single particle, N = 3; accordingly, the number of microstates available
would asymptotically be equal to the volume of the allowed region of the phase space
divided by h3. Let 6(P) denote the number of microstates available to a free particle con-
fined to volume V of the physical space, its momentum p being less than or equal to a
specified value P. Then

6(P)≈
1

h3

∫
. . .

∫
p≤P

(
d3q d3p

)
=

V

h3

4π
3

P3, (4)

from which we obtain for the number of microstates with momentum lying between p and
p+dp

g(p)dp=
d6(p)

dp
dp≈

V

h3
4πp2dp. (5)

Expressed in terms of the particle energy, these expressions assume the form

6(E)≈
V

h3

4π
3
(2mE)3/2 (6)

and

a(ε)dε =
d6(ε)

dε
dε ≈

V

h3
2π(2m)3/2ε1/2dε. (7)

The next case we consider here is that of a one-dimensional simple harmonic oscillator.
The classical expression for the Hamiltonian of this system is

H(q,p)=
1
2

kq2
+

1
2m

p2, (8)
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where k is the spring constant and m the mass of the oscillating particle. The space
coordinate q and the momentum coordinate p of the system are given by

q= Acos(ωt+φ), p=mq̇=−mωAsin(ωt+φ), (9)

A being the amplitude and ω the (angular) frequency of vibration:

ω =
√
(k/m). (10)

The energy of the oscillator is a constant of the motion, and is given by

E =
1
2

mω2A2. (11)

The phase-space trajectory of the representative point (q,p) of this system is determined
by eliminating t between expressions (9) for q(t) and p(t); we obtain

q2

(2E/mω2)
+

p2

(2mE)
= 1, (12)

which is an ellipse, with axes proportional to
√

E and hence area proportional to E; to be
precise, the area of this ellipse is 2πE/ω. Now, if we restrict the oscillator energy to the
interval

(
E− 1

21,E+ 1
21
)
, its representative point in the phase space will be confined to

the region bounded by elliptical trajectories corresponding to the energy values
(
E+ 1

21
)

and
(
E− 1

21
)
. The “volume” (in this case, the area) of this region will be

∫
. . .

∫
(

E− 1
21

)
≤H(q,p)≤

(
E+ 1

21
)(dq dp)=

2π
(

E+ 1
21
)

ω
−

2π
(

E− 1
21
)

ω
=

2π1
ω

. (13)

According to quantum mechanics, the energy eigenvalues of the harmonic oscillator are
given by

En =

(
n+

1
2

)
~ω; n= 0,1,2, . . . (14)

In terms of phase space, one could say that the representative point of the system must
move along one of the “chosen” trajectories, as shown in Figure 2.2; the area of the phase
space between two consecutive trajectories, for which1= ~ω, is simply 2π~.5 For arbitrary
values of E and 1, such that E�1� ~ω, the number of eigenstates within the allowed

5Strictly speaking, the very concept of phase space is invalid in quantum mechanics because there, in principle, it is
wrong to assign to a particle the coordinates q and p simultaneously. Nevertheless, the ideas discussed here are tenable
in the correspondence limit.
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n � 32p0

p0

�p0

�2p0

q

p

n � 2

n � 1

n � 0

�2q0 �q0 q0 2q0

FIGURE 2.2 Eigenstates of a linear harmonic oscillator, in relation to its phase space.

energy interval is very nearly equal to1/~ω. Hence, the area of the phase space equivalent
to one eigenstate is, asymptotically, given by

ω0 = (2π1/ω)/(1/~ω)= 2π~= h. (15)

If, on the other hand, we consider a system of N harmonic oscillators along the same lines
as above, we arrive at the result: ω0 = hN (see Problem 2.7). Thus, our findings in these
cases are consistent with our earlier result (3).

2.5 Quantum states and the phase space
At this stage we would like to say a few words on the central role played here by the Planck
constant h. The best way to appreciate this role is to recall the implications of the Heisen-
berg uncertainty principle, according to which we cannot specify simultaneously both the
position and the momentum of a particle exactly. An element of uncertainty is inherently
present and can be expressed as follows: assuming that all conceivable uncertainties of
measurement are eliminated, even then, by the very nature of things, the product of the
uncertainties 1q and 1p in the simultaneous measurement of the canonically conjugate
coordinates q and p would be of order ~:

(1q1p)min ∼ ~. (1)

Thus, it is impossible to define the position of a representative point in the phase space of
the given system more accurately than is allowed by condition (1). In other words, around
any point (q,p) in the (two-dimensional) phase space, there exists an area of order ~ within
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which the position of the representative point cannot be pinpointed. In a phase space of
2N dimensions, the corresponding “volume of uncertainty” around any point would be
of order ~N . Therefore, it seems reasonable to regard the phase space as made up of ele-
mentary cells, of volume ∼ ~N , and to consider the various positions within such a cell
as nondistinct. These cells could then be put into one-to-one correspondence with the
quantum-mechanical states of the system.

It is, however, obvious that considerations of uncertainty alone cannot give us the
exact value of the conversion factor ω0. This could only be done by an actual counting
of microstates on one hand and a computation of volume of the relevant region of the
phase space on the other, as was done in the examples of the previous section. Clearly, a
procedure along these lines could not be possible until after the work of Schrödinger and
others. Historically, however, the first to establish the result (2.4.3) was Tetrode (1912) who,
in his well-known work on the chemical constant and the entropy of a monatomic gas,
assumed that

ω0 = (zh)N , (2)

where z was supposed to be an unknown numerical factor. Comparing theoretical results
with the experimental data on mercury, Tetrode found that z was very nearly equal to unity;
from this he concluded that “it seems rather plausible that z is exactly equal to unity, as has
already been taken by O. Sackur (1911).”6

In the extreme relativistic limit, the same result was established by Bose (1924). In his
famous treatment of the photon gas, Bose made use of Einstein’s relationship between the
momentum of a photon and the frequency of the associated radiation, namely

p=
hν
c

, (3)

and observed that, for a photon confined to a three-dimensional cavity of volume V , the
relevant “volume” of the phase space,

′∫
(d3q d3p)= V 4πp2dp= V (4πh3ν2/c3)dν, (4)

would correspond exactly to the Rayleigh expression,

V (4πν2/c3)dν, (5)

for the number of normal modes of a radiation oscillator, provided that we divide phase
space into elementary cells of volume h3 and put these cells into one-to-one corre-
spondence with the vibrational modes of Rayleigh. It may, however, be added that a
two-fold multiplicity of these states (g = 2) arises from the spin orientations of the photon

6For a more satisfactory proof of this result, see Section 5.5, especially equation (5.5.22).
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(or from the states of polarization of the vibrational modes); this requires a multiplica-
tion of both expressions (4) and (5) by a factor of 2, leaving the conversion factor h3

unchanged.

Problems
2.1. Show that the volume element

dω =
3N∏
i=1

(dqi dpi)

of the phase space remains invariant under a canonical transformation of the (generalized)
coordinates (q,p) to any other set of (generalized) coordinates (Q,P).

[Hint: Before considering the most general transformation of this kind, which is referred to as a
contact transformation, it may be helpful to consider a point transformation — one in which the
new coordinates Qi and the old coordinates qi transform only among themselves.]

2.2. (a) Verify explicitly the invariance of the volume element dω of the phase space of a single particle
under transformation from the Cartesian coordinates

(
x,y,z,px,py ,pz

)
to the spherical polar

coordinates (r,θ ,φ,pr ,pθ ,pφ).
(b) The foregoing result seems to contradict the intuitive notion of “equal weights for equal solid

angles,” because the factor sinθ is invisible in the expression for dω. Show that if we average
out any physical quantity, whose dependence on pθ and pφ comes only through the kinetic
energy of the particle, then as a result of integration over these variables we do indeed recover
the factor sinθ to appear with the subelement (dθ dφ).

2.3. Starting with the line of zero energy and working in the (two-dimensional) phase space of a classical
rotator, draw lines of constant energy that divide phase space into cells of “volume” h. Calculate the
energies of these states and compare them with the energy eigenvalues of the corresponding
quantum-mechanical rotator.

2.4. By evaluating the “volume” of the relevant region of its phase space, show that the number of
microstates available to a rigid rotator with angular momentum≤M is (M/~)2. Hence determine
the number of microstates that may be associated with the quantized angular momentum
Mj =

√
{ j( j+ 1)}~, where j = 0,1,2, . . . or 1

2 , 3
2 , 5

2 , . . .. Interpret the result physically.
[Hint: It simplifies to consider motion in the variables θ and ϕ, with M2

= p2
θ + (pφ/sinθ)2.]

2.5. Consider a particle of energy E moving in a one-dimensional potential well V (q), such that

m~
∣∣∣∣dV

dq

∣∣∣∣� {m(E−V )}3/2.

Show that the allowed values of the momentum p of the particle are such that∮
pdq=

(
n+

1
2

)
h,

where n is an integer.
2.6. The generalized coordinates of a simple pendulum are the angular displacement θ and the angular

momentum ml2θ̇ . Study, both mathematically and graphically, the nature of the corresponding
trajectories in the phase space of the system, and show that the area A enclosed by a trajectory is
equal to the product of the total energy E and the time period τ of the pendulum.

2.7. Derive (i) an asymptotic expression for the number of ways in which a given energy E can be
distributed among a set of N one-dimensional harmonic oscillators, the energy eigenvalues of the

oscillators being
(

n+ 1
2

)
~ω;n= 0,1,2, . . ., and (ii) the corresponding expression for the “volume” of

the relevant region of the phase space of this system. Establish the correspondence between the
two results, showing that the conversion factor ω0 is precisely hN .
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2.8. Following the method of Appendix C, replacing equation (C.4) by the integral

∞∫
0

e−rr2dr = 2,

show that

V3N =

∫
. . .

∫
0≤

N∑
i=1

ri≤R

N∏
i=1

(
4πr2

i dri

)
= (8πR3)N/(3N)! .

Using this result, compute the “volume” of the relevant region of the phase space of an extreme
relativistic gas (ε = pc) of N particles moving in three dimensions. Hence, derive expressions for
the various thermodynamic properties of this system and compare your results with those of
Problem 1.7.

2.9. (a) Solve the integral ∫
. . .

∫
0≤

3N∑
i=1
|xi |≤R

(dx1 . . .dx3N )

and use it to determine the “volume” of the relevant region of the phase space of an extreme
relativistic gas (ε = pc) of 3N particles moving in one dimension. Determine, as well, the
number of ways of distributing a given energy E among this system of particles and show that,
asymptotically, ω0 = h3N .

(b) Compare the thermodynamics of this system with that of the system considered in Problem 2.8.



3
The Canonical Ensemble

In the preceding chapter we established the basis of ensemble theory and made
a somewhat detailed study of the microcanonical ensemble. In that ensemble the
macrostate of the systems was defined through a fixed number of particles N , a fixed vol-
ume V , and a fixed energy E [or, preferably, a fixed energy range (E− 1

21,E+ 1
21)]. The

basic problem then consisted in determining the number �(N ,V ,E), or 0(N ,V ,E;1), of
distinct microstates accessible to the system. From the asymptotic expressions of these
numbers, complete thermodynamics of the system could be derived in a straightforward
manner. However, for most physical systems, the mathematical problem of determin-
ing these numbers is quite formidable. For this reason alone, a search for an alternative
approach within the framework of the ensemble theory seems necessary.

Practically, too, the concept of a fixed energy (or even an energy range) for a system
belonging to the real world does not appear satisfactory. For one thing, the total energy
E of a system is hardly ever measured; for another, it is hardly possible to keep its value
under strict physical control. A far better alternative appears to be to speak of a fixed tem-
perature T of the system — a parameter that is not only directly observable (by placing a
“thermometer” in contact with the system) but also controllable (by keeping the system
in contact with an appropriate “heat reservoir”). For most purposes, the precise nature of
the reservoir is not very relevant; all one needs is that it should have an infinitely large
heat capacity, so that, irrespective of energy exchange between the system and the reser-
voir, an overall constant temperature can be maintained. Now, if the reservoir consists of
an infinitely large number of mental copies of the given system we have once again an
ensemble of systems — this time, however, it is an ensemble in which the macrostate of
the systems is defined through the parameters N ,V , and T . Such an ensemble is referred
to as a canonical ensemble.

In the canonical ensemble, the energy E of a system is variable; in principle, it can
take values anywhere between zero and infinity. The question then arises: what is the
probability that, at any time t, a system in the ensemble is found to be in one of the states
characterized by the energy value Er?1 We denote this probability by the symbol Pr . Clearly,
there are two ways in which the dependence of Pr on Er can be determined. One consists
of regarding the system as in equilibrium with a heat reservoir at a common temperature T
and studying the statistics of the energy exchange between the two. The other consists of
regarding the system as a member of a canonical ensemble (N ,V ,T), in which an energy
E is being shared by N identical systems constituting the ensemble, and studying the

1In what follows, the energy levels Er appear as purely mechanical quantities — independent of the temperature of
the system. For a treatment involving “temperature-dependent energy levels,” see Elcock and Landsberg (1957).

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00003-7
© 2011 Elsevier Ltd. All rights reserved.
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statistics of this sharing process. We expect that in the thermodynamic limit the final result
in either case would be the same. Once Pr is determined, the rest follows without difficulty.

3.1 Equilibrium between a system and a heat
reservoir

We consider the given system A, immersed in a very large heat reservoir A′; see Figure 3.1.
On attaining a state of mutual equilibrium, the system and the reservoir would have a
common temperature, say T. Their energies, however, would be variable and, in principle,
could have, at any time t, values lying anywhere between 0 and E(0), where E(0) denotes
the energy of the composite system A(0)(≡ A+A′). If, at any particular instant of time, the
system A happens to be in a state characterized by the energy value Er , then the reservoir
would have an energy E′r , such that

Er +E′r = E(0) = const. (1)

Of course, since the reservoir is supposed to be much larger than the given system, any
practical value of Er would be a very small fraction of E(0); therefore, for all practical
purposes,

Er

E(0)
=

(
1−

E′r
E(0)

)
� 1. (2)

With the state of the system A having been specified, the reservoir A′ can still be in any
one of a large number of states compatible with the energy value E′r . Let the number of
these states be denoted by �′(E′r). The prime on the symbol � emphasizes the fact that
its functional form will depend on the nature of the reservoir; of course, the details of
this dependence are not going to be of any particular relevance to our final results. Now,
the larger the number of states available to the reservoir, the larger the probability of the
reservoir assuming that particular energy value E′r (and, hence, of the system A assum-
ing the corresponding energy value Er). Moreover, since the various possible states (with
a given energy value) are equally likely to occur, the relevant probability would be directly
proportional to this number; thus,

Pr ∝�
′(E′r)≡�

′(E(0)−Er). (3)

A9

(Er9;T )
A

(Er ;T )

FIGURE 3.1 A given system A immersed in a heat reservoir A′; in equilibrium, the two have a common
temperature T .
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In view of (2), we may carry out an expansion of (3) around the value E′r = E(0), that is,
around Er = 0. However, for reasons of convergence, it is essential to effect the expansion
of its logarithm instead:

ln�′(E′r)= ln�′(E(0))+
(
∂ ln�′

∂E′

)
E′=E(0)

(E′r −E(0))+ ·· ·

' const−β ′Er , (4)

where use has been made of formula (1.2.3), whereby(
∂ ln�
∂E

)
N ,V
≡ β; (5)

note that, in equilibrium, β ′ = β = 1/kT . From (3) and (4), we obtain the desired result:

Pr ∝ exp(−βEr). (6)

Normalizing (6), we get

Pr =
exp(−βEr)∑

r
exp(−βEr)

, (7)

where the summation in the denominator goes over all states accessible to the system A.
We note that our final result (7) bears no relation whatsoever to the physical nature of the
reservoir A′.

We now examine the same problem from the ensemble point of view.

3.2 A system in the canonical ensemble
We consider an ensemble of N identical systems (which may be labelled as 1,2, . . . ,N ),
sharing a total energy E ; let Er(r = 0,1,2, . . .) denote the energy eigenvalues of the systems.
If nr denotes the number of systems which, at any time t, have the energy value Er , then
the set of numbers {nr}must satisfy the obvious conditions∑

r

nr =N∑
r

nrEr = E =N U ,

 (1)

where U(= E/N ) denotes the average energy per system in the ensemble. Any set {nr}

that satisfies the restrictive conditions (1) represents a possible mode of distribution of the
total energy E among the N members of the ensemble. Furthermore, any such mode can
be realized in a number of ways, for we may effect a reshuffle among those members of
the ensemble for which the energy values are different and thereby obtain a state of the
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ensemble that is distinct from the original one. Denoting the number of different ways of
doing so by the symbol W {nr}, we have

W {nr} =
N !

n0!n1!n2! . . .
. (2)

In view of the fact that all possible states of the ensemble, which are compatible with con-
ditions (1), are equally likely to occur, the frequency with which the distribution set {nr}

may appear will be directly proportional to the number W {nr}. Accordingly, the “most
probable” mode of distribution will be the one for which the number W is a maximum.
We denote the corresponding distribution set by {n∗r }; clearly, the set {n∗r }must also satisfy
conditions (1). As will be seen in the sequel, the probability of appearance of other modes
of distribution, however little they may differ from the most probable mode, is extremely
low! Therefore, for all practical purposes, the most probable distribution set {n∗r } is the only
one we have to contend with.

However, unless this has been mathematically demonstrated, one must take into
account all possible modes of distribution, as characterized by the various distribution
sets {nr}, along with their respective weight factors W {nr}. Accordingly, the expectation
values, or mean values, 〈nr〉 of the numbers nr would be given by

〈nr〉 =

∑
{nr }

′nrW {nr}∑
{nr }

′W {nr}
, (3)

where the primed summations go over all distribution sets that conform to conditions (1).
In principle, the mean value 〈nr〉, as a fraction of the total number N , should be a natural
analog of the probability Pr evaluated in the preceding section. In practice, however, the
fraction n∗r/N also turns out to be the same.

We now proceed to derive expressions for the numbers n∗r and 〈nr〉, and to show that,
in the limit N →∞, they are identical.

The method of most probable values
Our aim here is to determine that distribution set which, while satisfying conditions (1),
maximizes the weight factor (2). For simplicity, we work with lnW instead:

lnW = ln(N !)−
∑

r

ln(nr !). (4)

Since, in the end, we propose to resort to the limit N →∞, the values of nr (which are
going to be of any practical significance) would also, in that limit, tend to infinity. It is,
therefore, justified to apply the Stirling formula, ln(n!)≈ n lnn−n, to (4) and write

lnW =N lnN −
∑

r

nr lnnr . (5)
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If we shift from the set {nr} to a slightly different set {nr + δnr}, then expression (5) would
change by an amount

δ(lnW )=−
∑

r

(lnnr + 1)δnr . (6)

Now, if the set {nr} is maximal, the variation δ(lnW ) should vanish. At the same time,
in view of the restrictive conditions (1), the variations δnr themselves must satisfy the
conditions ∑

r

δnr = 0∑
r

Erδnr = 0.

 (7)

The desired set {n∗r } is then determined by the method of Lagrange multipliers,2 by which
the condition determining this set becomes

∑
r

{−(lnn∗r + 1)−α−βEr}δnr = 0, (8)

where α and β are the Lagrangian undetermined multipliers that take care of the restrictive
conditions (7). In (8), the variations δnr become completely arbitrary; accordingly, the only
way to satisfy this condition is that all its coefficients must vanish identically, that is, for
all r,

lnn∗r =−(α+ 1)−βEr ,

which gives

n∗r = C exp(−βEr), (9)

where C is again an undetermined parameter.
To determine C and β, we subject (9) to conditions (1), with the result that

n∗r
N
=

exp(−βEr)∑
r

exp(−βEr)
, (10)

the parameter β being a solution of the equation

E

N
=U =

∑
r

Er exp(−βEr)∑
r

exp(−βEr)
. (11)

2For the method of Lagrange multipliers, see ter Haar and Wergeland (1966, Appendix C.1).
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Combining statistical considerations with thermodynamic ones, see Section 3.3, we can
show that the parameter β here is exactly the same as the one appearing in Section 3.1,
that is, β = 1/kT .

The method of mean values
Here we attempt to evaluate expression (3) for 〈nr〉, taking into account the weight factors
(2) and the restrictive conditions (1). To do this, we replace (2) by

W̃ {nr} =
N !ωn0

0 ω
n1
1 ω

n2
2 . . .

n0!n1!n2! . . .
, (12)

with the understanding that in the end all ωr will be set equal to unity, and introduce a
function

0(N ,U)=
∑
{nr }

′

W̃ {nr}, (13)

where the primed summation, as before, goes over all distribution sets that conform to
conditions (1). Expression (3) can then be written as

〈nr〉 = ωr
∂

∂ωr
(ln0)

∣∣∣∣
all ωr=1

. (14)

Thus, all we need to know here is the dependence of the quantity ln0 on the parameters
ωr . Now,

0(N ,U)=N !
∑
{nr }

′

(
ω

n0
0

n0!
·
ω

n1
1

n1!
·
ω

n2
2

n2!
· · ·

)
(15)

but the summation appearing here cannot be evaluated explicitly because it is restricted
to those sets only that conform to the pair of conditions (1). If our distribution sets
were restricted by the condition

∑
r nr =N alone, then the evaluation of (15) would have

been trivial; by the multinomial theorem, 0(N )would have been simply (ω0+ω1+ ·· ·)
N .

The added restriction
∑

r nrEr =N U , however, permits the inclusion of only a “limited”
number of terms in the sum — and that constitutes the real difficulty of the problem.
Nevertheless, we can still hope to make some progress because, from a physical point
of view, we do not require anything more than an asymptotic result — one that holds in
the limit N →∞. The method commonly used for this purpose is the one developed by
Darwin and Fowler (1922a,b, 1923), which itself makes use of the saddle-point method of
integration or the so-called method of steepest descent.

We construct a generating function G(N ,z) for the quantity 0(N ,U):

G(N ,z)=
∞∑

U=0

0(N ,U)zN U (16)
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which, in view of equation (15) and the second of the restrictive conditions (1), may be
written as

G(N ,z)=
∞∑

U=0

∑
{nr }

′ N !
n0!n1! . . .

(
ω0zE0

)n0
(
ω1zE1

)n1
. . .

 . (17)

It is easy to see that the summation over doubly restricted sets {nr}, followed by a summa-
tion over all possible values of U , is equivalent to a summation over singly restricted sets
{nr}, namely the ones that satisfy only one condition:

∑
r nr =N . Expression (17) can be

evaluated with the help of the multinomial theorem, with the result

G(N ,z)=
(
ω0zE0 +ω1zE1 + ·· ·

)N

= [ f (z)]N , say. (18)

Now, if we suppose that the Er (and hence the total energy value E =N U) are all integers,
then, by (16), the quantity 0(N ,U) is simply the coefficient of zN U in the expansion of the
function G(N ,z) as a power series in z. It can, therefore, be evaluated by the method of
residues in the complex z-plane.

To make this plan work, we assume to have chosen, right at the outset, a unit of energy
so small that, to any desired degree of accuracy, we can regard the energies Er (and the pre-
scribed total energy N U) as integral multiples of this unit. In terms of this unit, any energy
value we come across will be an integer. We further assume, without loss of generality, that
the sequence E0,E1, . . . is a nondecreasing sequence, with no common divisor;3 also, for the
sake of simplicity, we assume that E0 = 0.4 The solution now is

0(N ,U)=
1

2π i

∮
[ f (z)]N

zN U+1
dz, (19)

where the integration is carried along any closed contour around the origin; of course, we
must stay within the circle of convergence of the function f (z), so that a need for analytic
continuation does not arise.

First of all, we examine the behavior of the integrand as we proceed from the origin
along the real positive axis, remembering that all our ωr are virtually equal to unity and
that 0= E0 ≤ E1 ≤ E2 · · · . We find that the factor [ f (z)]N starts from the value 1 at z = 0,
increases monotonically and tends to infinity as z approaches the circle of convergence of
f (z), wherever that may be. The factor z−(N U+1), on the other hand, starts from a positive,
infinite value at z = 0 and decreases monotonically as z increases. Moreover, the relative
rate of increase of the factor [ f (z)]N itself increases monotonically while the relative rate

3Actually, this is not a serious restriction at all, for a common divisor, if any, can be removed by selecting the unit of
energy correspondingly larger.

4This too is not serious, for by doing so we are merely shifting the zero of the energy scale; the mean energy U then
becomes U −E0, but we can agree to call it U again.
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of decrease of the factor z−(N U+1) decreases monotonically. Under these circumstances,
the integrand must exhibit a minimum (and no other extremum) at some value of z, say
x0, within the circle of convergence. And, in view of the largeness of the numbers N and
N U , this minimum may indeed be very steep!

Thus, at z = x0 the first derivative of the integrand must vanish, while the second
derivative must be positive and, hopefully, very large. Accordingly, if we proceed through
the point z = x0 in a direction orthogonal to the real axis, the integrand must exhibit an
equally steep maximum.5 Thus, in the complex z-plane, as we move along the real axis
our integrand shows a minimum at z = x0, whereas if we move along a path parallel to
the imaginary axis but passing through the point z = x0, the integrand shows a maximum
there. It is natural to call the point x0 a saddle point; see Figure 3.2. For the contour of
integration we choose a circle, with center at z = 0 and radius equal to x0, hoping that on
integration along this contour only the immediate neighborhood of the sharp maximum
at the point x0 will make the most dominant contribution to the value of the integral.6

To carry out the integration we first locate the point x0. For this we write our integrand
as

[ f (z)]N

zN U+1
= exp[N g(z)], (20)

where

g(z)= ln f (z)−
(

U +
1
N

)
lnz, (21)

Saddle
point

Re z0

Im
 z

Contour of integration

x0

 exp{   g(z)} 

FIGURE 3.2 The saddle point.

5This can be seen by noting that (i) an analytic function must possess a unique derivative everywhere (so, in our case,
it must be zero, irrespective of the direction in which we pass through the point x0), and (ii) by the Cauchy–Riemann
conditions of analyticity, the second derivative of the function with respect to y must be equal and opposite to the second
derivative with respect to x.

6It is indeed true that, for large N , the contribution from the rest of the circle is negligible. The intuitive reason for this
is that the terms (ωr zEr ), which constitute the function f (z), “reinforce” one another only at the point z = x0; elsewhere,
there is bound to be disagreement among their phases, so that at all other points along the circle, |f (z)|< f (x0). Now, the
factor that actually governs the relative contributions is [|f (z)|/f (x0)]N ; for N � 1, this will clearly be negligible. For a
rigorous demonstration of this point, see Schrödinger (1960, pp. 31–33).
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while

f (z)=
∑

r

ωrzEr . (22)

The number x0 is then determined by the equation

g ′(x0)=
f ′(x0)

f (x0)
−

N U + 1
N x0

= 0, (23)

which, in view of the fact that N U � 1, can be written as

U ≈ x0
f ′(x0)

f (x0)
=

∑
r
ωrErxEr

0∑
r
ωrxEr

0

. (24)

We further have

g ′′(x0)=

(
f ′′(x0)

f (x0)
−

[ f ′(x0)]2

[ f (x0)]2

)
+

N U + 1

N x2
0

≈
f ′′(x0)

f (x0)
−

U2
−U

x2
0

. (25)

It will be noted here that, in the limit N →∞ and E(≡N U)→∞, with U staying constant,
the number x0 and the quantity g ′′(x0) become independent of N .

Expanding g(z) about the point z = x0, along the direction of integration, that is, along
the line z = x0+ iy, we have

g(z)= g(x0)−
1
2

g ′′(x0)y
2
+ ·· · ;

accordingly, the integrand (20) might be approximated as

[ f (x0)]N

xN U+1
0

exp
[
−

N

2
g ′′(x0)y

2
]

. (26)

Equation (19) then gives

0(N ,U)'
1

2π i
[ f (x0)]N

xN U+1
0

∞∫
−∞

exp
[
−

N

2
g ′′(x0)y

2
]

i dy

=
[ f (x0)]N

xN U+1
0

·
1

{2πN g ′′(x0)}
1/2

, (27)

which gives

1
N

ln0(N ,U)= {ln f (x0)−U lnx0}−
1
N

lnx0−
1

2N
ln{2πN g ′′(x0)}. (28)
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In the limit N →∞ (with U staying constant), the last two terms in this expression tend
to zero, with the result

1
N

ln0(N ,U)= ln f (x0)−U lnx0. (29)

Substituting for f (x0) and introducing a new variable β, defined by the relationship

x0 ≡ exp(−β), (30)

we get

1
N

ln0(N ,U)= ln

{∑
r

ωr exp(−βEr)

}
+βU . (31)

The expectation value of the number nr then follows from (14) and (31):

〈nr〉

N
=

 ωr exp(−βEr)∑
r
ωr exp(−βEr)

+

−
∑
r
ωrEr exp(−βEr)∑

r
ωr exp(−βEr)

+U

ωr
∂β

∂ωr


all ωr=1

. (32)

The term inside the curly brackets vanishes identically because of (24) and (30). It has been
included here to emphasize the fact that, for a fixed value of U , the number β(≡− lnx0) in
fact depends on the choice of the ωr ; see (24). We will appreciate the importance of this
fact when we evaluate the mean square fluctuation in the number nr ; in the calculation of
the expectation value of nr , this does not really matter. We thus obtain

〈nr〉

N
=

exp(−βEr)∑
r

exp(−βEr)
, (33)

which is identical to expression (10) for n∗r/N . The physical significance of the parameter
β is also the same as in that expression, for it is determined by equation (24), with allωr = 1,
that is, by equation (11) which fits naturally with equation (33) because U is nothing but
the ensemble average of the variable Er :

U =
∑

r

ErPr =
1
N

∑
r

Er〈nr〉. (34)

Finally, we compute fluctuations in the values of the numbers nr . We have, first of all,

〈n2
r 〉 ≡

∑
{nr }

′n2
r W {nr}∑

{nr }

′W {nr}
=

1
0

(
ωr

∂

∂ωr

)(
ωr

∂

∂ωr

)
0

∣∣∣∣
all ωr=1

; (35)

see equations (12) to (14). It follows that

〈(1nr)
2
〉 ≡ 〈{nr −〈nr〉}

2
〉 = 〈n2

r 〉− 〈nr〉
2
=

(
ωr

∂

∂ωr

)(
ωr

∂

∂ωr

)
ln0

∣∣∣∣
all ωr=1

. (36)
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Substituting from (31) and making use of (32), we get

〈(1nr)
2
〉

N
= ωr

∂

∂ωr

 ωr exp(−βEr)∑
r
ωr exp(−βEr)

+

−
∑
r
ωrEr exp(−βEr)∑

r
ωr exp(−βEr)

+U

ωr
∂β

∂ωr


all ωr=1

. (37)

We note that the term in the curly brackets would not make any contribution because it
is identically zero, whatever the choice of the ωr . However, in the differentiation of the first
term, we must not forget to take into account the implicit dependence of β on the ωr ,
which arises from the fact that unless the ωr are set equal to unity the relation determining
β does contain ωr ; see equations (24) and (30), whereby

U =

∑
r
ωrEr exp(−βEr)∑

r
ωr exp(−βEr)

∣∣∣∣∣∣
all ωr=1

. (38)

A straightforward calculation gives

(
∂β

∂ωr

)
U

∣∣∣∣
all ωr=1

=
Er −U

〈E2
r 〉−U2

〈nr〉

N
. (39)

We can now evaluate (37), with the result

〈(1nr)
2
〉

N
=
〈nr〉

N
−

(
〈nr〉

N

)2

+
〈nr〉

N
(U −Er)

(
∂β

∂ωr

)
U

∣∣∣∣
all ωr=1

=
〈nr〉

N

[
1−
〈nr〉

N
−
〈nr〉

N

(Er −U)2

〈(Er −U)2〉

]
. (40)

For the relative fluctuation in nr , we get

〈(
1nr

〈nr〉

)2
〉
=

1
〈nr〉
−

1
N

{
1+

(Er −U)2

〈(Er −U)2〉

}
. (41)

As N →∞, 〈nr〉 also→∞, with the result that the relative fluctuations in nr tend to zero;
accordingly, the canonical distribution becomes infinitely sharp and with it the mean
value, the most probable value — in fact, any values of nr that appear with nonvanish-
ing probability — become essentially the same. And that is the reason why two wildly
different methods of obtaining the canonical distribution followed in this section have led
to identical results.
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3.3 Physical significance of the various statistical
quantities in the canonical ensemble

We start with the canonical distribution

Pr ≡
〈nr〉

N
=

exp(−βEr)∑
r

exp(−βEr)
, (1)

where β is determined by the equation

U =

∑
r

Er exp(−βEr)∑
r

exp(−βEr)
=−

∂

∂β
ln

{∑
r

exp(−βEr)

}
. (2)

We now look for a general recipe to extract information about the various macroscopic
properties of the given system on the basis of the foregoing statistical results. For this,
we recall certain thermodynamic relationships involving the Helmholtz free energy
A(=U −TS), namely

dA= dU −TdS− SdT =−SdT −PdV +µdN , (3)

S=−
(
∂A
∂T

)
N ,V

, P =−
(
∂A
∂V

)
N ,T

, µ=

(
∂A
∂N

)
V ,T

, (4)

and

U = A+TS= A−T
(
∂A
∂T

)
N ,V
=−T 2

[
∂

∂T

(
A
T

)]
N ,V
=

[
∂(A/T)
∂(1/T)

]
N ,V

, (5)

where the various symbols have their usual meanings. Comparing (5) with (2), we infer that
there exists a close correspondence between the quantities entering through the statistical
treatment and the ones coming from thermodynamics, namely

β =
1

kT
, ln

{∑
r

exp(−βEr)

}
=−

A
kT

, (6)

where k is a universal constant yet to be determined; soon we shall see that k is indeed the
Boltzmann constant.

The equations in (6) constitute the most fundamental result of the canonical ensemble
theory. Customarily, we write it in the form

A(N ,V ,T)=−kT lnQN (V ,T), (7)

where

QN (V ,T)=
∑

r

exp(−Er/kT). (8)
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The quantity QN (V ,T) is referred to as the partition function of the system; sometimes it
is also called the “sum-over-states” (German: Zustandssumme). The dependence of Q on
T is quite obvious. The dependence on N and V comes through the energy eigenvalues
Er ; in fact, any other parameters that might govern the values Er should also appear in the
argument of Q. Moreover, for the quantity A(N ,V ,T) to be an extensive property of the
system, lnQ must also be an extensive quantity.

Once the Helmholtz free energy is known, the rest of the thermodynamic quantities
follow straightforwardly. While the entropy, the pressure and the chemical potential are
obtained from formulae (4), the specific heat at constant volume follows from

CV =

(
∂U
∂T

)
N ,V
=−T

(
∂2A

∂T 2

)
N ,V

(9)

and the Gibbs free energy from

G = A+PV = A−V
(
∂A
∂V

)
N ,T
=N

(
∂A
∂N

)
V ,T
=Nµ; (10)

see Problem 3.5.
At this stage it appears worthwhile to make a few remarks on the foregoing results. First

of all, we note from equations (4) and (6) that the pressure P is given by

P =−

∑
r

∂Er
∂V exp(−βEr)∑

r
exp(−βEr)

, (11)

so that

PdV =−
∑

r

PrdEr =−dU . (12)

The quantity on the right side of this equation is clearly the change in the average energy
of a system (in the ensemble) during a process that alters the energy levels Er , leaving the
probabilities Pr unchanged. The left side then tells us that the volume change dV provides
an example of such a process, and the pressure P is the “force” accompanying that process.
The quantity P, which was introduced here through the thermodynamic relationship (3),
thus acquires a mechanical meaning as well.

The entropy of the system is determined as follows. Since Pr =Q−1 exp(−βEr),

〈lnPr〉 = − lnQ−β〈Er〉 = β(A−U)=−S/k,

with the result that

S=−k〈lnPr〉 = −k
∑

r

Pr lnPr . (13)
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This is an extremely interesting relationship, for it shows that the entropy of a physical sys-
tem is solely and completely determined by the probability values Pr (of the system being
in different dynamical states accessible to it)!

From the very look of it, equation (13) appears to be of fundamental importance;
indeed, it reveals a number of interesting conclusions. One of these relates to a system
in its ground state (T = 0K). If the ground state is unique, then the system is sure to be
found in this particular state and in no other; consequently, Pr is equal to 1 for this state
and 0 for all others. Equation (13) then tells us that the entropy of the system is precisely
zero, which is essentially the content of the Nernst heat theorem or the third law of ther-
modynamics.7 We also infer that vanishing entropy and perfect statistical order (which
implies complete predictability about the system) go together. As the number of acces-
sible states increases, more and more of the Pr become nonzero; the entropy of the system
thereby increases. As the number of states becomes exceedingly large, most of the P-
values become exceedingly small (and their logarithms assume large, negative values); the
net result is that the entropy becomes exceedingly large. Thus, the largeness of entropy
and the high degree of statistical disorder (or unpredictability) in the system also go
hand in hand.

It is because of this fundamental connection between entropy on one hand and lack of
information on the other that equation (13) became the starting point of the pioneering
work of Shannon (1948, 1949) in the development of the theory of communication.

It may be pointed out that formula (13) applies in the microcanonical ensemble as well.
There, for each member system of the ensemble, we have a group of � states, all equally
likely to occur. The value of Pr is, then, 1/� for each of these states and 0 for all others.
Consequently,

S=−k
�∑

r=1

{
1
�

ln
(

1
�

)}
= k ln�, (14)

which is precisely the central result in the microcanonical ensemble theory; see equa-
tion (1.2.6) or (2.3.6).

3.4 Alternative expressions for the partition function
In most physical cases the energy levels accessible to a system are degenerate, that is, one
has a group of states, gi in number, all belonging to the same energy value Ei. In such cases
it is more useful to write the partition function (3.3.8) as

QN (V ,T)=
∑

i

gi exp(−βEi); (1)

7Of course, if the ground state of the system is degenerate (with a multiplicity �0), then the ground-state entropy is
nonzero and is given by the expression k ln�0; see equation (14).
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the corresponding expression for Pi, the probability that the system be in a state with
energy Ei, would be

Pi =
gi exp(−βEi)∑

i
gi exp(−βEi)

. (2)

Clearly, the gi states with a common energy Ei are all equally likely to occur. As a result,
the probability of a system having energy Ei becomes proportional to the multiplicity gi of
this level; gi thus plays the role of a “weight factor” for the level Ei. The actual probability is
then determined by the weight factor gi as well as by the Boltzmann factor exp(−βEi) of the
level, as we have in (2). The basic relations established in the preceding section, however,
remain unaffected.

Now, in view of the largeness of the number of particles constituting a given system and
the largeness of the volume to which these particles are confined, the consecutive energy
values Ei of the system are, in general, very close to one another. Accordingly, there lie,
within any reasonable interval of energy (E,E+dE), a very large number of energy levels.
One may then regard E as a continuous variable and write P(E)dE for the probability that
the given system, as a member of the canonical ensemble, may have its energy in the range
(E,E+dE). Clearly, this probability will be given by the product of the relevant single-state
probability and the number of energy states lying in the specified range. Denoting the
latter by g(E)dE, where g(E) denotes the density of states around the energy value E, we
have

P(E)dE ∝ exp(−βE)g(E)dE (3)

which, on normalization, becomes

P(E)dE =
exp(−βE)g(E)dE
∞∫
0

exp(−βE)g(E)dE
. (4)

The denominator here is yet another expression for the partition function of the system:

QN (V ,T)=

∞∫
0

e−βE g(E)dE. (5)

The expression for 〈 f 〉, the expectation value of a physical quantity f , may now be
written as

〈 f 〉 ≡
∑

i

fiPi =

∑
i

f (Ei)gie−βEi∑
i

gie−βEi
→

∞∫
0

f (E)e−βE g(E)dE

∞∫
0

e−βE g(E)dE
. (6)
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Before proceeding further, we take a closer look at equation (5) and note that, with
β > 0, the partition function Q(β) is just the Laplace transform of the density of states g(E).
We may, therefore, write g(E) as the inverse Laplace transform of Q(β):

g(E)=
1

2π i

β ′+i∞∫
β ′−i∞

eβE Q(β)dβ (β ′ > 0) (7)

=
1

2π

∞∫
−∞

e(β
′
+iβ ′′)E Q(β ′+ iβ ′′)dβ ′′, (8)

where β is now treated as a complex variable, β ′+ iβ ′′, while the path of integration
runs parallel to, and to the right of, the imaginary axis, that is, along the straight line
Re β = β ′ > 0. Of course, the path may be continuously deformed so long as the integral
converges.

3.5 The classical systems
The theory developed in the preceding sections is of very general applicability. It applies to
systems in which quantum-mechanical effects are important as well as to those that can
be treated classically. In the latter case, our formalism may be written in the language of the
phase space; as a result, the summations over quantum states get replaced by integrations
over phase space.

We recall the concepts developed in Sections 2.1 and 2.2, especially formula (2.1.3) for
the ensemble average 〈 f 〉 of a physical quantity f (q,p), namely

〈 f 〉 =

∫
f (q,p)ρ(q,p)d3N q d3N p∫
ρ(q,p)d3N q d3N p

, (1)

where ρ(q,p) denotes the density of the representative points (of the systems) in the phase
space; we have omitted here the explicit dependence of the function ρ on time t because
we are interested in the study of equilibrium situations only. Evidently, the function ρ(q,p)
is a measure of the probability of finding a representative point in the vicinity of the phase
point (q,p), which in turn depends on the corresponding value H(q,p) of the Hamiltonian
of the system. In the canonical ensemble,

ρ(q,p)∝ exp{−βH(q,p)}; (2)

compare to equation (3.1.6). The expression for 〈 f 〉 then takes the form

〈 f 〉 =

∫
f (q,p)exp(−βH)dω∫

exp(−βH)dω
, (3)
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where dω(≡ d3N q d3N p) denotes a volume element of the phase space. The denomina-
tor of this expression is directly related to the partition function of the system. However,
to write the precise expression for the latter, we must take into account the relationship
between a volume element in the phase space and the corresponding number of distinct
quantum states of the system. This relationship was established in Sections 2.4 and 2.5,
whereby an element of volume dω in the phase space corresponds to

dω

N !h3N
(4)

distinct quantum states of the system.8 The appropriate expression for the partition
function would, therefore, be

QN (V ,T)=
1

N !h3N

∫
e−βH(q,p)dω; (5)

it is understood that the integration in (5) goes over the whole of the phase space.
As our first application of this formulation, we consider the example of an ideal gas.

Here, we have a system of N identical molecules, assumed to be monatomic (so there are
no internal degrees of motion to be considered), confined to a space of volume V and in
equilibrium at temperature T . Since there are no intermolecular interactions to be taken
into account, the energy of the system is wholly kinetic:

H(q,p)=
N∑

i=1

(p2
i /2m). (6)

The partition function of the system would then be

QN (V ,T )=
1

N !h3N

∫
e−(β/2m)6ip2

i

N∏
i=1

(d3qid
3pi). (7)

Integrations over the space coordinates are rather trivial; they yield a factor of V N . Integra-
tions over the momentum coordinates are also quite easy, once we note that integral (7) is
simply a product of N identical integrals. Thus, we get

QN (V ,T)=
V N

N !h3N

 ∞∫
0

e−p2/2mkT
(

4πp2dp
)N

(8)

=
1

N !

[
V

h3
(2πmkT)3/2

]N

; (9)

8Ample justification has already been given for the factor h3N . The factor N ! comes from the considerations of
Sections 1.5 and 1.6; it arises essentially from the fact that the particles constituting the given system are not only
identical but, in fact, indistinguishable. For a complete proof of this result, see Section 5.5.
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here, use has been made of equation (B.13a). The Helmholtz free energy is then given by,
using Stirling’s formula (B.29),

A(N ,V ,T)≡−kT lnQN (V ,T)=NkT

ln

N
V

(
h2

2πmkT

)3/2
− 1

. (10)

The foregoing result is identical to equation (1.5.8), which was obtained by following a very
different procedure. The simplicity of the present approach is, however, striking. Needless
to say, the complete thermodynamics of the ideal gas can be derived from equation (10) in
a straightforward manner. For instance,

µ≡

(
∂A
∂N

)
V ,T
= kT ln

N
V

(
h2

2πmkT

)3/2
, (11)

P ≡−
(
∂A
∂V

)
N ,T
=

NkT
V

(12)

and

S≡−
(
∂A
∂T

)
N ,V
=Nk

[
ln

{
V
N

(
2πmkT

h2

)3/2
}
+

5
2

]
. (13)

These results are identical to the ones derived previously, namely (1.5.7), (1.4.2), and
(1.5.1a), respectively. In fact, the identification of formula (12) with the ideal-gas law,
PV = nRT , establishes the identity of the (hitherto undetermined) constant k as the
Boltzmann constant; see equation (3.3.6). We further obtain

U ≡−
[
∂

∂β
(lnQ)

]
Er

≡−T 2
[
∂

∂T

(
A
T

)]
N ,V
≡ A+TS=

3
2

NkT , (14)

and so on.
At this stage we have an important remark to make. Looking at the form of equation (8)

and the manner in which it came about, we may write

QN (V ,T)=
1

N !
[Q1(V ,T)]N , (15)

where Q1(V ,T) may be regarded as the partition function of a single molecule in the sys-
tem. A little reflection will show that this result obtains essentially from the fact that the
basic constituents of our system are noninteracting (and hence the total energy of the
system is simply the sum of their individual energies). Clearly, the situation will not be
altered even if the molecules in the system had internal degrees of motion as well. What
is essentially required for equation (15) to be valid is the absence of interactions among
the basic constituents of the system (and, of course, the absence of quantum-mechanical
correlations).
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Going back to the ideal gas, we could as well have started with the density of states g(E).
From equation (1.4.17), and in view of the Gibbs correction factor, we have

g(E)=
∂6

∂E
≈

1
N !

(
V

h3

)N
(2πm)3N/2

{(3N/2)− 1}!
E(3N/2)−1. (16)

Substituting this into equation (3.4.5), and noting that the integral involved is equal to
{(3N/2)− 1}!/β3N/2, we obtain

QN (β)=
1

N !

(
V

h3

)N (2πm
β

)3N/2

, (17)

which is identical to (9). It may also be noted that if one starts with the single-particle
density of states (2.4.7), namely

a(ε)≈
2πV

h3
(2m)3/2ε1/2, (18)

computes the single-particle partition function,

Q1(β)=

∞∫
0

e−βεa(ε)dε =
V

h3

(
2πm
β

)3/2

, (19)

and then makes use of formula (15), one would arrive at the same result for QN (V ,T).
Lastly, we consider the question of determining the density of states, g(E), from

the expression for the partition function, Q(β) — assuming that the latter is already
known; indeed, expression (9) for Q(β) was derived without making use of any knowledge
regarding the function g(E). According to equation (3.4.7) and (9), we have

g(E)=
V N

N !

(
2πm

h2

)3N/2 1
2π i

β ′+i∞∫
β ′−i∞

eβE

β3N/2
dβ (β ′ > 0). (20)

Noting that, for all positive n,

1
2π i

s′+i∞∫
s′−i∞

esx

sn+1
ds=


xn

n! for x ≥ 0

0 for x ≤ 0,
(21)9

equation (20) becomes

g(E)=


V N

N !

(
2πm

h2

)3N/2 E(3N/2)−1

{(3N/2)− 1}!
for E ≥ 0

0 for E ≤ 0,
(22)

9For the details of this evaluation, see Kubo (1965, pp. 165–168).
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which is indeed the correct result for the density of states of an ideal gas; compare to
equation (16). The foregoing derivation may not appear particularly valuable because in
the present case we already knew the expression for g(E). However, cases do arise where
the evaluation of the partition function of a given system and the consequent evaluation of
its density of states turn out to be quite simple, whereas a direct evaluation of the density
of states from first principles is rather involved. In such cases, the method given here can
indeed be useful; see, for example, Problem 3.15 in comparison with Problems 1.7 and 2.8.

3.6 Energy fluctuations in the canonical ensemble:
correspondence with the microcanonical
ensemble

In the canonical ensemble, a system can have energy anywhere between zero and infinity.
On the other hand, the energy of a system in the microcanonical ensemble is restricted
to a very narrow range. How, then, can we assert that the thermodynamic properties of a
system derived through the formalism of the canonical ensemble would be the same as
the ones derived through the formalism of the microcanonical ensemble? Of course, we
do expect that the two formalisms yield identical results, for otherwise our whole scheme
would be marred by internal inconsistency. And, indeed, in the case of an ideal classical
gas the results obtained by following one approach were precisely the same as the ones
obtained by following the other approach. What, then, is the underlying reason for this
equivalence?

The answer to this question is obtained by examining the extent of the range over which
the energies of the systems in the canonical ensemble have a significant probability to
spread; that will tell us the extent to which the canonical ensemble really differs from the
microcanonical one. To explore this point, we write down the expression for the mean
energy

U ≡ 〈E〉 =

∑
r

Er exp(−βEr)∑
r

exp(−βEr)
(1)

and differentiate it with respect to the parameter β, holding the energy values Er constant.
We obtain

∂U
∂β
=−

∑
r

E2
r exp(−βEr)∑

r
exp(−βEr)

+

[∑
r

Er exp(−βEr)

]2

[∑
r

exp(−βEr)

]2

=−〈E2
〉+ 〈E〉2, (2)

from which it follows that

〈(1E)2〉 ≡ 〈E2
〉− 〈E〉2 =−

(
∂U
∂β

)
= kT 2

(
∂U
∂T

)
= kT 2CV . (3)
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Note that we have here the specific heat at constant volume, because the partial differen-
tiation in (2) was carried out with the Er kept constant! For the relative root-mean-square
fluctuation in E, equation (3) gives

√
[〈(1E)2〉]
〈E〉

=

√
(kT 2CV )

U
, (4)

which is O(N−1/2), N being the number of particles in the system. Consequently, for large
N (which is true for every statistical system) the relative r.m.s. fluctuation in the values of E
is quite negligible! Thus, for all practical purposes, a system in the canonical ensemble has
an energy equal to, or almost equal to, the mean energy U ; the situation in this ensemble
is, therefore, practically the same as in the microcanonical ensemble. That explains why
the two ensembles lead to practically identical results.

For further understanding of the situation, we consider the manner in which energy is
distributed among the various members of the (canonical) ensemble. To do this, we treat
E as a continuous variable and start with expression (3.4.3), namely

P(E)dE ∝ exp(−βE)g(E)dE. (3.4.3)

The probability density P(E) is given by the product of two factors: (i) the Boltzmann factor,
which monotonically decreases with E, and (ii) the density of states, which monotonically
increases with E. The product, therefore, has an extremum at some value of E, say E∗.10

The value E∗ is determined by the condition

∂

∂E
{e−βE g(E)}

∣∣∣∣
E=E∗

= 0,

that is, by

∂ lng(E)
∂E

∣∣∣∣
E=E∗

= β. (5)

Recalling that

S= k lng and
(
∂S(E)
∂E

)
E=U
=

1
T
= kβ,

the foregoing condition implies that

E∗ =U . (6)

This is a very interesting result, for it shows that, irrespective of the physical nature of
the given system, the most probable value of its energy is identical to its mean value.
Accordingly, if it is advantageous, we may use one instead of the other.

10Subsequently we shall see that this extremum is actually a maximum — and an extremely sharp one at that.
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We now expand the logarithm of the probability density P(E) around the value E∗ ≈U ;
we get

ln
[

e−βE g(E)
]
=

(
−βU +

S
k

)
+

1
2
∂2

∂E2
ln
{

e−βE g(E)
}∣∣∣∣∣

E=U

(E−U)2+ ·· ·

= −β(U −TS)−
1

2kT 2CV
(E−U)2+ ·· · , (7)

from which we obtain

P(E)∝ e−βE g(E)' e−β(U−TS) exp

{
−
(E−U)2

2kT 2CV

}
. (8)

This is a Gaussian distribution in E, with mean value U and dispersion
√
(kT 2CV ); compare

with equation (3). In terms of the reduced variable E/U , the distribution is again Gaussian,
with mean value unity and dispersion

√
(kT 2CV )/U {which is O(N−1/2)}; thus, for N � 1,

we have an extremely sharp distribution which, as N→∞, approaches a delta-function!
It would be instructive here to consider once again the case of a classical ideal gas.

Here, g(E) is proportional to E(3N/2−1) and hence increases very fast with E; the factor
e−βE , of course, decreases with E. The product g(E)exp(−βE) exhibits a maximum at
E∗ = (3N/2− 1)β−1, which is practically the same as the mean value U = (3N/2)β−1. For
values of E significantly different from E∗, the product essentially vanishes (for smaller val-
ues of E, due to the relative paucity of the available energy states; for larger values of E, due
to the relative depletion caused by the Boltzmann factor). The overall picture is shown in
Figure 3.3 where we have displayed the actual behavior of these functions in the special
case N = 10. The most probable value of E is now 14

15 of the mean value; so, the distribution
is somewhat asymmetrical. The effective width 1 can be readily calculated from (3) and
turns out to be (2/3N)1/2U , which, for N = 10, is about a quarter of U . We can see that,
as N becomes large, both E∗ and U increase (essentially linearly with N), the ratio E∗/U
approaches unity and the distribution tends to become symmetrical about E∗. At the same
time, the width 1 increases (but only as N1/2); considered in the relative sense, it tends to
vanish (as N−1/2).

We finally look at the partition function QN (V ,T), as given by equation (3.4.5), with its
integrand replaced by (8). We have

QN (V ,T)' e−β(U−TS)

∞∫
0

e−(E−U)2/2kT2CV dE

' e−β(U−TS)√(2kT 2CV )

∞∫
−∞

e−x2
dx

= e−β(U−TS)√(2πkT 2CV ),



3.7 Two theorems — the “equipartition” and the “virial” 61

g (E )
0.5

0
E *U

E

1.0

g
(E

)e
–�

E

� �

e–�E

FIGURE 3.3 The actual behavior of the functions g(E), e−βE , and g(E)e−βE for an ideal gas, with N = 10. The
numerical values of the functions have been expressed as fractions of their respective values at E =U .

so that

−kT lnQN (V ,T)≡ A' (U −TS)−
1
2

kT ln(2πkT 2CV ). (9)

The last term, being O(lnN), is negligible in comparison with the other terms, which are
all O(N). Hence,

A≈U −TS. (10)

Note that the quantity A in this formula has come through the formalism of the
canonical ensemble, while the quantity S has come through a definition belonging to
the microcanonical ensemble. The fact that we finally end up with a consistent thermo-
dynamic relationship establishes beyond doubt that these two approaches are, for all
practical purposes, identical.

3.7 Two theorems — the “equipartition”
and the “virial”

To derive these theorems, we determine the expectation value of the quantity
xi(∂H/∂xj), where H(q,p) is the Hamiltonian of the system (assumed classical) while xi
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and xj are any two of the 6N generalized coordinates (q,p). In the canonical ensemble,

〈
xi
∂H
∂xj

〉
=

∫ (
xi
∂H
∂xj

)
e−βH dω∫

e−βH dω

(
dω = d3N q d3N p

)
. (1)

Let us consider the integral in the numerator. Integrating over xj by parts, it becomes

∫ [
−

1
β

xie
−βH

∣∣∣∣(xj)2

(xj)1

+
1
β

∫ (
∂xi

∂xj

)
e−βH dxj

]
dω( j);

here, (xj)1 and (xj)2 are the “extreme” values of the coordinate xj, while dω( j) denotes “dω
devoid of dxj.” The integrated part here vanishes because whenever any of the coordinates
takes an “extreme” value the Hamiltonian of the system becomes infinite.11 In the integral
that remains, the factor ∂xi/∂xj, being equal to δij, comes out of the integral sign and we
are left with

1
β
δij

∫
e−βH dω.

Substituting this into (1), we arrive at the remarkable result:〈
xi
∂H
∂xj

〉
= δijkT , (2)

which is independent of the precise form of the function H .
In the special case xi = xj = pi, equation (2) takes the form

〈
pi
∂H
∂pi

〉
≡ 〈piq̇i〉 = kT , (3)

while for xi = xj = qi, it becomes

〈
qi
∂H
∂qi

〉
≡−〈qiṗi〉 = kT . (4)

Adding over all i, from i= 1 to 3N , we obtain〈∑
i

pi
∂H
∂pi

〉
≡

〈∑
i

piq̇i

〉
= 3NkT (5)

11For instance, if xj is a space coordinate, then its extreme values will correspond to “locations at the walls of the con-
tainer”; accordingly, the potential energy of the system would become infinite. If, on the other hand, xj is a momentum
coordinate, then its extreme values will themselves be±∞, in which case the kinetic energy of the system would become
infinite.
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and 〈∑
i

qi
∂H
∂qi

〉
≡−

〈∑
i

qiṗi

〉
= 3NkT . (6)

Now, in many physical situations the Hamiltonian of the system happens to be a quadratic
function of its coordinates; so, through a canonical transformation, it can be brought into
the form

H =
∑

j

AjP
2
j +

∑
j

BjQ
2
j , (7)

where Pj and Qj are the transformed, canonically conjugate, coordinates while Aj and Bj

are certain constants of the problem. For such a system, we clearly have

∑
j

(
Pj
∂H
∂Pj
+Qj

∂H
∂Qj

)
= 2H ; (8)

accordingly, by equations (3) and (4),

〈H〉 =
1
2

fkT , (9)

where f is the number of nonvanishing coefficients in expression (7). We, therefore, con-
clude that each harmonic term in the (transformed) Hamiltonian makes a contribution
of 1

2 kT toward the internal energy of the system and, hence, a contribution of 1
2 k toward

the specific heat CV . This result embodies the classical theorem of equipartition of energy
(among the various degrees of freedom of the system). It may be mentioned here that,
for the distribution of kinetic energy alone, the equipartition theorem was first stated by
Boltzmann (1871).

In our subsequent study we shall find that the equipartition theorem as stated here is
not always valid; it applies only when the relevant degrees of freedom can be freely excited.
At a given temperature T , there may be certain degrees of freedom which, due to the insuf-
ficiency of the energy available, are more or less “frozen” due to quantum mechanical
effects. Such degrees of freedom do not make a significant contribution toward the inter-
nal energy of the system or toward its specific heat; see, for example, Sections 6.5, 7.4,
and 8.3. Of course, the higher the temperature of the system the better the validity of this
theorem.

We now consider the implications of formula (6). First of all, we note that this formula
embodies the so-called virial theorem of Clausius (1870) for the quantity 〈

∑
i qiṗi〉, which is

the expectation value of the sum of the products of the coordinates of the various particles
in the system and the respective forces acting on them; this quantity is generally referred to
as the virial of the system and is denoted by the symbol V . The virial theorem then states
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that

V =−3NkT . (10)

The relationship between the virial and other physical quantities of the system is best
understood by first looking at a classical gas of noninteracting particles. In this case, the
only forces that come into play are the ones arising from the walls of the container; these
forces can be designated by an external pressure P that acts on the system by virtue of
the fact that it is bounded by the walls of the container. Consequently, we have here a force
−P dS associated with an element of area dS of the walls; the negative sign appears because
the force is directed inward while the vector dS is directed outward. The virial of the gas is
then given by

V0 =

(∑
i

qiFi

)
0

=−P
∮
S

r ·dS, (11)12

where r is the position vector of a particle that happens to be in the (close) vicinity of
the surface element dS; accordingly, r may be considered to be the position vector of the
surface element itself. By the divergence theorem, equation (11) becomes

V0 =−P
∫
V

(div r)dV =−3PV . (12)

Comparing (12) with (10), we obtain the well-known result:

PV =NkT . (13)

The internal energy of the gas, which in this case is wholly kinetic, follows from the
equipartition theorem (9) and is equal to 3

2 NkT , 3N being the number of degrees of
freedom. Comparing this result with (10), we obtain the classical relationship

V =−2K , (14)

where K denotes the average kinetic energy of the system.
It is straightforward to apply this theorem to a system of particles interacting through

a two-body potential u(r). In the thermodynamic limit, the pressure of a d-dimensional
system depends only on the virial terms arising from the forces between pairs of particles:

P
nkT

= 1+
1

NdkT

〈∑
i<j

F(rij) · rij

〉
= 1−

1
NdkT

〈∑
i<j

∂u(rij)

∂rij
rij

〉
. (15)

12It will be noted that the summation over the various particles of the system, which appears in the definition of the
virial, has been replaced by an integration over the surface of the container, for the simple reason that no contribution
to the virial arises from the interior of the container.
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Equation (15) is called the virial equation of state. This equation can also be written in
terms of the pair correlation function, equation (10.7.11), and is also used in computer
simulations to determine the pressure of the system; see Problem 3.14, Section 10.7, and
Section 16.4.

3.8 A system of harmonic oscillators
We shall now examine a system of N , practically independent, harmonic oscillators. This
study will not only provide an interesting illustration of the canonical ensemble formu-
lation but will also serve as a basis for some of our subsequent studies in this text. Two
important problems in this line are (i) the theory of the black-body radiation (or the “sta-
tistical mechanics of photons”) and (ii) the theory of lattice vibrations (or the “statistical
mechanics of phonons”); see Sections 7.3 and 7.4 for details.

We start with the specialized situation when the oscillators can be treated classically.
The Hamiltonian of any one of them (assumed to be one-dimensional) is then given by

H(qi,pi)=
1
2

mω2q2
i +

1
2m

p2
i (i= 1, . . . ,N). (1)

For the single-oscillator partition function, we readily obtain

Q1(β)=

∞∫
−∞

∞∫
−∞

exp
{
−β

(
1
2

mω2q2
+

1
2m

p2
)}

dqdp
h

=
1
h

(
2π

βmω2

)1/2(2πm
β

)1/2

=
1

β~ω
=

kT
~ω

, (2)

where ~= h/2π . This represents a classical counting of the average number of accessible
microstates — that is, kT divided by the quantum harmonic oscillator energy spacing. The
partition function of the N-oscillator system would then be

QN (β)= [Q1(β)]
N
= (β~ω)−N

=

(
kT
~ω

)N

; (3)

note that in writing (3) we have assumed the oscillators to be distinguishable. This is so
because, as we shall see later, these oscillators are merely a representation of the energy
levels available in the system; they are not particles (or even “quasiparticles”). It is actu-
ally photons in one case and phonons in the other, which distribute themselves over the
various oscillator levels, that are indistinguishable!

The Helmholtz free energy of the system is now given by

A≡−kT lnQN =NkT ln
(

~ω
kT

)
, (4)
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whereby

µ= kT ln
(

~ω
kT

)
, (5)

P = 0, (6)

S=Nk
[

ln
(

kT
~ω

)
+ 1

]
, (7)

U =NkT , (8)

and

CP = CV =Nk. (9)

We note that the mean energy per oscillator is in complete agreement with the equiparti-
tion theorem, namely 2× 1

2 kT , for we have here two independent quadratic terms in the
single-oscillator Hamiltonian.

We may determine the density of states, g(E), of this system from expression (3) for its
partition function. We have, in view of (3.4.7),

g(E)=
1

(~ω)N
1

2π i

β ′+i∞∫
β ′−i∞

eβE

βN
dβ (β ′ > 0),

that is,

g(E)=


1

(~ω)N
EN−1

(N − 1)!
for E ≥ 0

0 for E ≤ 0.

(10)

To test the correctness of (10), we may calculate the entropy of the system with the help of
this formula. Taking N � 1 and making use of the Stirling approximation, we get

S(N ,E)= k lng(E)≈Nk
[

ln
(

E
N~ω

)
+ 1

]
, (11)

which gives for the temperature of the system

T =
(
∂S
∂E

)−1

N
=

E
Nk

. (12)

Eliminating E between these two relations, we obtain precisely our earlier result (7) for the
function S(N ,T).
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We now take up the quantum-mechanical situation, according to which the energy
eigenvalues of a one-dimensional harmonic oscillator are given by

εn =

(
n+

1
2

)
~ω; n= 0,1,2, . . . (13)

Accordingly, we have for the single-oscillator partition function

Q1(β)=

∞∑
n=0

e−β(n+1/2)~ω
=

exp
(
−

1
2β~ω

)
1− exp(−β~ω)

=

{
2sinh

(
1
2
β~ω

)}−1

. (14)

The N-oscillator partition function is then given by

QN (β)= [Q1(β)]
N
=

[
2sinh

(
1
2
β~ω

)]−N

= e−(N/2)β~ω
{1− e−β~ω

}
−N . (15)

For the Helmholtz free energy of the system, we get

A=NkT ln
[

2sinh
(

1
2
β~ω

)]
=N

[
1
2

~ω+ kT ln{1− e−β~ω
}

]
, (16)

whereby

µ= A/N , (17)

P = 0, (18)

S=Nk
[

1
2
β~ωcoth

(
1
2
β~ω

)
− ln

{
2sinh

(
1
2
β~ω

)}]
=Nk

[
β~ω

eβ~ω − 1
− ln{1− e−β~ω

}

]
, (19)

U =
1
2

N~ωcoth
(

1
2
β~ω

)
=N

[
1
2

~ω+
~ω

eβ~ω − 1

]
, (20)

and

CP = CV =Nk
(

1
2
β~ω

)2

cosech2
(

1
2
β~ω

)
=Nk(β~ω)2

eβ~ω

(eβ~ω − 1)2
. (21)

Formula (20) is especially significant, for it shows that the quantum-mechanical oscil-
lators do not obey the equipartition theorem. The mean energy per oscillator is different
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FIGURE 3.4 The mean energy 〈ε〉 of a simple harmonic oscillator as a function of temperature. 1, the Planck
oscillator; 2, the Schrödinger oscillator; and 3, the classical oscillator.

from the equipartition value kT ; actually, it is always greater than kT ; see curve 2 in
Figure 3.4. Only in the limit of high temperatures, where the thermal energy kT is much
larger than the energy quantum ~ω, does the mean energy per oscillator tend to the
equipartition value. It should be noted here that if the zero-point energy 1

2 ~ω were not
present, the limiting value of the mean energy would be (kT − 1

2 ~ω), and not kT — we
may call such an oscillator the Planck oscillator; see curve 1 in Figure 3.4. In passing, we
observe that the specific heat (21), which is the same for the Planck oscillator as for the
Schrödinger oscillator, is temperature-dependent; moreover, it is always less than, and at
high temperatures tends to, the classical value (9).

Indeed, for kT � ~ω, formulae (14) through (21) go over to their classical counterparts,
namely (2) through (9), respectively.

We shall now determine the density of states g(E) of the N-oscillator system from its
partition function (15). Carrying out the binomial expansion of this expression, we have

QN (β)=

∞∑
R=0

(
N +R− 1

R

)
e−β(

1
2 N~ω+R~ω). (22)

Comparing this with the formula

QN (β)=

∞∫
0

g(E)e−βE dE,

we conclude that

g(E)=
∞∑

R=0

(
N +R− 1

R

)
δ

(
E−

{
R+

1
2

N
}

~ω
)

, (23)
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where δ(x) denotes the Dirac delta function. Equation (23) implies that there are
(N +R− 1)!/R!(N − 1)! microstates available to the system when its energy E has the dis-
crete value (R+ 1

2 N)~ω, where R= 0,1,2, . . . , and that no microstate is available for other
values of E. This is hardly surprising, but it is instructive to look at this result from a slightly
different point of view.

We consider the following problem that arises naturally in the microcanonical ensem-
ble theory. Given an energy E for distribution among a set of N harmonic oscillators, each
of which can be in any one of the eigenstates (13), what is the total number of distinct ways
in which the process of distribution can be carried out? Now, in view of the form of the
eigenvalues εn, it makes sense to give away, right in the beginning, the zero-point energy
1
2 ~ω to each of the N oscillators and convert the rest of it into quanta (of energy ~ω). Let R
be the number of these quanta; then

R=
(

E−
1
2

N~ω
)/

~ω. (24)

Clearly, R must be an integer; by implication, E must be of the form (R+ 1
2 N)~ω. The prob-

lem then reduces to determining the number of distinct ways of allotting R quanta to N
oscillators, such that an oscillator may have 0 or 1 or 2 . . . quanta; in other words, we have
to determine the number of distinct ways of putting R indistinguishable balls into N dis-
tinguishable boxes, such that a box may receive 0 or 1 or 2. . . balls. A little reflection will
show that this is precisely the number of permutations that can be realized by shuffling R
balls, placed along a row, with (N − 1) partitioning lines (that divide the given space into N
boxes); see Figure 3.5. The answer clearly is

(R+N − 1)!
R!(N − 1)!

, (25)

which agrees with (23).
We can now determine the entropy of the system from the number (25). Since N � 1,

we have

S≈ k{ln(R+N)!− lnR!− lnN ! }

≈ k{(R+N) ln(R+N)−R lnR−N lnN}; (26)

FIGURE 3.5 Distributing 17 indistinguishable balls among 7 distinguishable boxes. The arrangement shown here
represents one of the 23!/17!6! distinct ways of carrying out the distribution.
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the number R is, of course, a measure of the energy E of the system; see (24). For the
temperature of the system, we obtain

1
T
=

(
∂S
∂E

)
N
=

(
∂S
∂R

)
N

1
~ω
=

k
~ω

ln
(

R+N
R

)
=

k
~ω

ln

(
E+ 1

2 N~ω
E− 1

2 N~ω

)
, (27)

so that

E
N
=

1
2

~ω
exp(~ω/kT)+ 1
exp(~ω/kT)− 1

, (28)

which is identical to (20). It can be further checked that, by eliminating R between (26) and
(27), we obtain precisely the formula (19) for S(N ,T). Thus, once again, we find that the
results obtained by following the microcanonical approach and the canonical approach
are the same in the thermodynamic limit.

Finally, we may consider the classical limit when E/N , the mean energy per oscillator,
is much larger than the energy quantum ~ω, that is, when R�N . The expression (25) may,
in that case, be replaced by

(R+N − 1)(R+N − 2) . . . (R+ 1)
(N − 1)!

≈
RN−1

(N − 1)!
, (25a)

with

R≈ E/~ω.

The corresponding expression for the entropy turns out to be

S≈ k{N ln(R/N)+N} ≈Nk
{

ln
(

E
N~ω

)
+ 1

}
, (26a)

which gives

1
T
=

(
∂S
∂E

)
N
≈

Nk
E

, (27a)

so that

E
N
≈ kT . (28a)

These results are identical to the ones derived in the classical limit earlier in this section.

3.9 The statistics of paramagnetism
Next, we study a system of N magnetic dipoles, each having a magnetic moment µ. In the
presence of an external magnetic field H , the dipoles will experience a torque tending to
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align them in the direction of the field. If there were nothing else to check this tendency,
the dipoles would align themselves precisely in this direction and we would achieve
a complete magnetization of the system. In reality, however, thermal agitation in the
system offers resistance to this tendency and, in equilibrium, we obtain only a partial
magnetization. Clearly, as T→ 0K, the thermal agitation becomes ineffective and the
system exhibits a complete orientation of the dipole moments, whatever the strength
of the applied field; at the other extreme, as T→∞, we approach a state of complete
randomization of the dipole moments, which implies a vanishing magnetization. At
intermediate temperatures, the situation is governed by the parameter (µH/kT).

The model adopted for this study consists of N identical, localized (and, hence, dis-
tinguishable), practically static, mutually noninteracting and freely orientable dipoles. We
consider first the case of classical dipoles that can be oriented in any direction relative to
the applied magnetic field. It is obvious that the only energy we need to consider here is
the potential energy of the dipoles that arises from the presence of the external field H and
is determined by the orientations of the dipoles with respect to the direction of the field:

E =
N∑

i=1

Ei =−

N∑
i=1

µi ·H =−µH
N∑

i=1

cosθi. (1)

The partition function of the system is then given by

QN (β)= [Q1(β)]
N , (2)

where

Q1(β)=
∑
θ

exp(βµH cosθ). (3)

The mean magnetic moment M of the system will obviously be in the direction of the field
H ; for its magnitude we shall have

Mz =N〈µcosθ〉 =N

∑
θ

µcosθ exp(βµH cosθ)∑
θ

exp(βµH cosθ)

=
N
β

∂

∂H
lnQ1(β)=−

(
∂A
∂H

)
T

. (4)

Thus, to determine the degree of magnetization in the system all we have to do is to
evaluate the single-dipole partition function (3).

First, we proceed classically (after Langevin, 1905a,b). Using (sinθdθdφ) as the elemen-
tal solid angle representing a small range of orientations of the dipole, we get

Q1(β)=

2π∫
0

π∫
0

eβµH cosθ sinθdθdφ = 4π
sinh(βµH)
βµH

, (5)
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so that

µz ≡
Mz

N
= µ

{
coth(βµH)−

1
βµH

}
= µL(βµH), (6)

where L(x) is the so-called Langevin function

L(x)= cothx−
1
x

; (7)

a plot of the Langevin function is shown in Figure 3.6. We note that the parameter βµH
denotes the strength of the (magnetic) potential energy µH compared to the (thermal)
kinetic energy kT .

If we have N0 dipoles per unit volume in the system, then the magnetization of the
system, namely the mean magnetic moment per unit volume, is given by

Mz0 =N0µz =N0µL(x) (x = βµH). (8)

For magnetic fields so strong (or temperatures so low) that the parameter x� 1, the
function L(x) is almost equal to 1; the system then acquires a state of magnetic saturation:

µz ' µ and Mz0 'N0µ. (9)

For temperatures so high (or magnetic fields so weak) that the parameter x� 1, the
function L(x)may be written as

x
3
−

x3

45
+ ·· · (10)

which, in the lowest approximation, gives

Mz0 '
N0µ

2

3kT
H . (11)
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x

L(
x)

FIGURE 3.6 The Langevin function L(x).
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The high-temperature isothermal susceptibility of the system is, therefore, given by

χ
T
= Lim

H→0

(
∂Mz0

∂H

)
T
'

N0µ
2

3kT
=

C
T

, say. (12)

Equation (12) is the Curie law of paramagnetism, the parameter C being the Curie constant
of the system. Figure 3.7 shows a plot of the susceptibility of a powdered sample of copper–
potassium sulphate hexahydrate as a function of T−1; the fact that the plot is linear and
passes almost through the origin vindicates the Curie law for this particular salt.

We shall now treat the problem of paramagnetism quantum-mechanically. The major
modification here arises from the fact that the magnetic dipole moment µ and its compo-
nent µz in the direction of the applied field cannot have arbitrary values. Quite generally,
we have a direct relationship between the magnetic moment µ of a given dipole and its
angular momentum l:

µ=
(

g
e

2mc

)
l, (13)

with

l2
= J( J + 1)~2; J =

1
2

,
3
2

,
5
2

, . . . or 0,1,2, . . . (14)

The quantity g(e/2mc) is the gyromagnetic ratio of the dipole while the number g is Lande’s
g-factor. If the net angular momentum of the dipole is due solely to electron spins, then

80

70

60

50

40

30

20

10

0 20 40 60 80

(�
·1

06 )

(103/T in K21)

FIGURE 3.7 χ versus 1/T plot for a powdered sample of copper–potassium sulphate hexahydrate (after Hupse,
1942).
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g = 2; on the other hand, if it is due solely to orbital motions, then g = 1. In general,
however, its origin is mixed; g is then given by the formula

g =
3
2
+

S(S+ 1)−L(L+ 1)
2J( J + 1)

, (15)

S and L being, respectively, the spin and the orbital quantum numbers of the dipole. Note
that there is no upper or lower bound on the values that g can have!

Combining (13) and (14), we can write

µ2
= g2µ2

B J( J + 1), (16)

where µB(= e~/2mc) is the Bohr magneton. The component µz of the magnetic moment
in the direction of the applied field is, on the other hand, given by

µz = gµBm, m=−J ,−J + 1, . . . , J − 1, J . (17)

Thus, a dipole whose magnetic moment µ conforms to expression (16) can have no other
orientations with respect to the applied field except the ones conforming to the values (17)
of the component µz; obviously, the number of allowed orientations, for a given value of
J , is (2J + 1). In view of this, the single-dipole partition function Q1(β) is now given by,
see (3),

Q1(β)=

J∑
m=−J

exp(βgµBmH). (18)

Introducing a parameter x, defined by

x = β(gµB J)H , (19)

equation (18) becomes

Q1(β)=

J∑
m=−J

emx/J
=

e−x
{e(2J+1)x/J

− 1}

ex/J − 1

=
e(2J+1)x/2J

− e−(2J+1)x/2J

ex/2J − e−x/2J

= sinh
{(

1+
1
2J

)
x
}/

sinh
{

1
2J

x
}

. (20)

The mean magnetic moment of the system is then given by, see equation (4),

Mz =Nµz =
N
β

∂

∂H
lnQ1(β)

=N(gµB J)
[(

1+
1
2J

)
coth

{(
1+

1
2J

)
x
}
−

1
2J

coth
{

1
2J

x
}]

. (21)
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Thus

µz = (gµBJ )BJ (x), (22)

where BJ (x) is the Brillouin function of order J :

BJ (x)=
(

1+
1
2J

)
coth

{(
1+

1
2J

)
x
}
−

1
2J

coth
{

1
2J

x
}

. (23)

In Figure 3.8 we have plotted the function BJ (x) for some typical values of the quantum
number J .

We shall now consider a few special cases. First of all, we note that for strong fields and
low temperatures (x� 1), the function BJ (x)' 1 for all J, which corresponds to a state of
magnetic saturation. On the other hand, for high temperatures and weak fields (x� 1), the
function BJ (x)may be written as

1
3
(1+ 1/J)x+ . . . , (24)

so that

µz '
(gµBJ)2

3kT

(
1+

1
J

)
H =

g2µ2
BJ( J + 1)

3kT
H . (25)

The Curie law, χ ∝ 1/T , is again obeyed; however, the Curie constant is now given by

CJ =
N0g2µ2

BJ( J + 1)

3k
=

N0µ
2

3k
; (26)

see equation (16). It is indeed interesting that the high-temperature results, (25) and (26),
directly involve the eigenvalues of the operator µ2.
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FIGURE 3.8 The Brillouin function BJ (x) for various values of J .
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We now look a little more closely at the dependence of the foregoing results on the
quantum number J . First of all, we consider the extreme case J→∞, with the understand-
ing that simultaneously g→ 0, such that the value ofµ stays constant. From equation (23),
we readily observe that, in this limit, the Brillouin function BJ (x) tends to become (i) inde-
pendent of J and (ii) identical to the Langevin function L(x). This is not surprising because,
in this limit, the number of allowed orientations for a magnetic dipole becomes infinitely
large, with the result that the problem essentially reduces to its classical counterpart
(where one must allow all possible orientations). At the other extreme, we have the case
J = 1

2 , which allows only two orientations. The results in this case are very different from
the ones for J � 1. We now have, with g = 2,

µz = µBB1/2(x)= µB tanhx. (27)

For x� 1, µz is very nearly equal to µB. For x� 1, however, µz ' µBx, which corresponds
to the Curie constant

C1/2 =
N0µ

2
B

k
. (28)

In Figure 3.9 we reproduce the experimental values of µz (in terms of µB) as a function
of the quantity H/T , for three paramagnetic salts; the corresponding theoretical plots,
namely the curves g JBJ (x), are also included in the figure. The agreement between theory
and experiment is indeed good. In passing, we note that, at a temperature of 1.3 K, a field
of about 50,000 gauss is sufficient to produce over 99 percent of saturation in these salts.
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FIGURE 3.9 Plots of µz/µB as a function of H/T . The solid curves represent the theoretical results, while the points
mark the experimental findings of Henry (1952). Curve I is for potassium chromium alum
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3.10 Thermodynamics of magnetic systems:
negative temperatures

For the purpose of this section, it will suffice to consider a system of dipoles with J = 1
2 .

Each dipole then has a choice of two orientations, the corresponding energies being−µBH
and+µBH ; let us call these energies−ε and+ε, respectively. The partition function of the
system is then given by

QN (β)=
(

eβε + e−βε
)N
= {2cosh(βε)}N ; (1)

compare to the general expression (3.9.20). Accordingly, the Helmholtz free energy of the
system is given by

A=−NkT ln{2cosh(ε/kT)}, (2)

from which

S=−
(
∂A
∂T

)
H
=Nk

[
ln
{

2cosh
( ε

kT

)}
−

ε

kT
tanh

( ε

kT

)]
, (3)

U = A+TS=−Nε tanh
( ε

kT

)
, (4)

M =−
(
∂A
∂H

)
T
=NµB tanh

( ε

kT

)
(5)

and, finally,

C =
(
∂U
∂T

)
H
=Nk

( ε

kT

)2
sech2

( ε

kT

)
. (6)

Equation (5) is essentially the same as (3.9.27); moreover, as expected, U =−MH .
The temperature dependence of the quantities S, U , M , and C is shown in Figures 3.10

through 3.13. We note that the entropy of the system is vanishingly small for kT � ε; it rises

1.0
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0
0 2 4 6

S
Nk

kT/´

FIGURE 3.10 The entropy of a system of magnetic dipoles (with J = 1
2 ) as a function of temperature.
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FIGURE 3.11 The energy of a system of magnetic dipoles (with J = 1
2 ) as a function of temperature.
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FIGURE 3.12 The magnetization of a system of magnetic dipoles (with J = 1
2 ) as a function of temperature.

rapidly when kT is of the order of ε and approaches the limiting value Nk ln2 for kT � ε.
This limiting value of S corresponds to the fact that at high temperatures the orientation
of the dipoles assumes a completely random character, with the result that the system
now has 2N equally likely microstates available to it. The energy of the system attains
its lowest value, −Nε, as T→ 0 K; this clearly corresponds to a state of magnetic satura-
tion and, hence, to a state of perfect order in the system. Toward high temperatures, the
energy tends to vanish,13 implying a purely random orientation of the dipoles and hence

13Note that in the present study we are completely disregarding the kinetic energy of the dipoles.
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FIGURE 3.13 The specific heat of a system of magnetic dipoles (with J = 1
2 ) as a function of temperature.

a complete loss of magnetic order. These features are re-emphasized in Figure 3.12, which
depicts the temperature dependence of the magnetization M . The specific heat of the sys-
tem is vanishingly small at low temperatures but, in view of the fact that the energy of the
system tends to a constant value as T→∞, the specific heat vanishes at high tempera-
tures as well. Somewhere around T = ε/k, it displays a maximum. Writing1 for the energy
difference between the two allowed states of the dipole, the formula for the specific heat
can be written as

C =Nk
(
1

kT

)2

e1/kT (1+ e1/kT )−2. (7)

A specific heat peak of this form is generally known as the Schottky anomaly; it is observed
in systems that have an excitation gap1 above the ground state.

Now, throughout our study so far we have considered only those cases for which T > 0.
For normal systems, this is indeed essential, for otherwise we have to contend with canon-
ical distributions that blow up as the energy of the system is indefinitely increased. If,
however, the energy of a system is bounded from above, then there is no compelling reason
to exclude the possibility of negative temperatures. Such specialized situations do indeed
exist, and the system of magnetic dipoles provides a good example thereof. From equa-
tion (4), we note that, so long as U < 0, T > 0 — and that is the only range we covered in
Figures 3.10 through 3.13. However, the same equation tells us that if U > 0 then T < 0,
which prompts us to examine the matter a little more closely. For this, we consider the
variation of the temperature T and the entropy S with energy U , namely

1
T
=−

k
ε

tanh−1
(

U
Nε

)
=

k
2ε

ln
(

Nε−U
Nε+U

)
(8)
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FIGURE 3.14 The entropy of a system of magnetic dipoles (with J = 1
2 ) as a function of energy. Some values of the

parameter kT/ε are also shown in the figure. The slope at the two endpoints diverges since both ends represent
zero temperature but it is difficult to see due to the logarithmic nature of the divergence.

and

S
Nk
=−

Nε+U
2Nε

ln
(

Nε+U
2Nε

)
−

Nε−U
2Nε

ln
(

Nε−U
2Nε

)
; (9)

these expressions follow straightforwardly from equations (3) and (4), and are shown
graphically in Figures 3.14 and 3.15. We note that for U =−Nε, both S and T vanish.
As U increases, they too increase until we reach the special situation where U = 0. The
entropy is then seen to have attained its maximum value Nk ln2, while the temperature has
reached infinity. Throughout this range, the entropy had been a monotonically increasing
function of energy, so T was positive. Now, as U becomes 0+, (dS/dU) becomes 0− and
T becomes −∞. With a further increase in U , the entropy monotonically decreases; as a
result, the temperature continues to be negative, though its magnitude steadily decreases.
Finally, we reach the largest value of U , namely+Nε, where the entropy is once again zero
and T = 0−.

The region where U > 0 (and hence T < 0) is indeed abnormal because it corresponds
to a magnetization opposite in direction to that of the applied field. Nevertheless, it can be
realized experimentally in the system of nuclear moments of a crystal in which the relax-
ation time t1 for mutual interaction among nuclear spins is very small in comparison with
the relaxation time t2 for interaction between the spins and the lattice. Let such a crystal
be magnetized in a strong magnetic field and then the field reversed so quickly that the
spins are unable to follow the switch-over. This will leave the system in a nonequilibrium
state, with energy higher than the new equilibrium value U . During a period of order t1,
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FIGURE 3.15 The temperature parameter kT/ε, and its reciprocal βε, for a system of magnetic dipoles (with J = 1
2 )

as a function of energy.

the subsystem of the nuclear spins should be able to attain a state of internal equilibrium;
this state will have a negative magnetization and will, therefore, correspond to a negative
temperature. The subsystem of the lattice, which involves energy parameters that are in
principle unbounded, will still be at a positive temperature. During a period of order t2,
the two subsystems would attain a state of mutual equilibrium, which again will have a
positive temperature.14 An experiment of this kind was successfully performed by Purcell
and Pound (1951) with a crystal of LiF; in this case, t1 was of order 10−5 sec while t2 was of
order 5 min. A state of negative temperature for the subsystem of spins was indeed attained
and was found to persist for a period of several minutes; see Figure 3.16.

Before we close this discussion, a few general remarks seem in order. First of all, we
should note that the onset of negative temperatures is possible only if there exists an upper
limit on the energy of the given system. In most physical systems this is not the case,
simply because most physical systems possess kinetic energy of motion which is obvi-
ously unbounded. By the same token, the onset of positive temperatures is related to the

14Note that in the latter process, during which the spins realign themselves (now more favorably in the new direction
of the field), the energy will flow from the subsystem of the spins to that of the lattice, and not vice versa. This is in perfect
agreement with the fact that negative temperatures are hotter than positive ones; see the subsequent discussion in the
text.
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FIGURE 3.16 A typical record of the reversed nuclear magnetization (after Purcell and Pound, 1951). On the left we
have a deflection corresponding to normal, equilibrium magnetization (T ∼ 300K); it is followed by the reversed
deflection (corresponding to T ∼−350K), which decays through zero deflection (corresponding to a passage from
T =−∞ to T =+∞) toward the new equilibrium state that again has a positive T .

existence of a lower limit on the energy of a system; this, however, does not present any
problem because, if nothing else, the uncertainty principle alone is sufficient to set such
a limit for every physical system. Thus, it is quite normal for a system to be at a positive
temperature whereas it is very unusual for one to be at a negative temperature.

Now, suppose that we have a system whose energy cannot assume unlimited high
values. Then, we can surely visualize a temperature T such that the quantity NkT is
much larger than any admissible value, Er , of the energy. At such a high temperature, the
mutual interactions of the microscopic entities constituting the system may be regarded
as negligible; accordingly, one may write for the partition function of the system

QN (β)'

[∑
n

e−βεn

]N

. (10)

Since, by assumption, all βεn� 1, we have

QN (β)'

[∑
n

{
1−βεn+

1
2
β2ε2

n

}]N

. (11)

Let g denote the number of possible orientations of a microscopic constituent of the sys-
tem with respect to the direction of the external field; then, the quantities

∑
n ε

α
n(α = 0,1,2)

may be replaced by gεα . We thus get

lnQN (β)'N
[

lng + ln
(

1−βε̄+
1
2
β2ε2

)]
'N

[
lng −βε̄+

1
2
β2
(
ε2− ε2

)]
. (12)
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The Helmholtz free energy of the system is then given by

A(N ,β)'−
N
β

lng +N ε̄−
N
2
β(ε− ε̄)2, (13)

from which

S(N ,β)'Nk lng −
Nk
2
β2(ε− ε̄)2, (14)

U(N ,β)'Nε−Nβ(ε− ε̄)2, (15)

and

C(N ,β)'Nkβ2(ε− ε̄)2. (16)15

The formulae in equations (12) through (16) determine the thermodynamic properties of
the system for β ' 0. The important thing to note here is that they do so not only for β & 0
but also for β . 0. In fact, these formulae hold in the vicinity of, and on both sides of, the
maximum in the S−U curve; see Figure 3.14. Quite expectedly, the maximum value of S is
given by Nk lng, and it occurs at β =±0; S here decreases both ways, whether U decreases
(β > 0) or increases (β < 0). It will be noted that the specific heat of the system in either
case is positive.

It is not difficult to show that if two systems, characterized by the temperature parame-
ters β1 and β2, are brought into thermal contact, then energy will flow from the system with
the smaller value of β to the system with the larger value of β; this will continue until the
two systems acquire a common value of this parameter. What is more important to note is
that this result remains literally true even if one or both of the β are negative. Thus, if β1 is
−ve while β2 is +ve, then energy will flow from system 1 to system 2, that is, from the sys-
tem at negative temperature to the one at positive temperature. In this sense, systems at
negative temperatures are hotter than the ones at positive temperatures; indeed, negative
temperatures are above+∞, not below zero!

For further discussion of this topic, reference may be made to a paper by Ramsey (1956).

Problems
3.1. (a) Derive formula (3.2.36) from equations (3.2.14) and (3.2.35).

(b) Derive formulae (3.2.39) and (3.2.40) from equations (3.2.37) and (3.2.38).
3.2. Prove that the quantity g ′′(x0), see equations (3.2.25), is equal to 〈(E−U)2〉exp(2β). Thus show that

equation (3.2.28) is physically equivalent to equation (3.6.9).
3.3. Using the fact that (1/n!) is the coefficient of xn in the power expansion of the function exp(x),

derive an asymptotic formula for this coefficient by the method of saddle-point integration.
Compare your result with the Stirling formula for n!.

15Compare this result with equation (3.6.3).
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3.4. Verify that the quantity (k/N ) ln0, where

0(N ,U)=
∑
{nr }

′

W {nr},

is equal to the (mean) entropy of the given system. Show that this leads to essentially the same
result for ln0 if we take, in the foregoing summation, only the largest term of the sum, namely the
term W {n∗r } that corresponds to the most probable distribution set.
[Surprised? Well, note the following example:

For all N , the summation over the binomial coefficients N Cr =N !/[r!(N − r!)] gives

N∑
r=0

N Cr = 2N ;

therefore,

ln

{
N∑

r=0

N Cr

}
=N ln2. (a)

Now, the largest term in this sum corresponds to r 'N/2; so, for large N , the logarithm of the
largest term is very nearly equal to

ln{N ! }− 2ln{(N/2)! }

≈N lnN − 2
N
2

ln
N
2
=N ln2, (b)

which agrees with (a).]
3.5. Making use of the fact that the Helmholtz free energy A(N ,V ,T) of a thermodynamic system is an

extensive property of the system, show that

N
(
∂A
∂N

)
V ,T
+V

(
∂A
∂V

)
N ,T
= A.

[Note that this result implies the well-known relationship: Nµ= A+PV (≡ G).]
3.6. (a) Assuming that the total number of microstates accessible to a given statistical system is�,

show that the entropy of the system, as given by equation (3.3.13), is maximum when all�
states are equally likely to occur.

(b) If, on the other hand, we have an ensemble of systems sharing energy (with mean value E),
then show that the entropy, as given by the same formal expression, is maximum when
Pr ∝ exp(−βEr),β being a constant to be determined by the given value of E.

(c) Further, if we have an ensemble of systems sharing energy (with mean value E) and also
sharing particles (with mean value N), then show that the entropy, given by a similar
expression, is maximum when Pr,s ∝ exp(−αNr −βEs), α and β being constants to be
determined by the given values of N and E.

3.7. Prove that, quite generally,

CP −CV =−k

[
∂
∂T

{
T
(
∂ lnQ
∂V

)
T

}]2

V(
∂2 lnQ
∂V 2

)
T

> 0.

Verify that the value of this quantity for a classical ideal classical gas is Nk.
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3.8. Show that, for a classical ideal gas,

S
Nk
= ln

(
Q1

N

)
+T

(
∂ lnQ1

∂T

)
P

.

3.9. If an ideal monatomic gas is expanded adiabatically to twice its initial volume, what will the ratio
of the final pressure to the initial pressure be? If during the process some heat is added to the
system, will the final pressure be higher or lower than in the preceding case? Support your answer
by deriving the relevant formula for the ratio Pf /Pi.

3.10. (a) The volume of a sample of helium gas is increased by withdrawing the piston of the containing
cylinder. The final pressure Pf is found to be equal to the initial pressure Pi times (Vi/Vf )

1.2, Vi
and Vf being the initial and final volumes. Assuming that the product PV is always equal to
2
3 U , will (i) the energy and (ii) the entropy of the gas increase, remain constant, or decrease
during the process?

(b) If the process were reversible, how much work would be done and how much heat would be
added in doubling the volume of the gas? Take Pi = 1 atm and Vi = 1m3.

3.11. Determine the work done on a gas and the amount of heat absorbed by it during a compression
from volume V1 to volume V2, following the law PV n

= const.
3.12. If the “free volume” V of a classical system is defined by the equation

V
N
=

∫
e{U−U(qi)}/kT

N∏
i=1

d3qi,

where U is the average potential energy of the system and U(qi) the actual potential energy as a
function of the molecular configuration, then show that

S=Nk

[
ln

{
V
N

(
2πmkT

h2

)3/2
}
+

5
2

]
.

In what sense is it justified to refer to the quantity V as the “free volume” of the system?
Substantiate your answer by considering a particular case — for example, the case of a hard sphere
gas.

3.13. (a) Evaluate the partition function and the major thermodynamic properties of an ideal gas
consisting of N1 molecules of mass m1 and N2 molecules of mass m2, confined to a space
of volume V at temperature T . Assume that the molecules of a given kind are mutually
indistinguishable, while those of one kind are distinguishable from those of the other kind.

(b) Compare your results with the ones pertaining to an ideal gas consisting of (N1+N2)

molecules, all of one kind, of mass m, such that m(N1+N2)=m1N1+m2N2.
3.14. Consider a system of N classical particles with mass m moving in a cubic box with volume V = L3.

The particles interact via a short-ranged pair potential u(rij) and each particle interacts with each
wall with a short-ranged interaction uwall(z), where z is the perpendicular distance of a particle
from the wall. Write down the Lagrangian for this model and use a Legendre transformation to
determine the Hamiltonian H .
(a) Show that the quantity P =−

(
∂H
∂V

)
=
−1
3L2

(
∂H
∂L

)
can clearly be identified as the instantaneous

pressure — that is, the force per unit area on the walls.
(b) Reconstruct the Lagrangian in terms of the relative locations of the particles inside the box

ri = Lsi, where the variables si all lie inside a unit cube. Use a Legendre transformation to
determine the Hamiltonian with this set of variables.

(c) Recalculate the pressure using the second version of the Hamiltonian. Show that the pressure
now includes three contributions:
(1) a contribution proportional to the kinetic energy,
(2) a contribution related to the forces between pairs of particles, and
(3) a contribution related to the force on the wall.
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Show that in the thermodynamic limit the third contribution is negligible compared to the other
two. Interpret contributions 1 and 2 and compare to the virial equation of state (3.7.15).

3.15. Show that the partition function QN (V ,T) of an extreme relativistic gas consisting of N monatomic
molecules with energy–momentum relationship ε = pc, c being the speed of light, is given by

QN (V ,T)=
1

N !

{
8πV

(
kT
hc

)3
}N

.

Study the thermodynamics of this system, checking in particular that

PV =
1
3

U , U/N = 3kT , and γ =
4
3

.

Next, using the inversion formula (3.4.7), derive an expression for the density of states g(E) of this
system.

3.16. Consider a system similar to the one in the preceding problem but consisting of 3N particles
moving in one dimension. Show that the partition function in this case is given by

Q3N (L,T)=
1

(3N)!

[
2L
(

kT
hc

)]3N

,

L being the “length” of the space available. Compare the thermodynamics and the density of states
of this system with the corresponding quantities obtained in the preceding problem.

3.17. If we take the function f (q,p) in equation (3.5.3) to be U −H(q,p), then clearly 〈 f 〉 = 0; formally,
this would mean ∫

[U −H(q,p)]e−βH(q,p)dω = 0.

Derive, from this equation, expression (3.6.3) for the mean-square fluctuation in the energy of a
system embedded in the canonical ensemble.

3.18. Show that for a system in the canonical ensemble

〈(1E)3〉 = k2
{

T 4
(
∂CV

∂T

)
V
+ 2T 3CV

}
.

Verify that for an ideal gas 〈(
1E
U

)2
〉
=

2
3N

and

〈(
1E
U

)3
〉
=

8
9N2 .

3.19. Consider the long-time averaged behavior of the quantity dG/dt, where

G =
∑

i

qipi,

and show that the validity of equation (3.7.5) implies the validity of equation (3.7.6), and vice versa.
3.20. Show that, for a statistical system in which the interparticle potential energy u(r) is a

homogeneous function (of degree n) of the particle coordinates, the virial V is given by

V =−3PV −nU
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and, hence, the mean kinetic energy K by

K =−
1
2

V =
1
2
(3PV +nU)=

1
(n+ 2)

(3PV +nE);

here, U denotes the mean potential energy of the system while E = K +U . Note that this result
holds not only for a classical system but for a quantum-mechanical one as well.

3.21. (a) Calculate the time-averaged kinetic energy and potential energy of a one-dimensional
harmonic oscillator, both classically and quantum-mechanically, and show that the results
obtained are consistent with the result established in the preceding problem (with n= 2).

(b) Consider, similarly, the case of the hydrogen atom (n=−1) on the basis of (i) the Bohr–
Sommerfeld model and (ii) the Schrödinger model.

(c) Finally, consider the case of a planet moving in (i) a circular orbit or (ii) an elliptic orbit around
the sun.

3.22. The restoring force of an anharmonic oscillator is proportional to the cube of the displacement.
Show that the mean kinetic energy of the oscillator is twice its mean potential energy.

3.23. Derive the virial equation of state equation (3.7.15) from the classical canonical partition function
(3.5.5). Show that in the thermodynamic limit the interparticle terms dominate the ones that come
from interactions of the particles with the walls of the container.

3.24. Show that in the relativistic case the equipartition theorem takes the form

〈m0u2(1−u2/c2)−1/2
〉 = 3kT ,

where m0 is the rest mass of the particle and u its speed. Check that in the extreme relativistic case
the mean thermal energy per particle is twice its value in the nonrelativistic case.

3.25. Develop a kinetic argument to show that in a noninteracting system the average value of the
quantity

∑
i piq̇i is precisely equal to 3PV . Hence show that, regardless of relativistic

considerations, PV =NkT .
3.26. The energy eigenvalues of an s-dimensional harmonic oscillator can be written as

εj = ( j+ s/2)~ω; j = 0,1,2, . . .

Show that the jth energy level has a multiplicity ( j+ s− 1)!/j!(s− 1)!. Evaluate the partition
function, and the major thermodynamic properties, of a system of N such oscillators, and compare
your results with a corresponding system of sN one-dimensional oscillators. Show, in particular,
that the chemical potential µs = sµ1.

3.27. Obtain an asymptotic expression for the quantity lng(E) for a system of N quantum-mechanical
harmonic oscillators by using the inversion formula (3.4.7) and the partition function (3.8.15).
Hence show that

S
Nk
=

(
E

N~ω
+

1
2

)
ln
(

E
N~ω

+
1
2

)
−

(
E

N~ω
−

1
2

)
ln
(

E
N~ω

−
1
2

)
.

[Hint: Employ the Darwin–Fowler method.]
3.28. (a) When a system of N oscillators with total energy E is in thermal equilibrium, what is the

probability pn that a particular oscillator among them is in the quantum state n?
[Hint: Use expression (3.8.25).]
Show that, for N � 1 and R� n, pn ≈ (n)n/(n+ 1)n+1, where n= R/N .

(b) When an ideal gas of N monatomic molecules with total energy E is in thermal equilibrium,
show that the probability of a particular molecule having an energy in the neighborhood of ε
is proportional to exp(−βε), where β = 3N/2E.
[Hint: Use expression (3.5.16) and assume that N � 1 and E� ε.]

3.29. The potential energy of a one-dimensional, anharmonic oscillator may be written as

V (q)= cq2
− gq3

− fq4,

where c, g, and f are positive constants; quite generally, g and f may be assumed to be very small
in value. Show that the leading contribution of anharmonic terms to the heat capacity of the
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oscillator, assumed classical, is given by

3
2

k2

(
f
c2 +

5
4

g2

c3

)
T

and, to the same order, the mean value of the position coordinate q is given by

3
4

gkT
c2 .

3.30. The energy levels of a quantum-mechanical, one-dimensional, anharmonic oscillator may be
approximated as

εn =

(
n+

1
2

)
~ω− x

(
n+

1
2

)2

~ω; n= 0,1,2, . . .

The parameter x, usually� 1, represents the degree of anharmonicity. Show that, to the first order
in x and the fourth order in u(≡ ~ω/kT), the specific heat of a system of N such oscillators is given
by

C =Nk
[(

1−
1

12
u2
+

1
240

u4
)
+ 4x

(
1
u
+

1
80

u3
)]

.

Note that the correction term here increases with temperature.
3.31. Study, along the lines of Section 3.8, the statistical mechanics of a system of N “Fermi oscillators,”

which are characterized by only two eigenvalues, namely 0 and ε.
3.32. The quantum states available to a given physical system are (i) a group of g1 equally likely states,

with a common energy ε1 and (ii) a group of g2 equally likely states, with a common energy ε2 > ε1.
Show that this entropy of the system is given by

S=−k[p1 ln(p1/g1)+p2 ln(p2/g2)],

where p1 and p2 are, respectively, the probabilities of the system being in a state belonging to group
1 or to group 2: p1+p2 = 1.
(a) Assuming that the pi are given by a canonical distribution, show that

S= k
[

lng1+ ln{1+ (g2/g1)e−x
}+

x
1+ (g1/g2)ex

]
,

where x = (ε2− ε1)/kT , assumed positive. Compare the special case g1 = g2 = 1 with that of the
Fermi oscillator of the preceding problem.

(b) Verify the foregoing expression for S by deriving it from the partition function of the system.
(c) Check that at T→ 0, S→ k lng1. Interpret this result physically.

3.33. Gadolinium sulphate obeys Langevin’s theory of paramagnetism down to a few degrees Kelvin. Its
molecular magnetic moment is 7.2× 10−23amp-m2. Determine the degree of magnetic saturation
in this salt at a temperature of 2K in a field of flux density 2 weber/m2.

3.34. Oxygen is a paramagnetic gas obeying Langevin’s theory of paramagnetism. Its susceptibility
per unit volume, at 293K and at atmospheric pressure, is 1.80× 10−6 mks units. Determine its
molecular magnetic moment and compare it with the Bohr magneton (which is very nearly equal
to 9.27× 10−24amp-m2).

3.35. (a) Consider a gaseous system of N noninteracting, diatomic molecules, each having an electric
dipole moment µ, placed in an external electric field of strength E. The energy of such a
molecule will be given by the kinetic energy of rotation as well as translation plus the potential
energy of orientation in the applied field:

ε =
p2

2m
+

{
p2
θ

2I
+

p2
φ

2I sin2 θ

}
−µE cosθ ,
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where I is the moment of inertia of the molecule. Study the thermodynamics of this system,
including the electric polarization and the dielectric constant. Assume that (i) the system is a
classical one and (ii) |µE| � kT .16

(b) The molecule H2O has an electric dipole moment of 1.85× 10−18 e.s.u. Calculate, on the basis
of the preceding theory, the dielectric constant of steam at 100◦C and at atmospheric pressure.

3.36. Consider a pair of electric dipolesµµµ andµµµ′, oriented in the directions (θ ,φ) and (θ ′,φ′),
respectively; the distance R between their centers is assumed to be fixed. The potential energy in
this orientation is given by

−
µµ′

R3 {2cosθ cosθ ′− sinθ sinθ ′ cos(φ−φ′)}.

Now, consider this pair of dipoles to be in thermal equilibrium, their orientations being governed
by a canonical distribution. Show that the mean force between these dipoles, at high temperatures,
is given by

−2
(µµ′)2

kT
R̂
R7 ,

R̂ being the unit vector in the direction of the line of centers.
3.37. Evaluate the high-temperature approximation of the partition function of a system of magnetic

dipoles to show that the Curie constant CJ is given by

CJ =
N0g2µ2

B

k
m2.

Hence derive the formula (3.9.26).
3.38. Replacing the sum in (3.9.18) by an integral, evaluate Q1(β) of the given magnetic dipole and study

the thermodynamics following from it. Compare these results with the ones following from the
Langevin theory.

3.39. Atoms of silver vapor, each having a magnetic moment µB(g = 2, J = 1
2 ), align themselves either

parallel or antiparallel to the direction of an applied magnetic field. Determine the respective
fractions of atoms aligned parallel and antiparallel to a field of flux density 0.1 weber/m2 at a
temperature of 1,000 K.

3.40. (a) Show that, for any magnetizable material, the heat capacities at constant field H and at
constant magnetization M are connected by the relation

CH −CM =−T
(
∂H
∂T

)
M

(
∂M
∂T

)
H

.

(b) Show that for a paramagnetic material obeying Curie’s law

CH −CM = CH2/T 2,

where C on the right side of this equation denotes the Curie constant of the given sample.
3.41. A system of N spins at a negative temperature (E > 0) is brought into contact with an ideal-gas

thermometer consisting of N ′ molecules. What will the nature of their state of mutual equilibrium
be? Will their common temperature be negative or positive, and in what manner will it be affected
by the ratio N ′/N?

3.42. Consider the system of N magnetic dipoles, studied in Section 3.10, in the microcanonical
ensemble. Enumerate the number of microstates,�(N ,E), accessible to the system at energy E
and evaluate the quantities S(N ,E) and T(N ,E). Compare your results with equations (3.10.8)
and (3.10.9).

16The electric dipole moments of molecules are generally of order 10−18 e.s.u. (or a Debye unit). In a field of 1 e.s.u.
(= 300volts/cm) and at a temperature of 300K, the parameter βµE =O(10−4).
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3.43. Consider a system of charged particles (not dipoles), obeying classical mechanics and classical
statistics. Show that the magnetic susceptibility of this system is identically zero (Bohr–van
Leeuwen theorem).
[Note that the Hamiltonian of this system in the presence of a magnetic field H(=∇ ×A)will be a
function of the quantities pj + (ej/c)A(rj), and not of the pj as such. One has now to show that the
partition function of the system is independent of the applied field.]

3.44. The expression (3.3.13) for the entropy S is equivalent to Shannon’s (1949) definition of the
information contained in a message I =−

∑
r Pr ln(Pr), where Pr represents the probability of

message r.
(a) Show that information is maximized if the probabilities of all messages are the same. Any other

distribution of probabilities reduces the information. In English, “e” is more common than “z”,
so Pe > Pz, so the information per character in an English message is less than the optimal
amount possible based on the number of different characters used in an English text.

(b) The information in a text is also affected by correlations between characters in the text. For
example, in English, “q” is always followed by “u”, so this pair of characters contains the same
information as “q” alone. The probability of a character indexed by r followed immediately
by character indexed by r′ is Pr,r′ = PrPr′Gr,r′ , where Gr,r′ is the character-pair correlation
function. If pairs of characters are uncorrelated, then Gr,r′ = 1. Show that if characters are
uncorrelated then the information in a two-character message is twice the information of a
single-character message and that correlations (Gr,r′ 6= 1) reduce the information content.
[Hint: Use the inequality lnx ≤ x− 1.]

(c) Write a computer program to determine the information per character in a text file by
determining the single-character probabilities Pr and character-pair correlations Gr,r′ .
Computers usually use one full byte per character to store information. Since one byte can
store 256 different messages, the potential information per byte is ln256= 8ln2≡ 8bits. Show
that the information per character in your text file is considerably less than 8 bits and explain
why it is possible for file-compression algorithms to reduce the size of a computer file without
sacrificing any of the information contained in the file.



4
The Grand Canonical Ensemble

In the preceding chapter we developed the formalism of the canonical ensemble and
established a scheme of operations for deriving the various thermodynamic properties of a
given physical system. The effectiveness of that approach became clear from the examples
discussed there; it will become even more vivid in the subsequent studies carried out in
this text. However, for a number of problems, both physical and chemical, the usefulness
of the canonical ensemble formalism turns out to be rather limited and it appears that a
further generalization of this formalism is called for. The motivation that brings about this
generalization is physically of the same nature as the one that led us from the microcanoni-
cal to the canonical ensemble — it is just the next natural step from there. It comes from the
realization that not only the energy of a system but the number of particles as well is hardly
ever measured in a “direct” manner; we only estimate it through an indirect probing into
the system. Conceptually, therefore, we may regard both N and E as variables and identify
their expectation values, 〈N〉 and 〈E〉, with the corresponding thermodynamic quantities.

The procedure for studying the statistics of the variables N and E is self-evident. We
may either (i) consider the given system A as immersed in a large reservoir A′ with which it
can exchange both energy and particles or (ii) regard it as a member of what we may call
a grand canonical ensemble, which consists of the given system A and a large number of
(mental) copies thereof, the members of the ensemble carrying out a mutual exchange of
both energy and particles. The end results, in either case, are asymptotically the same.

4.1 Equilibrium between a system
and a particle-energy reservoir

We consider the given system A as immersed in a large reservoir A′, with which it can
exchange both energy and particles; see Figure 4.1. After some time has elapsed, the system
and the reservoir are supposed to attain a state of mutual equilibrium. Then, according
to Section 1.3, the system and the reservoir will have a common temperature T and a
common chemical potential µ. The fraction of the total number of particles N (0) and the
fraction of the total energy E(0) that the system A can have at any time t are, however,
variables (whose values, in principle, can lie anywhere between zero and unity). If, at a
particular instant of time, the system A happens to be in one of its states characterized by
the number Nr of particles and the amount Es of energy, then the number of particles in
the reservoir would be N ′r and its energy E′s, such that

Nr +N ′r =N (0)
= const. (1)

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00004-9
© 2011 Elsevier Ltd. All rights reserved.
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A9

(N9r , E9s)
A

(Nr , Es)

FIGURE 4.1 A statistical system immersed in a particle–energy reservoir.

and

Es+E′s = E(0) = const. (2)

Again, since the reservoir is supposed to be much larger than the given system, the values
of Nr and Es that are going to be of practical importance will be very small fractions of the
total magnitudes N (0) and E(0), respectively; therefore, for all practical purposes,1

Nr

N (0)
=

(
1−

N ′r
N (0)

)
� 1 (3)

and

Es

E(0)
=

(
1−

E′s
E(0)

)
� 1. (4)

Now, in the manner of Section 3.1, the probability Pr,s that, at any time t, the sys-
tem A is found to be in an (Nr ,Es)-state would be directly proportional to the number
of microstates �′(N ′r ,E′s) that the reservoir can have for the corresponding macrostate
(N ′r ,E′s). Thus,

Pr,s ∝�
′(N (0)

−Nr ,E(0)−Es). (5)

Again, in view of (3) and (4), we can write

ln�′(N (0)
−Nr ,E(0)−Es)= ln�′(N (0),E(0))

+

(
∂ ln�′

∂N ′

)
N ′=N(0)

(−Nr)+

(
∂ ln�′

∂E′

)
E′=E(0)

(−Es)+ ·· ·

' ln�′(N (0),E(0))+
µ′

kT ′
Nr −

1
kT ′

Es; (6)

see equations (1.2.3), (1.2.7), (1.3.3), and (1.3.5). Here, µ′ and T ′ are, respectively, the
chemical potential and the temperature of the reservoir (and hence of the given system

1Note that A here could well be a relatively small “part” of a given system A(0), while A′ represents the “rest” of A(0).
That would give a truly practical perspective to the grand canonical formalism.
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as well). From (5) and (6), we obtain the desired result:

Pr,s ∝ exp(−αNr −βEs), (7)

where

α =−µ/kT , β = 1/kT . (8)

On normalization, it becomes

Pr,s =
exp(−αNr −βEs)∑

r,s
exp(−αNr −βEs)

; (9)

the summation in the denominator goes over all the (Nr ,Es)-states accessible to the
system A. Note that our final expression for Pr,s is independent of the choice of the
reservoir.

We shall now examine the same problem from the ensemble point of view.

4.2 A system in the grand canonical ensemble
We now visualize an ensemble of N identical systems (which, of course, can be labeled as
1,2, . . . ,N ) mutually sharing a total number of particles2 N N and a total energy N E. Let
nr,s denote the number of systems that have, at any time t, the number Nr of particles and
the amount Es of energy (r,s= 0,1,2, . . .); then, obviously,∑

r,s

nr,s =N , (1a)

∑
r,s

nr,sNr =N N , (1b)

and

∑
r,s

nr,sEs =N E. (1c)

Any set {nr,s}, of the numbers nr,s, which satisfies the restrictive conditions (1), represents
one of the possible modes of distribution of particles and energy among the members
of our ensemble. Furthermore, any such mode of distribution can be realized in W {nr,s}

different ways, where

W {nr,s} =
N !∏

r,s
(nr,s!)

. (2)

2For simplicity, we shall henceforth use the symbols N and E instead of 〈N〉 and 〈E〉.
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We may now define the most probable mode of distribution, {n∗r,s}, as the one that
maximizes expression (2), satisfying at the same time the restrictive conditions (1). Going
through the conventional derivation, see Section 3.2, we obtain for a large ensemble

n∗r,s

N
=

exp(−αNr −βEs)∑
r,s

exp(−αNr −βEs)
; (3)

compare to the corresponding equation (3.2.10) for the canonical ensemble. Alternatively,
we may define the expectation (or mean) values of the numbers nr,s, namely

〈nr,s〉 =

∑
{nr,s}

′ nr,sW {nr,s}∑
{nr,s}

′ W {nr,s}
, (4)

where the primed summations go over all distribution sets that conform to conditions (1).
An asymptotic expression for 〈nr,s〉 can be derived by using the method of Darwin and
Fowler — the only difference from the corresponding derivation in Section 3.2 being that,
in the present case, we will have to work with functions of more than one (complex)
variable. The derivation, however, runs along similar lines, with the result

Lim
N→∞

〈nr,s〉

N
'

n∗r,s

N
=

exp(−αNr −βEs)∑
r,s

exp(−αNr −βEs)
, (5)

in agreement with equation (4.1.9). The parameters α and β, so far undetermined, are
eventually determined by the equations

N =

∑
r,s

Nr exp(−αNr −βEs)∑
r,s

exp(−αNr −βEs)
≡−

∂

∂α

{
ln
∑
r,s

exp(−αNr −βEs)

}
(6)

and

E =

∑
r,s

Es exp(−αNr −βEs)∑
r,s

exp(−αNr −βEs)
≡−

∂

∂β

{
ln
∑
r,s

exp(−αNr −βEs)

}
, (7)

where the quantities N and E here are supposed to be preassigned.
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4.3 Physical significance of the various
statistical quantities

To establish a connection between the statistics of the grand canonical ensemble and the
thermodynamics of the system under study, we introduce a quantity q, defined by

q≡ ln

{∑
r,s

exp(−αNr −βEs)

}
; (1)

the quantity q is a function of the parameters α and β, and also of all the Es.3 Taking the
differential of q and making use of equations (4.2.5), (4.2.6), and (4.2.7), we get

dq=−Ndα−Edβ −
β

N

∑
r,s

〈nr,s〉dEs, (2)

so that

d(q+αN +βE)= β

(
α

β
dN +dE−

1
N

∑
r,s

〈nr,s〉dEs

)
. (3)

To interpret the terms appearing on the right side of this equation, we compare the
expression enclosed within the parentheses with the statement of the first law of thermo-
dynamics, that is,

δQ= dE+ δW −µdN , (4)

where the various symbols have their usual meanings. The following correspondence now
seems inevitable:

δW =−
1
N

∑
r,s

〈nr,s〉dEs, µ=−α/β, (5)

with the result that

d(q+αN +βE)= βδQ. (6)

The parameter β, being the integrating factor for the heat δQ, must be equivalent to the
reciprocal of the absolute temperature T , so we may write

β = 1/kT (7)

and, hence,

α =−µ/kT . (8)

3This quantity was first introduced by Kramers, who called it the q-potential.
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The quantity (q+αN +βE) would then be identified with the thermodynamic variable
S/k; accordingly,

q=
S
k
−αN −βE =

TS+µN −E
kT

. (9)

However, µN is identically equal to G, the Gibbs free energy of the system, and hence to
(E−TS+PV ). So, finally,

q≡ ln

{∑
r,s

exp(−αNr −βEs)

}
=

PV
kT

. (10)

Equation (10) provides the essential link between the thermodynamics of the given sys-
tem and the statistics of the corresponding grand canonical ensemble. It is, therefore, a
relationship of central importance in the formalism developed in this chapter.

To derive further results, we prefer to introduce a parameter z, defined by the relation

z ≡ e−α = eµ/kT ; (11)

the parameter z is generally referred to as the fugacity of the system. In terms of z, the
q-potential takes the form

q≡ ln

{∑
r,s

zNr e−βEs

}
(12)

= ln


∞∑

Nr=0

zNr QNr (V ,T)

 (with Q0 ≡ 1), (13)

so we may write

q(z,V ,T)≡ lnQ(z,V ,T), (14)

where

Q(z,V ,T)≡
∞∑

Nr=0

zNr QNr (V ,T) (with Q0 ≡ 1). (15)

Note that, in going from expression (12) to (13), we have (mentally) carried out a sum-
mation over the energy values Es, with Nr fixed, thus giving rise to the partition function
QNr (V ,T); of course, the dependence of QNr on V comes from the dependence of the Es

on V . In going from (13) to (14), we have (again mentally) carried out a summation over all
the numbers Nr = 0,1,2, · · · ,∞, thus giving rise to the grand partition function Q(z,V ,T)
of the system. The q-potential, which we have already identified with PV /kT , is, therefore,
the logarithm of the grand partition function.
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It appears that in order to evaluate the grand partition function Q(z,V ,T) we have to
go through the routine of evaluating the partition function Q(N ,V ,T). In principle, this is
indeed true. In practice, however, we find that on many occasions an explicit evaluation
of the partition function is extremely hard while considerable progress can be made in
the evaluation of the grand partition function. This is particularly true when we deal with
systems in which the influence of quantum statistics and/or interparticle interactions is
important; see Sections 6.2 and 10.1. The formalism of the grand canonical ensemble then
proves to be of considerable value.

We are now in a position to write down the full recipe for deriving the leading ther-
modynamic quantities of a given system from its q-potential. We have, first of all, for the
pressure of the system

P(z,V ,T)=
kT
V

q(z,V ,T)≡
kT
V

lnQ(z,V ,T). (16)

Next, writing N for N and U for E, we obtain with the help of equations (4.2.6), (4.2.7),
and (11)

N(z,V ,T)= z
[
∂

∂z
q(z,V ,T)

]
V ,T
= kT

[
∂

∂µ
q(µ,V ,T)

]
V ,T

(17)

and

U(z,V ,T)=−
[
∂

∂β
q(z,V ,T)

]
z,V
= kT 2

[
∂

∂T
q(z,V ,T)

]
z,V

. (18)

Eliminating z between equations (16) and (17), one obtains the equation of state, that is,
the (P,V ,T)-relationship, of the system. On the other hand, eliminating z between equa-
tions (17) and (18), one obtains U as a function of N ,V , and T , which readily leads to the
specific heat at constant volume as (∂U/∂T)N ,V . The Helmholtz free energy is given by the
formula

A=Nµ−PV =NkT lnz− kT lnQ(z,V ,T)

=−kT ln
Q(z,V ,T)

zN
, (19)

which may be compared with the canonical ensemble formula A=−kT lnQ(N ,V ,T); see
also Problem 4.2. Finally, we have for the entropy of the system

S=
U −A

T
= kT

(
∂q
∂T

)
z,V
−Nk lnz+ kq. (20)
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4.4 Examples
We shall now study a couple of simple problems, with the explicit purpose of demonstrat-
ing how the method of the q-potential works. This is not intended to be a demonstration of
the power of this method, for we shall consider here only those problems that can be solved
equally well by the methods of the preceding chapters. The real power of the new method
will become apparent only when we study problems involving quantum-statistical effects
and effects arising from interparticle interactions; many such problems will appear in the
remainder of the text.

The first problem we propose to consider here is that of the classical ideal gas. In
Section 3.5 we showed that the partition function QN (V ,T) of this system could be
written as

QN (V ,T)=
[Q1(V ,T)]N

N !
, (1)

where Q1(V ,T) may be regarded as the partition function of a single particle in the sys-
tem. First of all, we should note that equation (1) does not imply any restrictions on
the particles having internal degrees of motion; those degrees of motion, if present,
would affect the results only through Q1. Second, we should recall that the factor N !
in the denominator arises from the fact that the particles constituting the gas are, in
fact, indistinguishable. Closely related to the indistinguishability of the particles is the
fact that they are nonlocalized, for otherwise we could distinguish them through their
very sites; compare, for instance, the system of harmonic oscillators, which was studied
in Section 3.8. Now, since our particles are nonlocalized they can be anywhere in the
space available to them; consequently, the function Q1 will be directly proportional
to V :

Q1(V ,T)= Vf (T), (2)

where f (T) is a function of temperature alone. We thus obtain for the grand partition
function of the gas

Q(z,V ,T)=
∞∑

Nr=0

zNr QNr (V ,T)=
∞∑

Nr=0

{zVf (T)}Nr

Nr !

= exp {zVf (T)}, (3)

which gives

q (z,V ,T)= zVf (T). (4)
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Formula (4.3.16) through (4.3.20) then lead to the following results:

P = zkTf (T), (5)

N = zVf (T), (6)

U = zVkT 2f ′(T), (7)

A=NkT lnz− zVkTf (T), (8)

and

S=−Nk lnz+ zVk{Tf ′(T)+ f (T)}. (9)

Eliminating z between (5) and (6), we obtain the equation of state of the system:

PV =NkT . (10)

We note that equation (10) holds irrespective of the form of the function f (T). Next,
eliminating z between (6) and (7), we obtain

U =NkT 2f ′(T)/f (T), (11)

which gives

CV =Nk
2Tf (T)f ′(T)+T 2

{f (T)f ′′(T)− [f ′(T)]2
}

[f (T)]2
. (12)

In simple cases, the function f (T) turns out to be directly proportional to a certain
power of T . Supposing that f (T)∝ T n, equations (11) and (12) become

U = n(NkT) (11a)

and

CV = n(Nk). (12a)

Accordingly, the pressure in such cases is directly proportional to the energy density of the
gas, the constant of proportionality being 1/n. The reader will recall that the case n= 3/2
corresponds to a nonrelativistic gas while n= 3 corresponds to an extreme relativistic one.

Finally, eliminating z between equation (6) and equations (8) and (9), we obtain A
and S as functions of N ,V , and T . This essentially completes our study of the classical
ideal gas.

The next problem to be considered here is that of a system of independent, localized
particles — a model which, in some respects, approximates a solid. Mathematically, the
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problem is similar to that of a system of harmonic oscillators. In either case, the micro-
scopic entities constituting the system are mutually distinguishable. The partition function
QN (V ,T) of such a system can be written as

QN (V ,T)= [Q1(V ,T)]N . (13)

At the same time, in view of the localized nature of the particles, the single-particle par-
tition function Q1(V ,T) is essentially independent of the volume occupied by the system.
Consequently, we may write

Q1(V ,T)= φ(T), (14)

where φ(T) is a function of temperature alone. We then obtain for the grand partition
function of the system

Q(z,V ,T)=
∞∑

Nr=0

[zφ(T)]Nr = [1− zφ(T)]−1; (15)

clearly, the quantity zφ(T) must stay below unity, so that the summation over Nr is
convergent.

The thermodynamics of the system follows straightforwardly from equation (15). We
have, to begin with,

P ≡
kT
V

q(z,T)=−
kT
V

ln{1− zφ(T)}. (16)

Since both z and T are intensive variables, the right side of (16) vanishes as V →∞. Hence,
in the thermodynamic limit, P = 0.4 For other quantities of interest, we obtain, with the
help of equations (4.3.17) through (4.3.20),

N =
zφ(T)

1− zφ(T)
, (17)

U =
zkT 2φ′(T)
1− zφ(T)

, (18)

A=NkT lnz+ kT ln{1− zφ(T)}, (19)

and

S=−Nk lnz− k ln{1− zφ(T)}+
zkTφ′(T)
1− zφ(T)

. (20)

From (17), we get

zφ(T)=
N

N + 1
' 1−

1
N

(N � 1). (21)

4It will be seen in the sequel that P actually vanishes like (lnN)/N .
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It follows that

1− zφ(T)=
1

N + 1
'

1
N

. (22)

Equations (17) through (20) now give

U/N = kT 2φ′(T)/φ(T), (18a)

A/N =−kT lnφ(T)+O
(

lnN
N

)
, (19a)

and

S/Nk = lnφ(T)+Tφ′(T)/φ(T)+O
(

lnN
N

)
. (20a)

Substituting

φ(T)= [2sinh(~ω/2kT)]−1 (23)

into these formulae, we obtain results pertaining to a system of quantum-mechanical,
one-dimensional harmonic oscillators. The substitution

φ(T)= kT/~ω, (24)

on the other hand, leads to results pertaining to a system of classical, one-dimensional
harmonic oscillators.

As a corollary, we examine here the problem of solid–vapor equilibrium. Consider a
single-component system, having two phases — solid and vapor — in equilibrium, con-
tained in a closed vessel of volume V at temperature T . Since the phases are free to
exchange particles, a state of mutual equilibrium would imply that their chemical poten-
tials are equal; this, in turn, means that they have a common fugacity as well. Now, the
fugacity zg of the gaseous phase is given by, see equation (6),

zg =
Ng

Vg f (T)
, (25)

where Ng is the number of particles in the gaseous phase and Vg the volume occupied by
them; in a typical case, Vg ' V . The fugacity zs of the solid phase, on the other hand, is
given by equation (21):

zs '
1

φ(T)
. (26)

Equating (25) and (26), we obtain for the equilibrium particle density in the vapor phase

Ng/Vg = f (T)/φ(T). (27)
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Now, if the density in the vapor phase is sufficiently low and the temperature of the system
sufficiently high, the vapor pressure P would be given by

Pvapor =
Ng

Vg
kT = kT

f (T)
φ(T)

. (28)

To be specific, we may assume the vapor to be monatomic; the function f (T) is then of
the form

f (T)= (2πmkT)3/2/h3. (29)

On the other hand, if the solid phase can be approximated by a set of three-dimensional
harmonic oscillators characterized by a single frequency ω (the Einstein model), the
function φ(T)would be

φ(T)= [2sinh(hω/2kT)]−3. (30)

However, there is one important difference here. An atom in a solid is energetically more
stabilized than an atom that is free — that is why a certain threshold energy is required to
transform a solid into separate atoms. Let ε denote the value of this energy per atom, which
in a way implies that the zeros of the energy spectra εg and εs, which led to the functions
(29) and (30), respectively, are displaced with respect to one another by an amount ε. A true
comparison between the functions f (T) and φ(T) must take this into account. As a result,
we obtain for the vapor pressure

Pvapor = kT
(

2πmkT

h2

)3/2

[2sinh(~ω/2kT)]3e−ε/kT . (31)

In passing, we note that equation (27) also gives us the necessary condition for the
formation of the solid phase. The condition clearly is:

N > V
f (T)
φ(T)

, (32)

where N is the total number of particles in the system. Alternatively, this means that

T < Tc, (33)

where Tc is a characteristic temperature determined by the implicit relationship

f (Tc)

φ(Tc)
=

N
V

. (34)

Once the two phases appear, the number Ng(T) will have a value determined by equa-
tion (27) while the remainder, N −Ng , will constitute the solid phase.
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4.5 Density and energy fluctuations in the grand
canonical ensemble: correspondence
with other ensembles

In a grand canonical ensemble, the variables N and E, for any member of the ensemble,
can lie anywhere between zero and infinity. Therefore, on the face of it, the grand canoni-
cal ensemble appears to be very different from its predecessors — the canonical and the
microcanonical ensembles. However, as far as thermodynamics is concerned, the results
obtained from this ensemble turn out to be identical to the ones obtained from the other
two. Thus, in spite of strong facial differences, the overall behavior of a given physical sys-
tem is practically the same whether it belongs to one kind of ensemble or another. The
basic reason for this is that the “relative fluctuations” in the values of the quantities that
vary from member to member in an ensemble are practically negligible. Therefore, in spite
of the different surroundings that different ensembles provide to a given physical system,
the overall behavior of the system is not significantly affected.

To appreciate this point, we shall evaluate the relative fluctuations in the particle den-
sity n and the energy E of a given physical system in the grand canonical ensemble.
Recalling that

N =

∑
r,s

Nre−αNr−βEs∑
r,s

e−αNr−βEs
, (1)

it readily follows that (
∂N
∂α

)
β,Es

=−N2+N
2

. (2)

Thus

(1N)2 ≡N2−N
2
=−

(
∂N
∂α

)
T ,V

= kT

(
∂N
∂µ

)
T ,V

. (3)

From (3), we obtain for the relative mean-square fluctuation in the particle density
n (=N/V )

(1n)2

n2
=
(1N)2

N
2
=

kT

N
2

(
∂N
∂µ

)
T ,V

. (4)

In terms of the variable v (= V /N), we may write

(1n)2

n2
=

kTv2

V 2

(
∂(V /v)
∂µ

)
T ,V
=−

kT
V

(
∂v
∂µ

)
T

. (5)
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To put this result into a more practical form, we recall the thermodynamic relation

dµ= v dP− s dT , (6)

according to which dµ (at constant T)= v dP. Equation (5) then takes the form

(1n)2

n2
=−

kT
V

1
v

(
∂v
∂P

)
T
=

kT
V
κT , (7)

where κT is the isothermal compressibility of the system.
Thus, the relative root-mean-square fluctuation in the particle density of the given sys-

tem is ordinarily O(N−1/2) and, hence, negligible. However, there are exceptions, like the
ones met with in situations accompanying phase transitions. In those situations, the com-
pressibility of a given system can become excessively large, as is evidenced by an almost
“flattening” of the isotherms. For instance, at a critical point the compressibility diverges,
so it is no longer intensive. Finite-size scaling theory described in Chapters 12 and 14 indi-
cates that at the critical point the isothermal compressibility scales with system size as
κT (Tc)∼Nγ /dν where γ and ν are certain critical exponents and d is the dimension. For
the case of experimental liquid–vapor critical points, κT (Tc)∼N0.63. Accordingly, the root-
mean-square density fluctuations grow faster than N1/2 — in this case, like N0.82. Thus,
in the region of phase transitions, especially at the critical points, we encounter unusu-
ally large fluctuations in the particle density of the system. Such fluctuations indeed exist
and account for phenomena like critical opalescence. It is clear that under these circum-
stances the formalism of the grand canonical ensemble could, in principle, lead to results
that are not necessarily identical to the ones following from the corresponding canonical
ensemble. In such cases, it is the formalism of the grand canonical ensemble that will have
to be preferred because only this one will provide a correct picture of the actual physical
situation.

We shall now examine fluctuations in the energy of the system. Following the usual
procedure, we obtain

(1E)2 ≡ E2−E
2
=−

(
∂E
∂β

)
z,V

= kT 2
(
∂U
∂T

)
z,V

. (8)

To put expression (8) into a more comprehensible form, we write(
∂U
∂T

)
z,V
=

(
∂U
∂T

)
N ,V
+

(
∂U
∂N

)
T ,V

(
∂N
∂T

)
z,V

, (9)

where the symbol N is being used interchangeably for N . Now, in view of the fact that

N =−
(
∂

∂α
lnQ

)
β,V

, U =−
(
∂

∂β
lnQ

)
α,V

, (10)
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we have (
∂N
∂β

)
α,V
=

(
∂U
∂α

)
β,V

(11)

and, hence, (
∂N
∂T

)
z,V
=

1
T

(
∂U
∂µ

)
T ,V

. (12)

Substituting expressions (9) and (12) into equation (8) and remembering that the quantity
(∂U/∂T)N ,V is the familiar CV , we get

(1E)2 = kT 2CV + kT
(
∂U
∂N

)
T ,V

(
∂U
∂µ

)
T ,V

. (13)

Invoking equations (3.6.3) and (3), we finally obtain

(1E)2 = 〈(1E)2〉can+

{(
∂U
∂N

)
T ,V

}2

(1N)2. (14)

Formula (14) is highly instructive; it tells us that the mean-square fluctuation in the
energy E of a system in the grand canonical ensemble is equal to the value it would
have in the canonical ensemble plus a contribution arising from the fact that now the
particle number N is also fluctuating. Again, under ordinary circumstances, the relative
root-mean-square fluctuation in the energy density of the system would be practically
negligible. However, in the region of phase transitions, unusually large fluctuations in the
value of this variable can arise by virtue of the second term in the formula.

4.6 Thermodynamic phase diagrams
One of the great successes of thermodynamics and statistical mechanics over the last 150
years has been in the study of phase transitions. Statistical mechanics provides the basis
for accurate models for a wide variety of thermodynamic phases of materials and has led
to a detailed understanding of phase transitions and critical phenomena.

Condensed materials exist in a variety of phases that depend on thermodynamic
parameters such as temperature, pressure, magnetic field, and so on. Thermodynamics
and statistical mechanics can be used to determine the properties of individual phases,
and the locations and characteristics of the phase transitions that occur between those
phases. Thermodynamic phases are regions in the phase diagram where the thermody-
namics properties are analytic functions of the thermodynamic parameters, while phase
transitions are points, lines, or surfaces in the phase diagram where the thermodynamic
properties are nonanalytic. Much of the remainder of this text is devoted to using statistical
mechanics to explain the properties of material phases and phase transitions.
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FIGURE 4.2 Sketches (not-to-scale) of the P–T (a) and P–V (b) phase diagrams for argon. This geometry is generic
for a wide range of materials. The letters S, L, and V denote solid, liquid, and vapor phases.

It is instructive to examine the structure of phase diagrams. Argon provides a good
example because the structure of its phase diagram is similar to that of many other mate-
rials (see Figure 4.2). At moderate temperatures and pressures, the stable thermodynamic
phases of argon are solid, liquid, and vapor. At high temperatures there is a supercritical
fluid phase that smoothly connects the liquid and vapor phases. Most materials, includ-
ing argon, exhibit multiple solid phases especially at high pressures and low temperatures.
Figure 4.2(a) is the phase diagram in the P–T plane and shows the solid–liquid coexis-
tence line, the liquid–vapor coexistence line, and the solid–vapor coexistence line. The
three lines meet at the triple point (Tt ,Pt) and the liquid–vapor coexistence line ends at
the critical point (Tc,Pc). The triple point values and critical point values for argon are
Tt = 83.8 K, Pt = 68.9 kPa, Tc = 150.7 K, and Pc = 4.86 MPa, respectively.

Figure 4.2(b) is the phase diagram in the P–V plane and shows the pressure versus the
specific volume v (= V /N) on the coexistence lines. The dashed lines indicate the triple
point pressure and critical pressure in both figures. The horizontal tie lines are the por-
tions of isotherms as they cross coexistence lines and show the discontinuities of v. The tie
lines in order from bottom to top are: sublimation tie lines connecting the solid and vapor
phases, the triple point tie line that connects all three phases, and a series of solid–liquid
and liquid–vapor tie lines. Notice that the liquid and vapor specific volumes continuously
approach each other and are both equal to the critical specific volume vc at the critical
point.

The properties of the vapor, liquid, and solid phases are:

. The vapor phase is a low-density gas that is accurately described by the ideal-gas
equation of state P = nkT with corrections that are described by the virial expansion;
see Chapters 6 and 10.
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. The liquid phase is a dense fluid with strong interactions between the atoms. The
fluid exhibits characteristic short-range pair correlations and scattering structure,
as discussed in Section 10.7. The structure factor and the pair correlation function
for argon, as determined from neutron scattering, are shown in Figure 10.8. For
temperatures above the critical temperature Tc, one cannot distinguish between liquid
and vapor. The density in this supercritical phase is a smooth function of temperature
and pressure from the low-density vapor to the high-density liquid. Virial expansions
developed in Sections 10.1 through 10.3 aptly describe the supercritical region. Strictly
speaking, one can only distinguish between the liquid and vapor phases on the
liquid–vapor coexistence line since it is possible to evolve smoothly from one phase
to the other without crossing a phase boundary.. The solid phase is a face-centered cubic crystal structure with long-range order, so the
scattering structure factor displays Bragg peaks as described in Section 10.7.B. The
thermodynamic properties of solid phases are described in Section 7.3.

All equilibrium thermodynamic properties within a single phase are analytic func-
tions of the thermodynamic parameters while phase transitions are defined as places in
the phase diagram where equilibrium thermodynamic properties are not analytic. Coexis-
tence lines, or first-order phase transition lines, separate different phases in the P–T phase
diagram as shown in Figure 4.2(a). Thermodynamic densities are discontinuous across
coexistence lines. This is displayed on the P–V phase diagram in Figure 4.2(b) by hori-
zontal tie lines that connect different values the specific volume takes in the two phases.
Generally, all densities such as the specific volume v = V /N , entropy per particle s= S/N ,
internal energy density u=U/V , and so on, are discontinuous across first-order phase
transition lines. The slopes of the coexistence lines in the P–V phase diagram depend
on the latent heat of the transition and the specific volumes of the coexisting phases; see
Section 4.7. All three phases coexist at the triple point.

The liquid–vapor coexistence line extends from the triple point to the critical point at
the end of the first-order phase transition line. The specific volume is discontinuous on the
liquid–vapor coexistence line but the size of the discontinuty vanishes at the critical point
where the specific volume is vc; see Figure 4.2(b). All densities are continuous functions
of T and P through the critical point. For this reason, critical points are called continuous
transitions or, sometimes, second-order phase transitions. Even though thermodynamic
densities are continuous, the thermodynamic behavior at the critical point is nonanalytic
since, for example, the specific heat and isothermal compressibility both diverge at the
critical point. Another characteristic property of critical points is the divergence of the cor-
relation length, which results in a universal behavior of critical points for broad classes of
materials. The theory of critical points is developed in Chapters 12, 13, and 14.

Classical statistical mechanics provides a framework for understanding the phase dia-
grams and thermodynamic properties of a wide variety of materials. However, quantum
mechanics and quantum statistics play an important role at low temperatures when the
size of the thermal deBroglie wavelength λ= h/

√
2πmkT is of the same order as the
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FIGURE 4.3 Sketch of the P–T phase diagram for helium-4. The letters S, L, and V denote solid, liquid, and vapor
phases. The critical point is Tc = 5.19K and Pc = 227kPa= 2.24atm. The solid–liquid coexistence curve starts at
Ps = 2.5MPa= 25atm at T = 0K and does not intersect the liquid–vapor coexistence curve. The λ-line is the
continuous phase transition between the normal liquid and the superfluid phase. The superfluid phase transition
temperature at the liquid–vapor coexistence line is Tλ = 2.18K.

average distance between molecules. This is the case with liquid helium at temperatures
below a few degrees kelvin. The phase diagram of helium-4 is shown in Figure 4.3. Some
aspects of the phase diagram are similar to the phase diagram of argon. Both helium
and argon have liquid–vapor coexistence lines that end in critical points and both have
crystalline solid phases at low temperatures.

Three differences between the two phase diagrams are most notable: the solid phase
for helium only exists for pressures greater than Ps = 2.5GPa= 25atm, the liquid phase of
helium extends all the way to zero temperature, and helium-4 exhibits a superfluid phase
below Tλ = 2.18K. The superfluid phase exhibits remarkable properties: zero viscosity,
quantized flow, propagating heat modes, and macroscopic quantum coherence. This
extraordinary behavior is due to the Bose-Einstein statistics of 4He atoms and a Bose–
Einstein condensation into a macroscopic quantum state as discussed in Sections 7.1 and
11.2 through 11.6. Even the solid phase of helium-4 shows evidence of a macroscopic
quantum state with the observation of a “supersolid” phase by Kim and Chan (2004).

By contrast, 3He atoms obey Fermi–Dirac statistics and display very different behav-
iors from 4He atoms at low temperatures. The geometry of the phase diagram of helium-3
is similar to that of helium-4 except that the critical temperature is lower (Tc = 3.35K
compared to 5.19K) and the solid phase forms at 30 atm of pressure rather than 25atm.
The dramatic difference is the lack of a superfluid phase near 1K in helium-3. Helium-
3 remains a normal liquid all the way down to about 10 millikelvin. The properties of the
normal liquid phase of helium-3 are described by the theory of degenerate Fermi gases and
the Fermi liquid theory developed in Chapter 8 and Sections 11.7 and 11.8. The superfluid
state that forms at millikelvin temperatures is the result of Bardeen, Cooper, and Schrieffer
(BCS) p-wave pairing between atoms near the Fermi surface; this pairing is discussed in
Section 11.9.
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4.7 Phase equilibrium and the Clausius–Clapeyron
equation

The thermodynamic properties of the phases of a material determine the geometry of the
phase diagram. In particular, the Gibbs free energy

G(N ,P,T)=U −TS+PV = A+PV = µ(P,T)N (1)

determines the locations of the phase boundaries. Note that the chemical potential is the
Gibbs free energy per molecule; see Problem 4.6 and Appendix H. Consider a cylinder con-
taining N molecules held at constant pressure P and constant temperature T , that is, in an
isothermal, isobaric assembly. Suppose the cylinder initially contains two phases: vapor
(A) and liquid (B) so that the total number of molecules is N =NA+NB and the Gibbs
free energy is G = GA(NA,P,T)+GB(NB,P,T). If the two phases do not coexist at this pres-
sure and temperature, the numbers of molecules in each phase will change as the system
approaches equilibrium. As the number of molecules in each phase changes, the Gibbs
free energy changes by an amount

dG =
(
∂GA

∂NA

)
T ,P

dNA+

(
∂GB

∂NB

)
T ,P

dNB = (µA−µB)dNA, (2)

where dNA is the change in the number of molecules in phase A.
The Gibbs free energy is minimized at equilibrium, so dG ≤ 0. If µA > µB, the number

of molecules in phase B will increase and the number in phase A will decrease as the sys-
tem approaches equilibrium. If µA < µB, the number of molecules in phase A will increase
and the number in phase B will decrease. If the chemical potentials are equal, the Gibbs
free energy is independent of the number of molecules in the two phases. Therefore, the
chemical potentials are equal at coexistence:

µA = µB. (3)

Let’s consider the familiar example of water. At normal pressures and temperatures,
water has three phases: liquid water, solid ice, and water vapor, and its P–T phase diagram
is similar to that shown for argon in Figure 4.2(a) — the P–V phase diagram for water is
somewhat different because the density of the liquid phase is larger than the density of
the solid ice phase; see Problems 4.15 and 4.20. At P = 1atm, water and water vapor coex-
ist at T = 100◦C, the “boiling point” — while boiling is a nonequilibrium process, boiling
begins at the temperature at which the equilibrium vapor pressure is equal to the local
atmospheric pressure. Consider a two-phase sample of water and water vapor at T = 99◦C.
A two-phase sample containing both liquid water and water vapor is easy to create in a
constant volume assembly. If there is sufficient volume available, liquid water will evapo-
rate until the water vapor pressure reaches the coexistence pressure at that temperature
Pσ (99◦C)= 0.965atm. If the applied pressure is then increased to, and held constant at,
P = 1atm while maintaining a constant temperature of T = 99◦C, the system will be out
of equilibrium. At constant pressure, the system will return to equilibrium by decreasing
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its volume as water vapor condenses into the liquid phase until the the system is com-
pletely liquid water. This lowers the Gibbs free energy until it has the equilibrium value
determined by the chemical potential of liquid water at this pressure and temperature.

On the other hand, if T = 100◦C and P = 1atm, the chemical potentials of the liquid
and vapor phases are equal, so any combination of water vapor and liquid water has the
same Gibbs free energy. The proportion of water and vapor will change as heat is added
or removed. The latent heat of vaporization of water Lv = 540cal/g= 2260kJ/kg is the heat
needed to convert liquid into vapor.

The coexistence pressure Pσ (T) defines the phase boundary between any two phases
in the P–T plane, as shown in Figure 4.2(a). From equation (3), the coexistence pressure
obeys

µA(Pσ (T),T)= µB(Pσ (T),T). (4)

The derivatives of the chemical potentials are related by(
∂µA

∂T

)
P
+

(
∂µA

∂P

)
T

dPσ
dT
=

(
∂µB

∂T

)
P
+

(
∂µB

∂P

)
T

dPσ
dT

, (5)

while the entropy per particle s= S/N and specific volume v = V /N are given by

s=−
(
∂µ

∂T

)
P

, (6a)

v =
(
∂µ

∂P

)
T

; (6b)

see equation (4.5.6). Equations (5) and (6) give the Clausius–Clapeyron equation

dPσ
dT
=

sB− sA

vB− vA
=
1s
1v
=

L
T1v

, (7)

where L= T1s is the latent heat per particle. The slope of the coexistence curve depends
on the discontinuities of the entropy per particle and the volume per particle. Equation (7)
applies very generally to all first-order phase transitions and can be used to determine
the coexistence curve as a function of temperature; see Section 4.4, Problems 4.11, and
4.14 through 4.16.

At a triple point, the chemical potentials of three phases are equal:

µA = µB = µC. (8)

The slopes of the three coexistence lines that define the triple point are related since
1sAB+1sBC +1sCA = 0 and 1vAB+1vBC +1vCA = 0. This guarantees that each coexis-
tence line between two phases at the triple point “points into” the third phase; see
Problem 4.17.
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Problems
4.1. Show that the entropy of a system in the grand canonical ensemble can be written as

S=−k
∑
r,s

Pr,s lnPr,s,

where Pr,s is given by equation (4.1.9).
4.2. In the thermodynamic limit (when the extensive properties of the system become infinitely large,

while the intensive ones remain constant), the q-potential of the system may be calculated by
taking only the largest term in the sum

∞∑
Nr=0

zNr QNr (V ,T).

Verify this statement and interpret the result physically.
4.3. A vessel of volume V (0) contains N (0) molecules. Assuming that there is no correlation whatsoever

between the locations of the various molecules, calculate the probability, P(N ,V ), that a region of
volume V (located anywhere in the vessel) contains exactly N molecules.
(a) Show that N =N (0)p and (1N)r.m.s. = {N (0)p(1−p)}1/2, where p= V /V (0).
(b) Show that if both N (0)p and N (0)(1−p) are large numbers, the function P(N ,V ) assumes a

Gaussian form.
(c) Further, if p� 1 and N �N (0), show that the function P(N ,V ) assumes the form of a Poisson

distribution:

P(N)= e−N (N)
N

N !
.

4.4. The probability that a system in the grand canonical ensemble has exactly N particles is given by

p(N)=
zN QN (V ,T)
Q(z,V ,T)

.

Verify this statement and show that in the case of a classical, ideal gas the distribution of particles
among the members of a grand canonical ensemble is identically a Poisson distribution. Calculate
the root-mean-square value of (1N) for this system both from the general formula (4.5.3) and from
the Poisson distribution, and show that the two results are the same.

4.5. Show that expression (4.3.20) for the entropy of a system in the grand canonical ensemble can also
be written as

S= k
[
∂

∂T
(Tq)

]
µ,V

.

4.6. Define the isobaric partition function

YN (P,T)=
1
λ3

∫
∞

0
QN (V ,T)e−βPV dV .

Show that in the thermodynamic limit the Gibbs free energy (4.7.1) is proportional to lnYN (P,T).
Evaluate the isobaric partition function for a classical ideal gas and show that PV =NkT . [The
factor of the cube of the thermal deBroglie wavelength, λ3, serves to make the partition function
dimensionless and does not contribute to the Gibbs free energy in the thermodynamic limit.]

4.7. Consider a classical system of noninteracting, diatomic molecules enclosed in a box of volume V
at temperature T . The Hamiltonian of a single molecule is given by

H(r1, r2, p1, p2)=
1

2m
(p2

1+p2
2)+

1
2

K |r1− r2|
2.

Study the thermodynamics of this system, including the dependence of the quantity 〈r2
12〉 on T .
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4.8. Determine the grand partition function of a gaseous system of “magnetic” atoms (with J = 1
2 and

g = 2) that can have, in addition to the kinetic energy, a magnetic potential energy equal to µBH
or−µBH , depending on their orientation with respect to an applied magnetic field H . Derive an
expression for the magnetization of the system, and calculate how much heat will be given off by
the system when the magnetic field is reduced from H to zero at constant volume and constant
temperature.

4.9. Study the problem of solid–vapor equilibrium (Section 4.4) by setting up the grand partition
function of the system.

4.10. A surface with N0 adsorption centers has N(≤N0) gas molecules adsorbed on it. Show that the
chemical potential of the adsorbed molecules is given by

µ= kT ln
N

(N0−N)a(T)
,

where a(T) is the partition function of a single adsorbed molecule. Solve the problem by
constructing the grand partition function as well as the partition function of the system.
[Neglect the intermolecular interaction among the adsorbed molecules.]

4.11. Study the state of equilibrium between a gaseous phase and an adsorbed phase in a single-
component system. Show that the pressure in the gaseous phase is given by the Langmuir
equation

Pg =
θ

1− θ
× (a certain function of temperature),

where θ is the equilibrium fraction of the adsorption sites that are occupied by the adsorbed
molecules.

4.12. Show that for a system in the grand canonical ensemble

{(NE)−N E} =
(
∂U
∂N

)
T ,V

(1N)2.

4.13. Define a quantity J as

J = E−Nµ= TS−PV .

Show that for a system in the grand canonical ensemble

(1J)2 = kT 2CV +

{(
∂U
∂N

)
T ,V
−µ

}2

(1N)2.

4.14. Assuming that the latent heat of vaporization of water Lv = 2260kJ/kg is independent of
temperature and the specific volume of the liquid phase is negligible compared to the specific
volume of the vapor phase, vvapor = kT/Pσ (T), integrate the Clausius–Clapeyron equation (4.7.7)
to obtain the coexistence pressure as a function of temperature. Compare your result to the
experimental vapor pressure of water from the triple point to 200◦C. The equilibrium vapor
pressure at 373K is 101kPa= 1atm.

4.15. Assuming that the latent heat of sublimation of ice Ls = 2500kJ/kg is independent of temperature
and the specific volume of the solid phase is negligible compared to the specific volume of the
vapor phase, vvapor = kT/Pσ (T), integrate the Clausius–Clapeyron equation (4.7.7) to obtain the
coexistence pressure as a function of temperature. Compare your result to the experimental vapor
pressure of ice from T = 0 to the triple point. The equilibrium vapor pressure at the triple point is
612Pa.

4.16. Calculate the slope of the solid-liquid transition line for water near the triple point T = 273.16K,
given that the latent heat of melting is 80cal/g, the density of the liquid phase is 1.00g/cm3, and
the density of the ice phase is 0.92g/cm3. Estimate the melting temperature at P = 100atm.
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4.17. Show that the Clausius–Clapeyron equation (4.7.7) guarantees that each of the coexistence curves
at the triple point of a material “points into” the third phase; for example, the slope of the
solid–vapor coexistence line has a value in-between the slopes of the the the solid–liquid and
liquid–vapor coexistence lines.

4.18. Sketch the P–V phase diagram for helium-4 using the sketch of the P–T phase diagram in
Figure 4.3.

4.19. Derive the equivalent of the Clausius–Clapeyron equation (4.7.7) for the slope of the coexistence
chemical potential as a function of temperature. Use the fact that the pressures P(µ,T) in two
different phases are equal on the coexistence curve.

4.20. Sketch the P–T and P–V phase diagrams of water, taking into account the fact that the mass
density of the liquid phase is larger than the mass density of the solid phase.



5
Formulation of Quantum Statistics

The scope of the ensemble theory developed in Chapters 2 through 4 is extremely general,
though the applications considered so far were confined either to classical systems or to
quantum-mechanical systems composed of distinguishable entities. When it comes to
quantum-mechanical systems composed of indistinguishable entities, as most physical
systems are, considerations of the preceding chapters have to be applied with care. One
finds that in this case it is advisable to rewrite ensemble theory in a language that is more
natural to a quantum-mechanical treatment, namely the language of the operators and
the wavefunctions. Insofar as statistics are concerned, this rewriting of the theory may not
seem to introduce any new physical ideas as such; nonetheless, it provides us with a tool
that is highly suited for studying typical quantum systems. And once we set out to study
these systems in detail, we encounter a stream of new, and altogether different, physical
concepts. In particular, we find that the behavior of even a noninteracting system, such as
the ideal gas, departs considerably from the pattern set by the classical treatment. In the
presence of interactions, the pattern becomes even more complicated. Of course, in the
limit of high temperatures and low densities, the behavior of all physical systems tends
asymptotically to what we expect on classical grounds. In the process of demonstrating
this point, we automatically obtain a criterion that tells us whether a given physical sys-
tem may or may not be treated classically. At the same time, we obtain rigorous evidence in
support of the procedure, employed in the previous chapters, for computing the number,
0, of microstates (corresponding to a given macrostate) of a given system from the vol-
ume, ω, of the relevant region of its phase space, namely 0 ≈ ω/h f , where f is the number
of “degrees of freedom” in the problem.

5.1 Quantum-mechanical ensemble theory:
the density matrix

We consider an ensemble of N identical systems, where N � 1. These systems are char-
acterized by a (common) Hamiltonian, which may be denoted by the operator Ĥ . At time
t, the physical states of the various systems in the ensemble will be characterized by
the wavefunctions ψ(ri, t), where ri denote the position coordinates relevant to the sys-
tem under study. Let ψk(ri, t) denote the (normalized) wavefunction characterizing the
physical state in which the kth system of the ensemble happens to be at time t; natu-
rally, k = 1,2, . . . ,N . The time variation of the function ψk(t) will be determined by the
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Schrödinger equation1

Ĥψk(t)= i~ψ̇k(t). (1)

Introducing a complete set of orthonormal functions φn, the wavefunctions ψk(t) may be
written as

ψk(t)=
∑

n

ak
n(t)φn, (2)

where

ak
n(t)=

∫
φ∗nψ

k(t)dτ ; (3)

here, φ∗n denotes the complex conjugate of φn while dτ denotes the volume element of
the coordinate space of the given system. Clearly, the physical state of the kth system can
be described equally well in terms of the coefficients ak

n(t). The time variation of these
coefficients will be given by

i~ȧk
n(t)= i~

∫
φ∗nψ̇

k(t)dτ =
∫
φ∗nĤψk(t)dτ

=

∫
φ∗nĤ

{∑
m

ak
m(t)φm

}
dτ

=

∑
m

Hnmak
m(t), (4)

where

Hnm =

∫
φ∗nĤφmdτ . (5)

The physical significance of the coefficients ak
n(t) is evident from equation (2). They are

the probability amplitudes for the various systems of the ensemble to be in the various
states φn; to be practical, the number |ak

n(t)|
2 represents the probability that a measure-

ment at time t finds the kth system of the ensemble to be in the particular state φn. Clearly,
we must have ∑

n

|ak
n(t)|

2
= 1 (for all k). (6)

We now introduce the density operator ρ̂(t), as defined by the matrix elements

ρmn(t)=
1
N

N∑
k=1

{
ak

m(t)a
k∗
n (t)

}
; (7)

clearly, the matrix element ρmn(t) is the ensemble average of the quantity am(t)a∗n(t),
which, as a rule, varies from member to member in the ensemble. In particular, the
diagonal element ρnn(t) is the ensemble average of the probability |an(t)|2, the latter

1For simplicity of notation, we suppress the coordinates ri in the argument of the wavefunction ψk .
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itself being a (quantum-mechanical) average. Thus, we encounter here a double-averaging
process — once due to the probabilistic aspect of the wavefunctions and again due to the
statistical aspect of the ensemble. The quantity ρnn(t) now represents the probability that
a system, chosen at random from the ensemble, at time t, is found to be in the state φn. In
view of equations (6) and (7), ∑

n

ρnn = 1. (8)

We shall now determine the equation of motion for the density matrix ρmn(t). We
obtain, with the help of the foregoing equations,

i~ρ̇mn(t)=
1
N

N∑
k=1

[
i~
{

ȧk
m(t)a

k∗
n (t)+ak

m(t)ȧ
k∗
n (t)

}]

=
1
N

N∑
k=1

[{∑
l

Hmla
k
l (t)

}
ak∗

n (t)−ak
m(t)

{∑
l

H∗nla
k∗
l (t)

}]
=

∑
l

{Hmlρln(t)− ρml(t)Hln}

= (Ĥ ρ̂− ρ̂Ĥ)mn; (9)

here, use has been made of the fact that, in view of the Hermitian character of the operator
Ĥ ,H∗nl =Hln. Using the commutator notation, equation (9) may be written as

i~ ˙̂ρ = [Ĥ , ρ̂]−. (10)

Equation (10) is the quantum-mechanical analog of the classical equation (2.2.10) of
Liouville. As expected in going from a classical equation of motion to its quantum-
mechanical counterpart, the Poisson bracket [ρ,H] has given place to the commutator
(ρ̂Ĥ − Ĥ ρ̂)/i~.

If the given system is known to be in a state of equilibrium, the corresponding ensemble
must be stationary, that is, ρ̇mn = 0. Equations (9) and (10) then tell us that, for this to be the
case, (i) the density operator ρ̂ must be an explicit function of the Hamiltonian operator Ĥ
(for then the two operators will necessarily commute) and (ii) the Hamiltonian must not

depend explicitly on time, that is, we must have (i) ρ̂ = ρ̂(Ĥ) and (ii) ˙̂H = 0. Now, if the basis
functions φn were the eigenfunctions of the Hamiltonian itself, then the matrices H and
ρ would be diagonal:

Hmn = Enδmn, ρmn = ρnδmn. (11)2

2It may be noted that in this (so-called energy) representation the density operator ρ̂ may be written as

ρ̂ =
∑

n

|φn〉ρn〈φn|, (12)

for then
ρkl =

∑
n

〈φk|φn〉ρn〈φn|φl〉 =
∑

n

δknρnδnl = ρkδkl .
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The diagonal element ρn, being a measure of the probability that a system, chosen at ran-
dom (and at any time) from the ensemble, is found to be in the eigenstate φn, will naturally
depend on the corresponding eigenvalue En of the Hamiltonian; the precise nature of this
dependence is, however, determined by the “kind” of ensemble we wish to construct.

In any representation other than the energy representation, the density matrix may or
may not be diagonal. However, quite generally, it will be symmetric:

ρmn = ρnm. (13)

The physical reason for this symmetry is that, in statistical equilibrium, the tendency of a
physical system to switch from one state (in the new representation) to another must be
counterbalanced by an equally strong tendency to switch between the same states in the
reverse direction. This condition of detailed balancing is essential for the maintenance of
an equilibrium distribution within the ensemble.

Finally, we consider the expectation value of a physical quantity G, which is dynami-
cally represented by an operator Ĝ. This will be given by

〈G〉 =
1
N

N∑
k=1

∫
ψk∗Ĝψkdτ . (14)

In terms of the coefficients ak
n,

〈G〉 =
1
N

N∑
k=1

[∑
m,n

ak∗
n ak

mGnm

]
, (15)

where

Gnm =

∫
φ∗nĜφmdτ . (16)

Introducing the density matrix ρ, equation (15) becomes

〈G〉 =
∑
m,n

ρmnGnm =
∑

m

(ρ̂Ĝ)mm = Tr(ρ̂Ĝ). (17)

Taking Ĝ = 1̂, where 1̂ is the unit operator, we have

Tr(ρ̂)= 1, (18)

which is identical to (8). It should be noted here that if the original wavefunctions ψk were
not normalized then the expectation value 〈G〉would be given by the formula

〈G〉 =
Tr(ρ̂Ĝ)
Tr(ρ̂)

(19)
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instead. In view of the mathematical structure of formulae (17) and (19), the expectation
value of any physical quantity G is manifestly independent of the choice of the basis {φn},
as it indeed should be.

5.2 Statistics of the various ensembles
5.2.A The microcanonical ensemble

The construction of the microcanonical ensemble is based on the premise that the sys-
tems constituting the ensemble are characterized by a fixed number of particles N , a fixed
volume V , and an energy lying within the interval

(
E− 1

21,E+ 1
21
)
, where 1� E. The

total number of distinct microstates accessible to a system is then denoted by the sym-
bol 0(N ,V ,E;1) and, by assumption, any one of these microstates is as likely to occur as
any other. This assumption enters into our theory in the nature of a postulate and is often
referred to as the postulate of equal a priori probabilities for the various accessible states.

Accordingly, the density matrix ρmn (which, in the energy representation, must be a
diagonal matrix) will be of the form

ρmn = ρnδmn, (1)

with

ρn =

1/0 for each of the accessible states,

0 for all other states;
(2)

the normalization condition (5.1.18) is clearly satisfied. As we already know, the thermody-
namics of the system is completely determined from the expression for its entropy which,
in turn, is given by

S= k ln 0. (3)

Since 0, the total number of distinct, accessible states, is supposed to be computed
quantum-mechanically, taking due account of the indistinguishability of the particles right
from the beginning, no paradox, such as Gibbs’, is now expected to arise. Moreover, if
the quantum state of the system turns out to be unique (0 = 1), the entropy of the sys-
tem will identically vanish. This provides us with a sound theoretical basis for the hitherto
empirical theorem of Nernst (also known as the third law of thermodynamics).

The situation corresponding to the case 0 = 1 is usually referred to as a pure case. In
such a case, the construction of an ensemble is essentially superfluous, because every sys-
tem in the ensemble has got to be in one and the same state. Accordingly, there is only one
diagonal element ρnn that is nonzero (actually equal to unity), while all others are zero. The
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density matrix, therefore, satisfies the relation

ρ2
= ρ. (4)

In a different representation, the pure case will correspond to

ρmn =
1
N

N∑
k=1

ak
mak∗

n = ama∗n (5)

because all values of k are now literally equivalent. We then have

ρ2
mn =

∑
l

ρmlρln =
∑

l

ama∗l ala
∗
n

= ama∗n

(
because

∑
l

a∗l al = 1
)

= ρmn. (6)

Relation (4) thus holds in all representations.
A situation in which 0 > 1 is usually referred to as a mixed case. The density matrix, in

the energy representation, is then given by equations (1) and (2). If we now change over to
any other representation, the general form of the density matrix should remain the same,
namely (i) the off-diagonal elements should continue to be zero, while (ii) the diagonal
elements (over the allowed range) should continue to be equal to one another. Now, had
we constructed our ensemble on a representation other than the energy representation
right from the beginning, how could we have possibly anticipated ab initio property (i)
of the density matrix, though property (ii) could have been easily invoked through a pos-
tulate of equal a priori probabilities? To ensure that property (i), as well as property (ii),
holds in every representation, we must invoke yet another postulate, namely the postulate
of random a priori phases for the probability amplitudes ak

n, which in turn implies that
the wavefunction ψk, for all k, is an incoherent superposition of the basis {φn}. As a con-
sequence of this postulate, coupled with the postulate of equal a priori probabilities, we
would have in any representation

ρmn ≡
1
N

N∑
k=1

ak
mak∗

n =
1
N

N∑
k=1

|a|2ei
(
θk

m−θ
k
n

)

= c
〈
ei
(
θk

m−θ
k
n

)〉
= cδmn, (7)

as it should be for a microcanonical ensemble.
Thus, contrary to what might have been expected on customary grounds, to secure the

physical situation corresponding to a microcanonical ensemble, we require in general two
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postulates instead of one! The second postulate arises solely from quantum-mechanics
and is intended to ensure noninterference (and hence a complete absence of correlations)
among the member systems; this, in turn, enables us to form a mental picture of each
system of the ensemble, one at a time, completely disentangled from other systems.

5.2.B The canonical ensemble

In this ensemble the macrostate of a member system is defined through the parameters
N , V , and T ; the energy E is now a variable quantity. The probability that a system, chosen
at random from the ensemble, possesses an energy Er is determined by the Boltzmann
factor exp(−βEr), where β = 1/kT ; see Sections 3.1 and 3.2. The density matrix in the
energy representation is, therefore, taken as

ρmn = ρnδmn, (8)

with

ρn = C exp (−βEn); n= 0,1,2, . . . (9)

The constant C is determined by the normalization condition (5.1.18), whereby

C =
1∑

n
exp(−βEn)

=
1

QN (β)
, (10)

where QN (β) is the partition function of the system. In view of equations (5.1.12), see
footnote 2, the density operator in this ensemble may be written as

ρ̂ =
∑

n

|φn〉
1

QN (β)
e−βEn 〈φn|

=
1

QN (β)
e−βĤ

∑
n

|φn〉〈φn|

=
1

QN (β)
e−βĤ

=
e−βĤ

Tr
(
e−βĤ

) , (11)

for the operator
∑

n |φn〉〈φn| is identically the unit operator. It is understood that the
operator exp(−βĤ) in equation (11) stands for the sum

∞∑
j=0

(−1) j (βĤ) j

j!
. (12)
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The expectation value 〈G〉N of a physical quantity G, which is represented by an operator
Ĝ, is now given by

〈G〉N = Tr(ρ̂Ĝ)=
1

QN (β)
Tr
(
Ĝe−βĤ)

=
Tr
(
Ĝe−βĤ)

Tr
(
e−βĤ

) ; (13)

the suffix N here emphasizes the fact that the averaging is being done over an ensemble
with N fixed.

5.2.C The grand canonical ensemble

In this ensemble the density operator ρ̂ operates on a Hilbert space with an indefi-
nite number of particles. The density operator must therefore commute not only with
the Hamiltonian operator Ĥ but also with a number operator n̂ whose eigenvalues are
0,1,2, . . .. The precise form of the density operator can now be obtained by a straightfor-
ward generalization of the preceding case, with the result

ρ̂ =
1

Q(µ,V ,T)
e−β(Ĥ−µn̂), (14)

where

Q(µ,V ,T)=
∑
r,s

e−β(Er−µNs) = Tr{e−β(Ĥ−µn̂)
}. (15)

The ensemble average 〈G〉 is now given by

〈G〉 =
1

Q(µ,V ,T)
Tr
(
Ĝe−βĤ eβµn̂)

=

∞∑
N=0

zN
〈G〉N QN (β)

∞∑
N=0

zN QN (β)

, (16)

where z(≡ eβµ) is the fugacity of the system while 〈G〉N is the canonical-ensemble average,
as given by equation (13). The quantity Q(µ,V ,T) appearing in these formulae is, clearly,
the grand partition function of the system.

5.3 Examples
5.3.A An electron in a magnetic field

We consider, for illustration, the case of a single electron that possesses an intrinsic spin
1
2 ~σ̂ and a magnetic moment µB, where σ̂ is the Pauli spin operator and µB = e~/2mc.
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The spin of the electron can have two possible orientations, ↑ or ↓, with respect to an
applied magnetic field B. If the applied field is taken to be in the direction of the z-axis, the
configurational Hamiltonian of the spin takes the form

Ĥ =−µB (σ̂ ·B)=−µB Bσ̂z. (1)

In the representation that makes σ̂z diagonal, namely

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i

i 0

)
, σ̂z =

(
1 0

0 −1

)
, (2)

the density matrix in the canonical ensemble would be

(ρ̂)=

(
e−βĤ)

Tr
(
e−βĤ

)
(3)

=
1

eβµB B
+ e−βµB B

(
eβµB B 0

0 e−βµB B

)
.

We thus obtain for the expectation value σz

〈σz〉 = Tr(ρ̂σ̂z)=
eβµB B

− e−βµB B

eβµB B
+ e−βµB B

= tanh(βµB B), (4)

in perfect agreement with the findings of Sections 3.9 and 3.10.

5.3.B A free particle in a box

We now consider the case of a free particle, of mass m, in a cubical box of side L. The
Hamiltonian of the particle is given by

Ĥ =−
~2

2m
∇

2
=−

~2

2m

(
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)
, (5)

while the eigenfunctions of the Hamiltonian that satisfy periodic boundary conditions,

φ(x+L,y,z)= φ(x,y+L,z)= φ(x,y,z+L)

= φ(x,y,z), (6)

are given by

φE(r)=
1

L3/2
exp(ik · r), (7)

the corresponding eigenvalues E being

E =
~2k2

2m
, (8)
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and the corresponding wave vector k being

k ≡ (kx,ky ,kz)=
2π
L
(nx,ny ,nz); (9)

the quantum numbers nx, ny, and nz must be integers (positive, negative, or zero).
Symbolically, we may write

k =
2π
L

n, (10)

where n is a vector with integral components 0,±1,±2, . . ..
We now proceed to evaluate the density matrix (ρ̂) of this system in the canonical

ensemble; we shall do so in the coordinate representation. In view of equation (5.2.11),
we have

〈r|e−βĤ
|r′〉 =

∑
E

〈r|E〉e−βE
〈E|r′〉

(11)
=

∑
E

e−βEφE(r)φ∗E(r
′).

Substituting from equation (7) and making use of relations (8) and (10), we obtain

〈r|e−βĤ
|r′〉 =

1

L3

∑
k

exp

[
−
β~2

2m
k2
+ ik · (r− r′)

]

≈
1

(2π)3

∫
exp

[
−
β~2

2m
k2
+ ik · (r− r′)

]
d3k

=

(
m

2πβ~2

)3/2

exp
[
−

m

2β~2
|r− r′|2

]
; (12)

see equations (B.41) and (B.42) in Appendix B. It follows that

Tr(e−βĤ )=

∫
〈r|e−βĤ

|r〉d3r

= V
(

m

2πβ~2

)3/2

. (13)

The expression in equation (13) is indeed the partition function, Q1(β), of a single particle
confined to a box of volume V ; see equation (3.5.19). Dividing (12) by (13), we obtain for
the density matrix in the coordinate representation

〈r|ρ̂|r′〉 =
1
V

exp
[
−

m

2β~2
|r− r′|2

]
. (14)

As expected, the matrix ρr,r′ is symmetric between the states r and r′. Moreover, the
diagonal element 〈r|ρ|r〉, which represents the probability density for the particle to be in
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the neighborhood of the point r, is independent of r; this means that, in the case of a sin-
gle free particle, all positions within the box are equally likely to obtain. A nondiagonal
element 〈r|ρ|r′〉, on the other hand, is a measure of the probability of “spontaneous tran-
sition” between the position coordinates r and r′ and is therefore a measure of the relative
“intensity” of the wave packet (associated with the particle) at a distance |r− r′| from the
center of the packet. The spatial extent of the wave packet, which is a measure of the uncer-
tainty involved in locating the position of the particle, is clearly of order ~/(mkT)1/2; the
latter is also a measure of the mean thermal wavelength of the particle. The spatial spread
found here is a purely quantum-mechanical effect; quite expectedly, it tends to vanish at
high temperatures. In fact, as β→ 0, the behavior of the matrix element (14) approaches
that of a delta function, which implies a return to the classical picture of a point particle.

Finally, we determine the expectation value of the Hamiltonian itself. From equa-
tions (5) and (14), we obtain

〈H〉 = Tr(Ĥ ρ̂)=−
~2

2mV

∫ {
∇

2 exp
[
−

m

2β~2
|r− r′|2

]}
r=r′

d3r

=
1

2βV

∫ {[
3−

m

β~2
|r− r′|2

]
exp

[
−

m

2β~2
|r− r′|2

]}
r=r′

d3r

=
3

2β
=

3
2

kT , (15)

which was indeed expected. Otherwise, too,

〈H〉 =
Tr
(
Ĥe−βĤ)

Tr
(
e−βĤ

) =− ∂

∂β
lnTr

(
e−βĤ) (16)

which, on combination with (13), leads to the same result.

5.3.C A linear harmonic oscillator

Next, we consider the case of a linear harmonic oscillator whose Hamiltonian is given by

Ĥ =−
~2

2m
∂2

∂q2
+

1
2

mω2q2, (17)

with eigenvalues

En =

(
n+

1
2

)
~ω; n= 0,1,2, . . . (18)

and eigenfunctions

φn(q)=
(mω
π~

)1/4 Hn(ξ)

(2nn!)1/2
e−(1/2)ξ2

, (19)
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where

ξ =
(mω

~

)1/2
q (20)

and

Hn(ξ)= (−1)ne ξ
2
(

d
dξ

)n

e−ξ
2

. (21)

The matrix elements of the operator exp(−βĤ) in the q-representation are given by

〈q|e−βĤ
|q′〉 =

∞∑
n=0

e−βEnφn(q)φn(q′)

=

(mω
π~

)1/2
e−(1/2)(ξ2

+ξ ′2)
∞∑

n=0

{
e−(n+1/2)β~ω Hn(ξ)Hn(ξ

′)

2nn!

}
. (22)

The summation over n is somewhat difficult to evaluate; nevertheless, the final result is3

〈q|e−βĤ
|q′〉 =

[
mω

2π~sinh(β~ω)

]1/2

× exp
[
−

mω
4~

{
(q+q′)2 tanh

(
β~ω

2

)
+ (q−q′)2 coth

(
β~ω

2

)}]
, (23)

which gives

Tr
(
e−βĤ)

=

∞∫
−∞

〈q|e−βĤ
|q〉dq

=

[
mω

2π~sinh(β~ω)

]1/2 ∞∫
−∞

exp

[
−

mωq2

~
tanh

(
β~ω

2

)]
dq

=
1

2sinh
(

1
2β~ω

) = e−(1/2)β~ω

1− e−β~ω . (24)

Expression (24) is indeed the partition function of a linear harmonic oscillator; see
equation (3.8.14). At the same time, we find that the probability density for the oscillator
coordinate to be in the vicinity of the value q is given by

〈q|ρ̂|q〉 =

mω tanh
(

1
2β~ω

)
π~

1/2

exp

[
−

mωq2

~
tanh

(
β~ω

2

)]
; (25)

3The mathematical details of this derivation can be found in Kubo (1965, pp. 175–177).
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we note that this is a Gaussian distribution in q, with mean value zero and root-mean-
square deviation

qr.m.s. =

 ~

2mω tanh
(

1
2β~ω

)
1/2

. (26)

The probability distribution (25) was first derived by Bloch in 1932. In the classical limit
(β~ω� 1), the distribution becomes purely thermal — free from quantum effects:

〈q|ρ̂|q〉 ≈

(
mω2

2πkT

)1/2

exp

[
−

mω2q2

2kT

]
, (27)

with dispersion (kT/mω2)1/2. At the other extreme (β~ω� 1), the distribution becomes
purely quantum-mechanical — free from thermal effects:

〈q|ρ̂|q〉 ≈
(mω
π~

)1/2
exp

[
−

mωq2

~

]
, (28)

with dispersion (~/2mω)1/2. Note that the limiting distribution (28) is precisely the one
expected for an oscillator in its ground state (n= 0), that is one with probability density
φ2

0(q); see equations (19) through (21).
In view of the fact that the mean energy of the oscillator is given by

〈H〉 = −
∂

∂β
lnTr

(
e−βĤ)

=
1
2

~ωcoth
(

1
2
β~ω

)
, (29)

we observe that the temperature dependence of the distribution (25) is solely determined
by the expectation value 〈H〉. Actually, we can write

〈q|ρ̂|q〉 =

(
mω2

2π〈H〉

)1/2

exp

[
−

mω2q2

2〈H〉

]
, (30)

with

qr.m.s. =

(
〈H〉

mω2

)1/2

. (31)

It is now straightforward to see that the mean value of the potential energy
(1

2 mω2q2
)

of
the oscillator is 1

2 〈H〉; accordingly, the mean value of the kinetic energy (p2/2m) will also
be the same.
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5.4 Systems composed of indistinguishable
particles

We shall now formulate the quantum-mechanical description of a system of N identical
particles. To fix ideas, we consider a gas of noninteracting particles; the findings of this
study will be of considerable relevance to other systems as well.

Now, the Hamiltonian of a system of N noninteracting particles is simply a sum of the
individual single-particle Hamiltonians:

Ĥ(q, p)=
N∑

i=1

Ĥ i(qi,pi); (1)

here, (qi,pi) are the coordinates and momenta of the ith particle while Ĥ i is its Hamilto-
nian.4 Since the particles are identical, the Hamiltonians Ĥ i(i= 1,2, . . . ,N) are formally the
same; they only differ in the values of their arguments. The time-independent Schrödinger
equation for the system is

ĤψE(q)= EψE(q), (2)

where E is an eigenvalue of the Hamiltonian and ψE(q) the corresponding eigenfunction.
In view of (1), we can write a straightforward solution of the Schrödinger equation, namely

ψE(q)=
N∏

i=1

uεi (qi), (3)

with

E =
N∑

i=1

εi; (4)

the factor uεi(qi) in (3) is an eigenfunction of the single-particle Hamiltonian Ĥ i(qi,pi),
with eigenvalue εi:

Ĥ iuεi (qi)= εiuεi (qi). (5)

Thus, a stationary state of the given system may be described in terms of the single-particle
states of the constituent particles. In general, we may do so by specifying the set of num-
bers {ni} to represent a particular state of the system; this would imply that there are ni

particles in the eigenstate characterized by the energy value εi. Clearly, the distribution set

4We are studying here a single-component system composed of “spinless” particles. Generalization to a system
composed of particles with spin and to a system composed of two or more components is quite straightforward.
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{ni}must conform to the conditions ∑
i

ni =N (6)

and ∑
i

niεi = E. (7)

Accordingly, the wavefunction of this state may be written as

ψE(q)=
n1∏

m=1

u1(m)
n1+n2∏

m=n1+1

u2(m) . . . , (8)

where the symbol ui(m) stands for the single-particle wavefunction uεi(qm).
Now, suppose we effect a permutation among the coordinates appearing on the right

side of (8); as a result, the coordinates (1,2, . . . ,N) get replaced by (P1,P2, . . . ,PN), say. The
resulting wavefunction, which we may call PψE(q), will be

PψE(q)=
n1∏

m=1

u1(Pm)
n1+n2∏

m=n1+1

u2(Pm) . . . . (9)

In classical physics, where the particles of a given system, even though identical, are
regarded as mutually distinguishable, any permutation that brings about an interchange
of particles in two different single-particle states is recognized to have led to a new, physi-
cally distinct, microstate of the system. For example, classical physics regards a microstate
in which the so-called 5th particle is in the state ui and the so-called 7th particle in the
state uj( j 6= i) as distinct from a microstate in which the 7th particle is in the state ui and
the 5th particle in the state uj. This leads to

N !
n1!n2! . . .

(10)

(supposedly distinct) microstates of the system, corresponding to a given mode of distri-
bution {ni}. The number (10) would then be ascribed as a “statistical weight factor” to
the distribution set {ni}. Of course, the “correction” applied by Gibbs, which has been
discussed in Sections 1.5 and 1.6, reduces this weight factor to

Wc{ni} =
1

n1!n2! . . .
. (11)

And the only way one could understand the physical basis of that “correction” was in terms
of the inherent indistinguishability of the particles.

According to quantum physics, however, the situation remains unsatisfactory even
after the Gibbs correction has been incorporated, for, strictly speaking, an interchange
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among identical particles, even if they are in different single-particle states, should not
lead to a new microstate of the system! Thus, if we want to take into account the indistin-
guishability of the particles properly, we must not regard a microstate in which the “5th”
particle is in the state ui and the “7th” in the state uj as distinct from a microstate in which
the “7th” particle is in the state ui and the “5th” in the state uj (even if i 6= j), for the labeling
of the particles as No. 1, No. 2, and so on (which one often resorts to) is at most a matter of
convenience — it is not a matter of reality. In other words, all that matters in the descrip-
tion of a particular state of the given system is the set of numbers ni that tell us how many
particles there are in the various single-particle states ui; the question, “which particle is
in which single-particle state?” has no relevance at all.

Accordingly, the microstates resulting from any permutation P among the N parti-
cles (so long as the numbers ni remain the same) must be regarded as one and the
same microstate. For the same reason, the weight factor associated with a distribution set
{ni}, provided that the set is not disallowed on some other physical grounds, should be
identically equal to unity, whatever the values of the numbers ni may be:

Wq{ni} ≡ 1. (12)5

Indeed, if for some physical reason the set {ni} is disallowed, the weight factor Wq for that
set should be identically equal to zero; see, for instance, equation (19).

At the same time, a wavefunction of the type (8), which we may call Boltzmannian
and denote by the symbol ψBoltz(q), is inappropriate for describing the state of a system
composed of indistinguishable particles because an interchange of arguments among the
factors ui and uj, where i 6= j, would lead to a wavefunction that is both mathematically and
physically different from the one we started with. Now, since a mere interchange of the
particle coordinates must not lead to a new microstate of the system, the wavefunction
ψE(q) must be constructed in such a way that, for all practical purposes, it is insensitive
to any interchange among its arguments. The simplest way to do this is to set up a lin-
ear combination of all the N ! functions of the type (9) that obtain from (8) by all possible
permutations among its arguments; of course, the combination must be such that if a per-
mutation of coordinates is carried out in it, then the wavefunctions ψ and Pψ must satisfy
the property

|Pψ |2 = |ψ |2. (13)

This leads to the following possibilities:

Pψ = ψ for all P, (14)

5It may be mentioned here that as early as in 1905 Ehrenfest pointed out that to obtain Planck’s formula for the
black-body radiation one must assign equal a priori probabilities to the various distribution sets {ni}.
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which means that the wavefunction is symmetric in all its arguments, or

Pψ =

+ψ if P is an even permutation,

−ψ if P is an odd permutation,
(15)6

which means that the wavefunction is antisymmetric in its arguments. We call these
wavefunctions ψS and ψA, respectively; their mathematical structure is given by

ψS(q)= const.
∑

P

PψBoltz(q) (16)

and

ψA(q)= const.
∑

P

δPPψBoltz(q), (17)

where δP in the expression for ψA is +1 or −1 according to whether the permutation P is
even or odd.

We note that the function ψA(q) can be written in the form of a Slater determinant:

ψA(q)= const.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ui(1) ui(2) · · · ui(N)

uj(1) uj(2) · · · uj(N)

· · · · · ·

· · · · · ·

· · · · · ·

ul(1) ul(2) · · · ul(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (18)

where the leading diagonal is precisely the Boltzmannian wavefunction while the other
terms of the expansion are the various permutations thereof; positive and negative signs in
the combination (17) appear automatically as we expand the determinant. On interchang-
ing a pair of arguments (which amounts to interchanging the corresponding columns of
the determinant), the wavefunction ψA merely changes its sign, as it indeed should. How-
ever, if two or more particles happen to be in the same single-particle state, then the
corresponding rows of the determinant become identical and the wavefunction vanishes.7

Such a state is physically impossible to realize. We therefore conclude that if a system com-
posed of indistinguishable particles is characterized by an antisymmetric wavefunction,

6An even (odd) permutation is one that can be arrived at from the original order by an even (odd) number of “pair
interchanges” among the arguments. For example, of the six permutations

(1,2,3), (2,3,1), (3,1,2), (1,3,2), (3,2,1), and (2,1,3),

of the arguments 1, 2, and 3, the first three are even permutations while the last three are odd. A single interchange,
among any two arguments, is clearly an odd permutation.

7This is directly related to the fact that if we effect an interchange among two particles in the same single-particle
state, then PψA will obviously be identical toψA. At the same time, if we also have PψA =−ψA, thenψA must be identically
zero.
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then the particles of the system must all be in different single-particle states — a result
equivalent to Pauli’s exclusion principle for electrons.

Conversely, a statistical system composed of particles obeying an exclusion principle
must be described by a wavefunction that is antisymmetric in its arguments. The statistics
governing the behavior of such particles is called Fermi–Dirac, or simply Fermi; statistics
and the constituent particles themselves are referred to as fermions. The statistical weight
factor WF.D.{ni} for such a system is unity so long as the ni in the distribution set are either
0 or 1; otherwise, it is zero:

WF.D.{ni} =


1 if

∑
i

n2
i =N ,

0 if
∑

i
n2

i >N .
(19)8

No such problems arise for systems characterized by symmetric wavefunctions: in partic-
ular, we have no restriction whatsoever on the values of the numbers ni. The statistics
governing the behavior of such systems is called Bose–Einstein, or simply Bose, statis-
tics and the constituent particles themselves are referred to as bosons.9 The weight factor
WB.E.{ni} for such a system is identically equal to 1, whatever the values of the numbers ni:

WB.E.{ni} = 1; ni = 0,1,2, . . . . (20)

It should be pointed out here that there exists an intimate connection between the
statistics governing a particular species of particles and the intrinsic spin of the particles.
For instance, particles with an integral spin (in units of ~, of course) obey Bose–Einstein
statistics, while particles with a half-odd integral spin obey Fermi–Dirac statistics. Exam-
ples in the first category are photons, phonons, π-mesons, gravitons, He4-atoms, and so
on, while those in the second category are electrons, nucleons (protons and neutrons),
µ-mesons, neutrinos, He3-atoms, and so on.

Finally, it must be emphasized that, although we have derived our conclusions here
on the basis of a study of noninteracting systems, the basic results hold for interacting
systems as well. In general, the desired wavefunction ψ(q)will not be expressible in terms
of the single-particle wavefunctions ui(qm); nonetheless, it will have to be either of the
kind ψS(q), satisfying equation (14), or of the kind ψA(q), satisfying equation (15).

8Note that the condition
∑

i n2
i =N would be implies that all ni are either 0 or 1. On the other hand, if any of the ni

are greater than 1, the sum
∑

i n2
i would be greater than N .

9Possibilities other than Bose–Einstein and Fermi–Dirac statistics can arise in which the wavefunction changes by a
complex phase factor eiθ when particles are interchanged. For topological reasons, this can only happen in two dimen-
sions. Quasiparticle excitations with this property are called anyons and, if θ is a rational fraction (other than 1 or 1/2)
of 2π , are said to have fractional statistics and they play an important role in the theory of the fractional quantum Hall
effect; see Wilczek (1990) and Ezawa (2000).
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5.5 The density matrix and the partition
function of a system of free particles

Suppose that the given system, which is composed of N indistinguishable, noninteracting
particles confined to a cubical box of volume V , is a member of a canonical ensemble
characterized by the temperature parameter β. The density matrix of the system in the
coordinate representation will be10

〈r1, . . . , rN |ρ̂|r′1, . . . , r′N 〉 =
1

QN (β)
〈r1, . . . , rN |e

−βĤ
|r′1, . . . , r′N 〉, (1)

where QN (β) is the partition function of the system:

QN (β)= Tr(e−βĤ )=

∫
〈r1, . . . , rN |e

−βĤ
|r1, . . . , rN 〉d

3N r. (2)

For brevity, we denote the vector ri by the letter i and the primed vector r′i by i′. Further,
letψE(1, . . . ,N) denote the eigenfunctions of the Hamiltonian, the suffix E representing the
corresponding eigenvalues. We then have

〈1, . . . ,N |e−βĤ
|1′, . . . ,N ′〉 =

∑
E

e−βE [ψE(1, . . . ,N)ψ∗E(1
′, . . . ,N ′)

]
, (3)

where the summation goes over all possible values of E; compare to equation (5.3.11).
Since the particles constituting the given system are noninteracting, we may express

the eigenfunctions ψE(1, . . . ,N) and the eigenvalues E in terms of the single-particle
wavefunctions ui(m) and the single-particle energies εi. Moreover, we find it advisable to
work with the wave vectors ki rather than the energies εi; so we write

E =
~2K 2

2m
=

~2

2m

(
k2

1 + k2
2 + ·· ·+ k2

N

)
, (4)

where the ki on the right side are the wave vectors of the individual particles. Imposing
periodic boundary conditions, the normalized single-particle wavefunctions are

uk(r)= V−1/2 exp {i(k · r)}, (5)

with

k = 2πV−1/3n; (6)

here, n stands for a three-dimensional vector whose components have values 0,±1,±2, . . ..
The wavefunction ψ of the total system would then be, see equations (5.4.16)

10For a general survey of the density matrix and its applications, see ter Haar (1961).
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and (5.4.17),

ψK (1, . . . ,N)= (N !)−1/2
∑

P

δPP{uk1(1) . . .ukN (N)}, (7)

where the magnitudes of the individual ki are such that

(k2
1 + ·· ·+ k2

N )= K 2. (8)

The number δP in the expression forψK is identically equal to+1 if the particles are bosons;
for fermions, it is +1 or −1 according to whether the permutation P is even or odd. Thus,
quite generally, we may write

δP = (±1)[P], (9)

where [P] denotes the order of the permutation; note that the upper sign in this expression
holds for bosons while the lower sign holds for fermions. The factor (N !)−1/2 has been
introduced here to ensure the normalization of the total wavefunction.

Now, it makes no difference to the wavefunction (7) whether the permutations P are
carried out on the coordinates 1, . . . ,N or on the wave vectors k1, . . . , kN , because after all
we are going to sum over all the N ! permutations. Denoting the permuted coordinates by
P1, . . . ,PN and the permuted wave vectors by Pk1, . . . , PkN , equation (7) may be written as

ψK (1, . . . ,N)= (N !)−1/2
∑

P

δP {uk1(P1) . . .ukN (PN)} (10a)

= (N !)−1/2
∑

P

δP {uPk1(1) . . .uPkN (N)}. (10b)

Equations (10a and 10b) may now be substituted into (3), with the result

〈1, . . . ,N |e−βĤ
|1′, . . . ,N ′〉 = (N !)−1

∑
K

e−β~2K 2/2m

×

∑
P̃

δP̃{uk1(P1) . . .ukN (PN)}
∑

P̃

δP̃{u
∗

P̃k1
(1′) . . .u∗

P̃kN
(N ′)}

, (11)

where P and P̃ are any of the N ! possible permutations. Now, since a permutation among
the ki changes the wavefunction ψ at most by a sign, the quantity [ψψ∗] in (11) is insen-
sitive to such a permutation; the same holds for the exponential factor as well. The
summation over K is, therefore, equivalent to (1/N !) times a summation over all the
vectors k1, . . . , kN independently of one another.

Next, in view of the N-fold summation over the ki, all the permutations P̃ will make
equal contributions toward the sum (because they differ from one another only in the



5.5 The density matrix of a system of free particles 135

ordering of the ki). Therefore, we may consider only one of these permutations, say the
one for which P̃k1 = k1, . . . , P̃kN = kN (and hence δP̃ = 1 for both kinds of statistics), and
include a factor of (N !). The net result is:

〈1, . . . ,N |e−βĤ
|1′, . . . ,N ′〉 = (N !)−1

∑
k1,...,kN

e−β~2(k2
1+···+k2

N )/2m

[∑
P

δP

{
uk1(P1)u∗k1

(1′)
}
. . .
{

ukN (PN)u∗kN
(N ′)

}]
. (12)

Substituting from (5) and noting that, in view of the largeness of V , the summations over
the ki may be replaced by integrations, equation (12) becomes

〈1, . . . ,N |e−βĤ
|1′, . . . ,N ′〉

=
1

N !(2π)3N

∑
P

δP

[∫
e−β~2k2

1/2m+ik1·(P1−1′)d3k1 . . .∫
e−β~2k2

N /2m+ikN ·(PN−N ′)d3kN

]
(13)

=
1

N !

(
m

2πβ~2

)3N/2∑
P

δP[ f (P1− 1′) . . . f (PN–N ′)], (14)

where

f (ξ)= exp
(
−

m

2β~2
ξ2
)

. (15)

Here, use has been made of the mathematical result (5.3.12), which is clearly a special case
of the present formula.

Introducing the mean thermal wavelength, often referred to as the thermal deBroglie
wavelength,

λ=
h

(2πmkT)1/2
= ~

(
2πβ
m

)1/2

, (16)

and rewriting our coordinates as r1, . . . , rN , the diagonal elements among (14) take the
form

〈r1, . . . , rN |e
−βĤ
|r1, . . . , rN 〉 =

1

N !λ3N

∑
P

δP[ f (Pr1− r1) . . . f (PrN − rN )], (17)

where

f (r)= exp
(
−πr2/λ2). (18)
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To obtain the partition function of the system, we have to integrate (17) over all the
coordinates involved. However, before we do that, we would like to make some observa-
tions on the summation

∑
P. First of all, we note that the leading term in this summation,

namely the one for which Pri = ri, is identically equal to unity (because f (0)= 1). This
is followed by a group of terms in which only one pair interchange (among the coordi-
nates) has taken place; a typical term in this group will be f (rj− ri)f (ri− rj) where i 6= j.
This group of terms is followed by other groups of terms in which more than one pair
interchange has taken place. Thus, we may write

∑
P

= 1±
∑
i<j

fijfji+
∑

i<j<k

fijfjkfki± ·· · , (19)

where fij ≡ f (ri− rj); again, note that the upper (lower) signs in this expansion pertain
to a system of bosons (fermions). Now, the function fij vanishes rapidly as the distance
rij becomes much larger than the mean thermal wavelength λ. It then follows that if the
mean interparticle distance, (V /N)1/3, in the system is much larger than the mean thermal
wavelength, that is, if

nλ3
=

nh3

(2πmkT)3/2
� 1, (20)

where n is the particle density in the system, then the sum
∑

P in (19) may be approx-
imated by unity. Accordingly, the partition function of the system would become, see
equation (17),

QN (V ,T)≡ Tr
(
e−βĤ)

≈
1

N !λ3N

∫
1(d3N r)=

1
N !

(
V

λ3

)N

. (21)

This is precisely the result obtained earlier for the classical ideal gas; see equation (3.5.9).
Thus, we have obtained from our quantum-mechanical treatment the precise classical
limit for the partition function QN (V ,T). Incidentally, we have achieved something more.
First, we have automatically recovered here the Gibbs correction factor (1/N !), which was
introduced into the classical treatment on an ad hoc, semi-empirical basis. We, of course,
tried to understand its origin in terms of the inherent indistinguishability of the parti-
cles. Here, we see it coming in a very natural manner and its source indeed lies in the
symmetrization of the wavefunctions of the system (which is ultimately related to the
indistinguishability of the particles); compare to Problem 5.4.

Second, we find here a formal justification for computing the number of microstates
of a system corresponding to a given region of its phase space by dividing the volume of
that region into cells of a “suitable” size and then counting instead the number of these
cells. This correspondence becomes all the more transparent by noting that formula (21)
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is exactly equivalent to the classical expression

QN (V ,T)=
1

N !

∫
e−β(p

2
1+···+p2

N )/2m

(
d3Nq d3N p

ω0

)
, (22)

with ω0=h3N . Thirdly, in deriving the classical limit we have also evolved a criterion that
enables us to determine whether a given physical system can be treated classically; math-
ematically, this criterion is given by condition (20). Now, in statistical mechanical studies,
a system that cannot be treated classically is said to be degenerate; the quantity nλ3 may,
therefore, be regarded as a degeneracy discriminant. Accordingly, the condition that clas-
sical considerations may be applicable to a given physical system is that “the value of the
degeneracy discriminant of the system be much less than unity.”

Next, we note that, in the classical limit, the diagonal elements of the density matrix are
given by

〈r1, . . . , rN |ρ̂|r1, . . . , rN 〉 ≈

(
1
V

)N

, (23)

which is simply a product of N factors, each equal to (1/V ). Recalling that, for a single
particle in a box of volume V , 〈r|ρ̂|r〉=(1/V ), see equation (5.3.14), we infer that in the
classical limit there is no spatial correlation among the various particles of the system. In
general, however, spatial correlations exist even if the particles are supposedly noninter-
acting; these correlations arise from the symmetrization of the wavefunctions and their
magnitude is quite significant if the interparticle distances in the system are comparable
with the mean thermal wavelength of the particles. To see this more clearly, we consider
the simplest relevant case, namely the one with N = 2. The sum

∑
P is now exactly equal

to 1± [ f (r12)]2. Accordingly,

〈r1, r2|e
−βĤ
|r1, r2〉 =

1

2λ6

[
1± exp

(
− 2πr2

12/λ
2)] (24)

and hence

Q2(V ,T)=
1

2λ6

∫∫ [
1± exp(−2πr2

12/λ
2
]

d3r1d3r2

=
1
2

(
V

λ3

)2
1±

1
V

∞∫
0

exp(−2πr2/λ2)4πr2dr

 (25)

=
1
2

(
V

λ3

)2
[

1±
1

23/2

(
λ3

V

)]

≈
1
2

(
V

λ3

)2

. (26)
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Combining (24) and (26), we obtain

〈r1, r2|ρ̂|r1, r2} ≈
1

V 2

[
1± exp

(
− 2πr2

12/λ
2)]. (27)

Thus, if r12 is comparable to λ, the probability density (27) may differ considerably from
the classical value (1/V )2. In particular, the probability density for a pair of bosons to
be a distance r apart is larger than the classical, r-independent value by a factor of
[1+ exp(−2πr2/λ2)], which becomes as high as 2 as r→ 0. The corresponding result for
a pair of fermions is smaller than the classical value by a factor of [1− exp(−2πr2/λ2)],
which becomes as low as 0 as r→ 0. Thus, we obtain a positive spatial correlation among
particles obeying Bose statistics and a negative spatial correlation among particles obeying
Fermi statistics; see also Section 6.3.

Another way of expressing correlations (among otherwise noninteracting particles)
is by introducing a statistical interparticle potential vs(r) and then treating the particles
classically (see Uhlenbeck and Gropper, 1932). The potential vs(r) must be such that the
Boltzmann factor exp(−βvs) is precisely equal to the pair correlation function [. . .] in (27),
that is,

vs(r)=−kT ln
[
1± exp

(
− 2πr2/λ2)]. (28)

Figure 5.1 shows a plot of the statistical potential vs(r) for a pair of bosons or fermions.
In the Bose case, the potential is throughout attractive, thus giving rise to a “statistical
attraction” among bosons; in the Fermi case, it is throughout repulsive, giving rise to a
“statistical repulsion” among fermions. In either case, the potential vanishes rapidly as r
becomes larger than λ; accordingly, its influence becomes less and less important as the
temperature of the system rises.

�1

0
1.0

(r/�)

�
v s

(r
)

�1

�In 2
B.E.

F.D.

0.5

FIGURE 5.1 The statistical potential vs(r) between a pair of particles obeying Bose–Einstein statistics or Fermi–Dirac
statistics.
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Problems
5.1. Evaluate the density matrix ρmn of an electron spin in the representation that makes σ̂x diagonal.

Next, show that the value of 〈σz〉, resulting from this representation, is precisely the same as the one
obtained in Section 5.3.

Hint: The representation needed here follows from the one used in Section 5.3 by carrying out a
transformation with the help of the unitary operator

Û =

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
.

5.2. Prove that

〈q|e−βĤ
|q′〉 = exp

[
−βĤ

(
−i~

∂

∂q
,q
)]
δ(q−q′),

where Ĥ(−i~∂/∂q,q) is the Hamiltonian operator of the system in the q-representation, which
formally operates on the Dirac delta function δ(q−q′). Writing the δ-function in a suitable form,
apply this result to (i) a free particle and (ii) a linear harmonic oscillator.

5.3. Derive the density matrix ρ for (i) a free particle and (ii) a linear harmonic oscillator in the
momentum representation and study its main properties along the lines of Section 5.3.

5.4. Study the density matrix and the partition function of a system of free particles, using the
unsymmetrized wavefunction (5.4.3) instead of the symmetrized wavefunction (5.5.7). Show that,
following this procedure, one encounters neither the Gibbs’ correction factor (1/N !) nor a spatial
correlation among the particles.

5.5. Show that in the first approximation the partition function of a system of N noninteracting,
indistinguishable particles is given by

QN (V ,T)=
1

N !λ3N ZN (V ,T),

where

ZN (V ,T)=
∫

exp

−β∑
i<j

vs(rij)

d3N r,

vs(r) being the statistical potential (5.5.28). Hence evaluate tht first-order correction to the equation
of state of this system.

5.6. Determine the values of the degeneracy discriminant (nλ3) for hydrogen, helium, and oxygen at
NTP. Make an estimate of the respective temperature ranges where the magnitude of this quantity
becomes comparable to unity and hence quantum effects become important.

5.7. Show that the quantum-mechanical partition function of a system of N interacting particles
approaches the classical form

QN (V ,T)=
1

N !h3N

∫
e−βE(q,p)d3Nq d3N p

as the mean thermal wavelength λ becomes much smaller than (i) the mean interparticle distance
(V /N)1/3 and (ii) a characteristic length r0 of the interparticle potential.11

5.8. Prove the following theorem due to Peierls.12

“If Ĥ is the hermitian Hamiltonian operator of a given physical system and {φn} an arbitrary
orthonormal set of wavefunctions satisfying the symmetry requirements and the boundary

11See Huang (1963, Section 10.2).
12See Peierls (1938) and Huang (1963, Section 10.3).
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conditions of the problem, then the partition function of the system satisfies the following
inequality:

Q(β)≥
∑

n

exp {−β〈φn|Ĥ|φn〉};

the equality holds when {φn} constitute a complete orthonormal set of eigenfunctions of the
Hamiltonian itself.”



6
The Theory of Simple Gases

We are now fully equipped with the formalism required for determining the macroscopic
properties of a large variety of physical systems. In most cases, however, derivations run
into serious mathematical difficulties, with the result that one is forced to restrict one’s
analysis either to simpler kinds of systems or to simplified models of actual systems. In
practice, even these restricted studies are carried out in a series of stages, the first stage
of the process being highly “idealized.” The best example of such an idealization is the
familiar ideal gas, a study of which is not only helpful in acquiring facility with the math-
ematical procedures but also throws considerable light on the physical behavior of gases
actually met with in nature. In fact, it also serves as a base on which the theory of real gases
can be founded; see Chapter 10.

In this chapter we propose to derive, and at some length discuss, the most basic pro-
perties of simple gaseous systems obeying quantum statistics; the discussion will include
some of the essential features of diatomic and polyatomic gases and chemical equilibrium.

6.1 An ideal gas in a quantum-mechanical
microcanonical ensemble

We consider a gaseous system of N noninteracting, indistinguishable particles confined
to a space of volume V and sharing a given energy E. The statistical quantity of interest
in this case is �(N ,V ,E) which, by definition, denotes the number of distinct microstates
accessible to the system under the macrostate (N ,V ,E). While determining this number,
we must remember that a failure to take into account the indistinguishability of the parti-
cles in a proper manner could lead to results which, except in the classical limit, may not
be acceptable. With this in mind, we proceed as follows.

Since, for large V , the single-particle energy levels in the system are very close to one
another, we may divide the energy spectrum into a large number of “groups of levels,”
which may be referred to as energy cells; see Figure 6.1. Let εi denote the average energy of
a level, and gi the (arbitrary) number of levels, in the ith cell; we assume that all gi� 1. In
a particular situation, we may have n1 particles in the first cell, n2 particles in the second
cell, and so on. Clearly, the distribution set {ni}must conform to the conditions

∑
i

ni =N (1)

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00006-2
© 2011 Elsevier Ltd. All rights reserved.
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g4 ; n4

g3 ; n3

g2 ; n2

g1 ; n1´1

´2

´3
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´

FIGURE 6.1 The grouping of the single-particle energy levels into “cells.”

and ∑
i

niεi = E. (2)

Then

�(N ,V ,E)=
∑′

{ni}
W {ni}, (3)

where W {ni} is the number of distinct microstates associated with the distribution set {ni}

while the primed summation goes over all distribution sets that conform to conditions (1)
and (2). Next,

W {ni} =
∏

i

w(i), (4)

where w(i) is the number of distinct microstates associated with the ith cell of the spectrum
(the cell that contains ni particles, to be accommodated among gi levels) while the product
goes over all the cells in the spectrum. Clearly, w(i) is the number of distinct ways in which
the ni identical, and indistinguishable, particles can be distributed among the gi levels of
the ith cell. This number, in the Bose–Einstein case, is given by, see equation (3.8.25),

wB.E.(i)=
(ni+ gi− 1)!
ni!(gi− 1)!

, (5)

so that

WB.E.{ni} =
∏

i

(ni+ gi− 1)!
ni!(gi− 1)!

. (6)
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In the Fermi–Dirac case, no single level can accommodate more than one particle; accord-
ingly, the number ni cannot exceed gi. The number w(i) is then given by the “number of
ways in which the gi levels can be divided into two subgroups — one consisting of ni levels
(which will have one particle each) and the other consisting of (gi−ni) levels (which will
be unoccupied).” This number is given by

wF.D.(i)=
gi!

ni!(gi−ni)!
, (7)

so that

WF.D.{ni} =
∏

i

gi!
ni!(gi−ni)!

. (8)

For completeness, we may include the classical — or what is generally known as the
Maxwell–Boltzmann — case as well. There, the particles are regarded as distinguishable,
with the result that any of the ni particles may be put into any of the gi levels, inde-
pendently of one another, and the resulting states may all be regarded as distinct; the
number of these states is clearly (gi)

ni . Moreover, the distribution set {ni} in this case is
itself regarded as obtainable in

N !
n1!n2! . . .

(9)

different ways which, on the introduction of the Gibbs correction factor, lead to a “weight
factor” of

1
n1!n2! . . .

=

∏
i

1
ni!

; (10)

see also Section 1.6, especially equation (1.6.2). Combining these two results, we obtain

WM.B.{ni} =
∏

i

(gi)
ni

ni!
. (11)

Now, the entropy of the system would be given by

S(N ,V ,E)= k ln�(N ,V ,E)= k ln
[∑′

{ni}
W {ni}

]
. (12)

It can be shown that, under the conditions of our analysis, the logarithm of the sum on
the right side of (12) can be approximated by the logarithm of the largest term in the sum;
see Problem 3.4. We may, therefore, replace (12) by

S(N ,V ,E)≈ k lnW {n∗i }, (13)
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where {n∗i } is the distribution set that maximizes the number W {ni}; the numbers n∗i are
clearly the most probable values of the distribution numbers ni. The maximization, how-
ever, is to be carried out under the restrictions that the quantities N and E remain constant.
This can be done by the method of Lagrange’s undetermined multipliers; see Section 3.2.
Our condition for determining the most probable distribution set {n∗i } now turns out to be,
see equations (1), (2), and (13),

δ lnW {ni}−

[
α
∑

i

δni+β
∑

i

εiδni

]
= 0. (14)

For lnW {ni}, we obtain from equations (6), (8), and (11), assuming that not only all gi but
also all ni� 1 (so that the Stirling approximation ln(x!)≈ x lnx− x can be applied to all the
factorials that appear in these expressions),

lnW {ni} =
∑

i

lnw(i)

≈

∑
i

[
ni ln

(
gi

ni
−a

)
−

gi

a
ln
(

1−a
ni

gi

)]
, (15)

where a=−1 for the B.E. case, +1 for the F.D. case, and 0 for the M.B. case. Equation (14)
then becomes ∑

i

[
ln
(

gi

ni
−a

)
−α−βεi

]
ni=n∗i

δni = 0. (16)

In view of the arbitrariness of the increments δni in (16), we must have (for all i)

ln

(
gi

n∗i
−a

)
−α−βεi = 0, (17)

so that1

n∗i =
gi

eα+βεi +a
. (18)

The fact that n∗i turns out to be directly proportional to gi prompts us to interpret the
quantity

n∗i
gi
=

1

eα+βεi +a
, (18a)

which is actually the most probable number of particles per energy level in the ith cell, as
the most probable number of particles in a single level of energy εi. Incidentally, our final
result (18a) is totally independent of the manner in which the energy levels of the particles

1For a critique of this derivation, see Landsberg (1954a, 1961).
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are grouped into cells, so long as the number of levels in each cell is sufficiently large. As
shown in Section 6.2, formula (18a) can also be derived without grouping energy levels
into cells at all; in fact, it is only then that this result becomes truly acceptable!

Substituting (18) into (15), we obtain for the entropy of the gas

S
k
≈ lnW {n∗i } =

∑
i

[
n∗i ln

(
gi

n∗i
−a

)
−

gi

a
ln
(

1−a
n∗i
gi

)]

=

∑
i

[
n∗i (α+βεi)+

gi

a
ln
{

1+ae−α−βεi
}]

. (19)

The first sum on the right side of (19) is identically equal to αN while the second sum is
identically equal to βE. For the third sum, therefore, we have

1
a

∑
i

gi ln
{

1+ae−α−βεi
}
=

S
k
−αN −βE. (20)

Now, the physical interpretation of the parameters α and β here is going to be precisely the
same as in Section 4.3, namely

α =−
µ

kT
, β =

1
kT

; (21)

for confirmation see Section 6.2. The right side of equation (20) is, therefore, equal to

S
k
+
µN
kT
−

E
kT
=

G− (E−TS)
kT

=
PV
kT

. (22)

The thermodynamic pressure of the system is, therefore, given by

PV =
kT
a

∑
i

[
gi ln

{
1+ae−α−βεi

}]
. (23)

In the Maxwell–Boltzmann case (a→ 0), equation (23) takes the form

PV = kT
∑

i

gie
−α−βεi = kT

∑
i

n∗i =NkT , (24)

which is the familiar equation of state of the classical ideal gas. Note that equation (24) for
the Maxwell–Boltzmann case holds irrespective of the details of the energy spectrum εi.

It will be recognized that the expression a−1∑
i[ ] in equation (23), being equal to the

thermodynamic quantity (PV /kT), ought to be identical to the q-potential of the ideal gas.
One may, therefore, expect to obtain from this expression all the macroscopic properties of
this system. However, before demonstrating this, we would like to first develop the formal
theory of an ideal gas in the canonical and grand canonical ensembles.
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6.2 An ideal gas in other quantum-mechanical
ensembles

In the canonical ensemble the thermodynamics of a given system is derived from its
partition function

QN (V ,T)=
∑

E

e−βE , (1)

where E denotes the energy eigenvalues of the system while β = 1/kT . Now, an energy
value E can be expressed in terms of the single-particle energies ε; for instance,

E =
∑
ε

nεε, (2)

where nε is the number of particles in the single-particle energy state ε. The values of the
numbers nε must satisfy the condition

∑
ε

nε =N . (3)

Equation (1) may then be written as

QN (V ,T)=
∑′

{nε}
g{nε}e

−β
∑
ε

nεε
, (4)

where g{nε} is the statistical weight factor appropriate to the distribution set {nε} and the
summation

∑
′ goes over all distribution sets that conform to the restrictive condition (3).

The statistical weight factor in different cases is given by

gB.E.{nε} = 1, (5)

gF.D.{nε} =

{
1 if all nε = 0 or 1

0 otherwise,
(6)

and

gM.B.{nε} =
∏
ε

1
nε !

. (7)

Note that in the present treatment we are dealing with single-particle states as individ-
ual states, without requiring them to be grouped into cells; indeed, the weight factors (5),
(6), and (7) follow straightforwardly from their respective predecessors (6.1.6), (6.1.8), and
(6.1.11) by putting all gi = 1.
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First of all, we work out the Maxwell–Boltzmann case. Substituting (7) into (4), we get

QN (V ,T)=
∑′

{nε}

[(∏
ε

1
nε !

)∏
ε

(
e−βε

)nε
]

=
1

N !

∑′

{nε}

 N !∏
ε

nε !

∏
ε

(
e−βε

)nε

. (8)

Since the summation here is governed by condition (3), it can be evaluated with the help
of the multinomial theorem, with the result

QN (V ,T)=
1

N !

[∑
ε

e−βε
]N

=
1

N !
[Q1(V ,T)]N, (9)

in agreement with equation (3.5.15). The evaluation of Q1 is, of course, straightforward.
One obtains, using the asymptotic formula (2.4.7) for the number of single-particle states
with energies lying between ε and ε+dε,

Q1(V ,T)≡
∑
ε

e−βε ≈
2πV

h3
(2m)3/2

∞∫
0

e−βεε1/2dε

= V /λ3, (10)

where λ [= h/(2πmkT)1/2] is the mean thermal wavelength of the particles. Hence

QN (V ,T)=
V N

N !λ3N
, (11)

from which complete thermodynamics of this system can be derived; see, for example,
Section 3.5. Further, we obtain for the grand partition function of this system

Q(z,V ,T)=
∞∑

N=0

zN QN (V ,T)= exp(zV /λ3); (12)

compare to equation (4.4.3). We know that the thermodynamics of the system follows
equally well from the expression for Q.

In the Bose–Einstein and Fermi–Dirac cases, we obtain, by substituting (5) and (6)
into (4),

QN (V ,T)=
∑′

{nε}

(
e
−β

∑
ε

nεε
)

; (13)
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the difference between the two cases, B.E. and F.D., arises from the values that the
numbers nε can take. Now, in view of restriction (3) on the summation

∑
′, an explicit

evaluation of the partition function QN in these cases is rather cumbersome. The grand
partition function Q, on the other hand, turns out to be more easily tractable; we have

Q(z,V ,T)=
∞∑

N=0

[
zN
∑′

{nε}
e
−β

∑
ε

nεε
]

(14a)

=

∞∑
N=0

[∑′

{nε}

∏
ε

(
ze−βε

)nε
]

. (14b)

Now, the double summation in (14b) — first over the numbers nε constrained by a fixed
value of the total number N , and then over all possible values of N — is equivalent to
a summation over all possible values of the numbers nε, independently of one another.
Hence, we may write

Q(z,V ,T)=
∑

n0,n1,...

[(
ze−βε0

)n0
(

ze−βε1
)n1

. . .
]

=

∑
n0

(
ze−βε0

)n0

∑
n1

(
ze−βε1

)n1

 . . . . (15)

Now, in the Bose–Einstein case the nε can be either 0 or 1 or 2 or . . ., while in the Fermi–
Dirac case they can be only 0 or 1. Therefore,

Q(z,V ,T)=


∏
ε

1
(1− ze−βε)

in the B.E. case, with ze−βε < 1 (16a)

∏
ε

(1+ ze−βε) in the F.D. case. (16b)

The q-potential of the system is thus given by

q(z,V ,T)≡
PV
kT
≡ lnQ(z,V ,T)

=∓

∑
ε

ln(1∓ ze−βε); (17)

compare to equation (6.1.23), with gi = 1. The identification of the fugacity z with the
quantity e−α of equation (6.1.23) is quite natural; accordingly, α =−µ/kT . As usual, the
upper (lower) sign in equation (17) corresponds to the Bose (Fermi) case.

In the end, we may write our results for q in a form applicable to all three cases:

q(z,V ,T)≡
PV
kT
=

1
a

∑
ε

ln(1+aze−βε), (18)
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where a=−1, +1, or 0, depending on the statistics governing the system. In particular, the
classical case (a→ 0) gives

qM.B. = z
∑
ε

e−βε = zQ1, (19)

in agreement with equation (4.4.4). From (18), it follows that

N ≡ z
(
∂q
∂z

)
V ,T
=

∑
ε

1

z−1eβε +a
(20)

and

E ≡−
(
∂q
∂β

)
z,V
=

∑
ε

ε

z−1eβε +a
. (21)

At the same time, the mean occupation number 〈nε〉 of level ε turns out to be, see equa-
tions (14a) and (17),

〈nε〉 =
1
Q

[
−

1
β

(
∂Q

∂ε

)
z,T , all other ε

]

≡−
1
β

(
∂q
∂ε

)
z,T , all other ε

=
1

z−1eβε +a
, (22)

in keeping with equations (20) and (21). Comparing our final result (22) with its coun-
terpart (6.1.18a), we find that the mean value 〈n〉 and the most probable value n∗ of the
occupation number n of a single-particle state are indeed identical.

6.3 Statistics of the occupation numbers
Equation (6.2.22) gives the mean occupation number of a single-particle state with energy
ε as an explicit function of the quantity (ε−µ)/kT :

〈nε〉 =
1

e(ε−µ)/kT +a
. (1)

The functional behavior of this number is shown in Figure 6.2. In the Fermi–Dirac case
(a=+1), the mean occupation number never exceeds unity, for the variable nε itself
cannot have a value other than 0 or 1. Moreover, for ε < µ and |ε−µ| � kT , the mean occu-
pation number tends to its maximum possible value 1. In the Bose–Einstein case (a=−1),
we must have µ < all ε; see equation (6.2.16a). In fact, when µ becomes equal to the low-
est value of ε, say ε0, the occupancy of that particular level becomes infinitely high, which
leads to the phenomenon of Bose–Einstein condensation; see Sections 7.1 and 7.2. For
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FIGURE 6.2 The mean occupation number 〈nε〉 of a single-particle energy state ε in a system of noninteracting
particles: curve 1 is for fermions, curve 2 for bosons, and curve 3 for the Maxwell–Boltzmann particles.

µ < ε0, all values of (ε−µ) are positive and the behavior of all 〈nε〉 is nonsingular. Finally,
in the Maxwell–Boltzmann case (a= 0), the mean occupation number takes the familiar
form

〈nε〉M.B. = exp{(µ− ε)/kT} ∝ exp(−ε/kT). (2)

The important thing to note here is that the distinction between the quantum statistics
(a=±1) and the classical statistics (a= 0) becomes imperceptible when, for all values of ε
that are of practical interest,

exp{(ε−µ)/kT} � 1. (3)

In that event, equation (1) essentially reduces to (2) and we may write, instead of (3),

〈nε〉 � 1. (4)

Condition (4) is quite understandable, for it implies that the probability of any of the nε
being greater than unity is quite negligible, with the result that the classical weight factors
g{nε}, as given by equation (6.2.7), become essentially equal to 1. The distinction between
the classical treatment and the quantum-mechanical treatment then becomes rather
insignificant. Correspondingly, we find, see Figure 6.2, that for large values of (ε−µ)/kT
the quantum curves 1 and 2 essentially merge into the classical curve 3. Since we already
know that the higher the temperature of the system the better the validity of the classical
treatment, condition (3) also implies that µ, the chemical potential of the system, must
be negative and large in magnitude. This means that the fugacity z[≡ exp(µ/kT)] of the
system must be much smaller than unity; see also equation (6.2.22). One can see, from
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equations (4.4.6) and (4.4.29), that this is further equivalent to the requirement

Nλ3

V
� 1, (5)

which agrees with condition (5.5.20).
We shall now examine statistical fluctuations in the variable nε. Going a step further

from the calculation that led to equation (6.2.22), we have

〈n2
ε 〉 =

1
Q

[(
−

1
β

∂

∂ε

)2

Q

]
z,T , all other ε

; (6)

it follows that

〈n2
ε 〉− 〈nε〉

2
=

[(
−

1
β

∂

∂ε

)2

lnQ

]
z,T , all other ε

=

[(
−

1
β

∂

∂ε

)
〈nε〉

]
z,T

. (7)

For the relative mean-square fluctuation, we obtain (irrespective of the statistics obeyed
by the particles)

〈n2
ε 〉− 〈nε〉

2

〈nε〉2
=

(
1
β

∂

∂ε

){
1
〈nε〉

}
= z−1eβε; (8)

of course, the actual value of this quantity will depend on the statistics of the particles
because, for a given particle density (N/V ) and a given temperature T , the value of z will
be different for different statistics.

It seems more instructive to write (8) in the form

〈n2
ε 〉− 〈nε〉

2

〈nε〉2
=

1
〈nε〉
−a. (9)

In the classical case (a= 0), the relative fluctuation is normal. In the Fermi–Dirac case, it
is given by 1/〈nε〉− 1, which is below normal and tends to vanish as 〈nε〉 → 1. In the Bose–
Einstein case, the fluctuation is clearly above normal.2 Obviously, this result would apply
to a gas of photons and, hence, to the oscillator states in the black-body radiation. In the
latter context, Einstein derived this result as early as 1909 following Planck’s approach and
even pointed out that the term 1 in the expression for the fluctuation may be attributed
to the wave character of the radiation and the term 1/〈nε〉 to the particle character of the
photons; for details, see Kittel (1958), ter Haar (1968).

Closely related to the subject of fluctuations is the problem of “statistical correlations
in photon beams,” which have been observed experimentally (see Hanbury Brown and

2The special case of fluctuations in the ground state occupation number, n0, of a Bose–Einstein system has been
discussed by Wergeland (1969) and by Fujiwara, ter Haar, and Wergeland (1970).
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Twiss, 1956, 1957, 1958) and have been explained theoretically in terms of the quantum-
statistical nature of these fluctuations (see Purcell, 1956; Kothari and Auluck, 1957). For
further details, refer to Mandel, Sudarshan, and Wolf (1964); and Holliday and Sage (1964).

For greater understanding of the statistics of the occupation numbers, we evaluate
the quantity pε(n), which is the probability that there are exactly n particles in a state of
energy ε. Referring to equation (6.2.14b), we infer that pε(n)∝ (ze−βε)n. On normalization,
it becomes in the Bose–Einstein case

pε(n)|B.E. =
(

ze−βε
)n [

1− ze−βε
]

=

(
〈nε〉
〈nε〉+ 1

)n 1
〈nε〉+ 1

=
(〈nε〉)n

(〈nε〉+ 1)n+1
. (10)

In the Fermi–Dirac case, we get

pε(n)|F.D. =
(

ze−βε
)n [

1+ ze−βε
]−1

=

{
1−〈nε〉 for n= 0

〈nε〉 for n= 1.
(11)

In the Maxwell–Boltzmann case, we have pε(n)∝ (ze−βε)n/n! instead; see equation (6.2.8).
On normalization, we get

pε(n)|M.B. =

(
ze−βε

)n
/n!

exp
(
ze−βε

) = (〈nε〉)n
n!

e−〈nε〉. (12)

Distribution (12) is clearly a Poisson distribution, for which the mean square deviation of
the variable in question is equal to the mean value itself; compare to equation (9), with
a= 0. It also resembles the distribution of the total particle number N in a grand canonical
ensemble consisting of ideal, classical systems; see Problem 4.4. We also note that the ratio
pε(n)/pε(n− 1) in this case varies inversely with n, which is a “normal” statistical behavior
of uncorrelated events.

On the other hand, the distribution in the Bose–Einstein case is geometric, with a con-
stant common ratio 〈nε〉/(〈nε〉+ 1). This means that the probability of a state ε acquiring
one more particle for itself is independent of the number of particles already occupying
that state; thus, in comparison with the “normal” statistical behavior, bosons exhibit a spe-
cial tendency of “bunching” together, which means a positive statistical correlation among
them. In contrast, fermions exhibit a negative statistical correlation.

6.4 Kinetic considerations
The thermodynamic pressure of an ideal gas is given by equation (6.1.23) or (6.2.18). In
view of the largeness of volume V , the single-particle energy states ε would be so close
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to one another that a summation over them may be replaced by integration. One thereby
gets

P =
kT
a

∞∫
0

ln
[

1+aze−βε(p)
] 4πp2dp

h3

=
4πkT

ah3

p3

3
ln
[

1+aze−βε(p)
]∣∣∣∣∞

0
+

∞∫
0

p3

3
aze−βε(p)

1+aze−βε(p)
β

dε
dp

dp

.

The integrated part vanishes at both limits while the rest of the expression reduces to

P =
4π

3h3

∞∫
0

1

z−1eβε(p)+a

(
p

dε
dp

)
p2dp. (1)

Now, the total number of particles in the system is given by

N =
∫
〈np〉

Vd3p

h3
=

4πV

h3

∞∫
0

1

z−1eβε(p)+a
p2dp. (2)

Comparing (1) and (2), we can write

P =
1
3

N
V

〈
p

dε
dp

〉
=

1
3

n〈pu〉, (3)

where n is the particle density in the gas and u the speed of an individual particle. If the
relationship between the energy ε and the momentum p is of the form ε ∝ ps, then

P =
s
3

n〈ε〉 =
s
3

E
V

; (4)

the particular cases s= 1 and s= 2 are pretty easy to recognize. It should be noted here
that results (3) and (4) hold independently of the statistics obeyed by the particles.

The structure of formula (3) suggests that the pressure of the gas arises essentially from
the physical motion of the particles; it should, therefore, be derivable from kinetic consid-
erations alone. To do this, we consider the bombardment, by the particles of the gas, on
the walls of the container. Let us take, for example, an element of area dA on one of the
walls normal to the z-axis, see Figure 6.3, and focus our attention on those particles whose
velocity lies between u and u+du; the number of such particles per unit volume may be
denoted by nf (u)du, where ∫

all u

f (u)du= 1. (5)
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(udt )

dA z

FIGURE 6.3 The molecular bombardment on one of the walls of the container.

Now, the question is: how many of these particles will strike the area dA in time dt? The
answer is: all those particles that happen to lie in a cylindrical region of base dA and height
u dt, as shown in Figure 6.3. Since the volume of this region is (dA ·u)dt, the number of
such particles would be {(dA ·u)dt×nf (u)du}. On reflection from the wall, the normal
component of the momentum of a particle would undergo a change from pz to −pz; as
a result, the normal momentum imparted by these particles per unit time to a unit area
of the wall would be 2 pz{uznf (u)du}. Integrating this expression over all relevant u, we
obtain the total normal momentum imparted per unit time to a unit area of the wall by all
the particles of the gas which, by definition, is the kinetic pressure of the gas:

P = 2n

∞∫
ux=−∞

∞∫
uy=−∞

∞∫
uz=0

pzuzf (u)duxduyduz. (6)3

Since (i) f (u) is a function of u alone and (ii) the product (pzuz) is an even function of uz,
the foregoing result may be written as

P = n
∫

all u

(pzuz)f (u)du. (7)

Comparing (7) with (5), we obtain

P = n〈pzuz〉 = n〈pucos2 θ〉 (8)

=
1
3

n〈pu〉, (9)

which is identical to (3).

3Clearly, only those velocities for which uz > 0 are relevant here.
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In a similar manner, we can determine the rate of effusion of the gas particles through
a hole (of unit area) in the wall. This is given by, compared to (6),

R= n

∞∫
ux=−∞

∞∫
uy=−∞

∞∫
uz=0

uzf (u)duxduyduz (10)

= n

2π∫
φ=0

π/2∫
θ=0

∞∫
u=0

{ucosθ f (u)}(u2 sinθ dudθ dφ); (11)

note that the condition uz > 0 restricts the range of the angle θ between the values 0 and
π/2. Carrying out integrations over θ and φ, we obtain

R= nπ

∞∫
0

f (u)u3 du. (12)

In view of the fact that

∞∫
0

f (u)(4πu2 du)= 1, (5a)

equation (12) may be written as

R=
1
4

n〈u〉. (13)

Again, this result holds independently of the statistics obeyed by the particles.
It is obvious that the velocity distribution among the effused particles is considerably

different from the one among the particles inside the container. This is due to the fact that,
firstly, the velocity component uz of the effused particles must be positive (which intro-
duces an element of anisotropy into the distribution) and, secondly, the particles with
larger values of uz appear with an extra weightage, the weightage being directly propor-
tional to the value of uz; see equation (10). As a result of this, (i) the effused particles carry
with them a net forward momentum, thus causing the container to experience a recoil
force, and (ii) they carry away a relatively large amount of energy per particle, thus leaving
the gas in the container at not only a progressively decreasing pressure and density but
also a progressively decreasing temperature; see Problem 6.14.

6.5 Gaseous systems composed of molecules
with internal motion

In most of our studies so far we have considered only the translational part of the molecu-
lar motion. Though this aspect of motion is invariably present in a gaseous system, other
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aspects, which are essentially concerned with the internal motion of the molecules, also
exist. It is only natural that in the calculation of the physical properties of such a sys-
tem, contributions arising from these motions are also taken into account. In doing so,
we shall assume that (i) the effects of the intermolecular interactions are negligible and (ii)
the nondegeneracy criterion

nλ3
=

nh3

(2πmkT)3/2
� 1 (5.5.20)

is fulfilled; this makes our system an ideal, Boltzmannian gas. Under these assumptions,
which hold sufficiently well in a large number of applications, the partition function of the
system is given by

QN (V ,T)=
1

N !
[Q1(V ,T)]N , (1)

where

Q1(V ,T)=
V

λ3
j(T); (2)

the factor within the curly brackets is the familiar translational partition function of a
molecule, while j(T) is the partition function corresponding to internal motions. The latter
may be written as

j(T)=
∑

i

gie
−εi/kT , (3)

where εi is the energy associated with a state of internal motion (characterized by the
quantum numbers i), while gi is the multiplicity of that state.

The contributions made by the internal motions of the molecules, over and above
the translational degrees of freedom, follow straightforwardly from the function j(T). We
obtain

Aint =−NkT ln j, (4)

µint =−kT ln j, (5)

Sint =Nk
(

ln j+T
∂

∂T
ln j
)

, (6)

Uint =NkT 2 ∂

∂T
ln j, (7)

and

(CV )int =Nk
∂

∂T

{
T 2 ∂

∂T
ln j
}

. (8)
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Thus, the central problem in this study is to derive an explicit expression for the function
j(T) from a knowledge of the internal states of the molecules. For this, we note that the
internal state of a molecule is determined by (i) the electronic state, (ii) the state of the
nuclei, (iii) the vibrational state, and (iv) the rotational state. Rigorously speaking, these
four modes of excitation mutually interact; in many cases, however, they can be treated
independently of one another. We can then write

j(T)= jelec(T)jnuc(T)jvib(T)jrot(T), (3a)

with the result that the net contribution made by the internal motions to the various
thermodynamic properties of the system is given by a simple sum of the four respective
contributions. There is one interaction, however, that plays a special role in the case of
homonuclear molecules, such as AA, and which is between the states of the nuclei and the
rotational states. In such a case, we better write

j(T)= jelec(T)jnuc−rot(T)jvib(T). (3b)

We now examine this problem for various systems in the order of increasing complexity.

6.5.A Monatomic molecules

For simplicity, we consider a monatomic gas at temperatures such that the thermal energy
kT is small in comparison with the ionization energy εion; for different atoms, this amounts
to the condition T � εion/k ∼ 104

− 105 K. At these temperatures, the number of ionized
atoms in the gas would be insignificant. The same would be true of atoms in the excited
states, for the separation of any of the excited states from the ground state of the atom
is generally of the same order of magnitude as the ionization energy itself. Thus, we may
regard all atoms in the gas to be in their (electronic) ground state.

Now, there is a special class of atoms, namely He, Ne, A, . . ., which, in their ground state,
possess neither orbital angular momentum nor spin (L= S= 0). Their (electronic) ground
state is clearly a singlet, with ge = 1. The nucleus, however, possesses a degeneracy that
arises from the possibility of different orientations of the nuclear spin.4 If the value of
this spin is Sn, the corresponding degeneracy factor gn = 2Sn+ 1. Moreover, a monatomic
molecule cannot have any vibrational or rotational states. The internal partition function
(3a) of such a molecule is, therefore, given by

j(T)= (g)gr.st. = ge · gn = 2Sn+ 1. (9)

4As is well known, the presence of the nuclear spin gives rise to the so-called hyperfine structure in the electronic
states. However, the intervals of this structure are such that, for practically all temperatures of interest, they are small in
comparison with kT ; for concreteness, these intervals correspond to T-values of the order of 10−1 to 100 K. Accordingly,
in the evaluation of the partition function j(T), the hyperfine splitting of the electronic state may be disregarded while
the multiplicity introduced by the nuclear spin may be taken into account through a degeneracy factor.
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Equations (4) through (8) then tell us that the internal motions in this case contribute only
toward properties such as the chemical potential and the entropy of the gas; they do not
contribute toward the internal energy and the specific heat.

If, on the other hand, the ground state does not possess orbital angular momentum but
possesses spin (L= 0, S 6= 0 — as, for example, in the case of alkali atoms), then the ground
state will still have no fine structure; it will, however, have a degeneracy ge = 2S+ 1. As a
result, the internal partition function j(T) will get multiplied by a factor of (2S+ 1) and
the properties such as the chemical potential and the entropy of the gas will get modified
accordingly.

In other cases, the ground state of the atom may possess both orbital angular momen-
tum and spin (L 6= 0,S 6= 0); the ground state would then possess a definite fine structure.
The intervals of this structure are, in general, comparable to kT ; hence, in the evaluation
of the partition function, the energies of the various components of the fine structure will
have to be taken into account. Since these components differ from one another in the value
of the total angular momentum J , the relevant partition function may be written as

jelec(T)=
∑

J

(2J + 1)e−εJ /kT . (10)

The foregoing expression simplifies considerably in the following limiting cases:

(a) kT � all εJ ; then

jelec(T)'
∑

J

(2J + 1)= (2L+ 1)(2S+ 1). (10a)

(b) kT � all εJ ; then

jelec(T)' (2J0+ 1)e−ε0/kT , (10b)

where J0 is the total angular momentum, and ε0 the energy, of the atom in the lowest state.
In either case, the electronic motion makes no contribution toward the specific heat of
the gas. Of course, at intermediate temperatures, we do obtain a contribution toward this
property. And, in view of the fact that both at high and low temperatures the specific heat
tends to be equal to the translational value 3

2 Nk, it must pass through a maximum at a
temperature comparable to the separation of the fine structure levels.5 Needless to say, the
multiplicity (2Sn+ 1) introduced by the nuclear spin must be taken into account in each
case.

6.5.B Diatomic molecules

Now we consider a diatomic gas at temperatures such that kT is small compared to the
energy of dissociation; for different molecules, this amounts once again to the condition

5It seems worthwhile to note here that the values of 1εJ/k for the components of the normal triplet term of oxygen
are 230 K and 320 K, while those for the normal quintuplet term of iron range from 600 to 1,400 K.
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T � εdiss/k ∼ 104
−105 K. At these temperatures the number of dissociated molecules in

the gas would be insignificant. At the same time, in most cases, there would be practi-
cally no molecules in the excited states as well, for the separation of any of these states
from the ground state of the molecule is in general comparable to the dissociation energy
itself.6 Accordingly, in the evaluation of j(T), we have to take into account only the lowest
electronic state of the molecule.

The lowest electronic state, in most cases, is nondegenerate: ge = 1. We then need not
consider any further the question of the electronic state making a contribution toward
the thermodynamic properties of the gas. However, certain molecules (though not very
many) have, in their lowest electronic state, either (i) a nonzero orbital angular momentum
(3 6= 0) or (ii) a nonzero spin (S 6= 0) or (iii) both. In case (i), the electronic state acquires a
twofold degeneracy corresponding to the two possible orientations of the oribital angular
momentum relative to the molecular axis;7 as a result, ge = 2. In case (ii), the state acquires
a degeneracy 2S+ 1 corresponding to the space quantization of the spin.8

In both these cases the chemical potential and the entropy of the gas are modified by
the multiplicity of the electronic state, while the energy and the specific heat remain unaf-
fected. In case (iii), we encounter a fine structure that necessitates a rather detailed study
because the intervals of this structure are generally of the same order of magnitude as kT .
In particular, for a doublet fine-structure term, such as the one that arises in the molecule
NO (51/2,3/2 with a separation of 178 K, the components themselves being 3-doublets),
we have for the electronic partition function

jelec(T)= g0+ g1e−1/kT , (11)

where g0 and g1 are the degeneracy factors of the two components while1 is their separa-
tion energy. The contribution made by (11) toward the various thermodynamic properties
of the gas can be calculated with the help of formulae (4) through (8). In particular, we
obtain for the contribution toward the specific heat

(CV )elec =Nk
(1/kT)2

[1+ (g0/g1)e1/kT ] [1+ (g1/g0)e−1/kT ]
. (12)

We note that this contribution vanishes both for T �1/k and for T �1/k and is maxi-
mum for a certain temperature∼1/k; compare to the corresponding situation in the case
of monatomic molecules.

6An odd case arises with oxygen. The separation between its normal term 36 and the first excited term 11 is about
11,250 K, whereas the dissociation energy is about 55,000 K. The relevant factor e−ε1/kT , therefore, can be quite significant
even when the factor e−εdiss/kT is not, say for T ∼ 2000 to 6000 K.

7Strictly speaking, the term in question splits into two levels — the so-called3-doublet. The separation of the levels,
however, is such that we can safely neglect it.

8The separation of the resulting levels is again negligible from the thermodynamic point of view; as an example, one
may cite the very narrow triplet term of O2.
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We now consider the effect of the vibrational states of the molecules on the thermo-
dynamic properties of the gas. To have an idea of the temperature range over which this
effect would be significant, we note that the magnitude of the corresponding quantum of
energy, namely ~ω, for different diatomic gases is of order 103 K. Thus, we would obtain full
contributions (consistent with the dictates of the equipartition theorem) at temperatures
of the order of 104 K or more, and practically no contribution at temperatures of the order
of 102 K or less. Let us assume that the temperature is not high enough to excite vibra-
tional states of large energy; the oscillations of the nuclei then remain small in amplitude
and hence harmonic. The energy levels for a mode of frequency ω are then given by the
well-known expression (n+ 1

2 )~ω.9

The evaluation of the vibrational partition function jvib(T) is quite elementary; see
Section 3.8. In view of the rapid convergence of the series involved, the summation may
formally be extended to n=∞. The corresponding contributions toward the various ther-
modynamic properties of the system are then given by equations (3.8.16) through (3.8.21).
In particular,

(CV )vib =Nk
(
2v

T

)2 e2v/T

(e2v/T − 1)2
; 2v =

~ω
k

. (13)

We note that for T �2v, the vibrational specific heat is very nearly equal to the equipar-
tition value Nk; otherwise, it is always less than Nk. In particular, for T �2v, the specific
heat tends to zero (see Figure 6.4); the vibrational degrees of freedom are then said to be
“frozen.”

At sufficiently high temperatures, when vibrations with large n are also excited, the
effects of anharmonicity and of interaction between the vibrational and the rotational
modes of the molecule can become important.10 However, since this happens only at large
n, the relevant corrections to the various thermodynamic quantities can be determined
even classically; see Problems 3.29 and 3.30. One finds that the first-order correction to
Cvib is directly proportional to the temperature of the gas.

Finally, we consider the effect of (i) the states of the nuclei and (ii) the rotational states
of the molecule; wherever necessary, we shall take into account the mutual interaction of
these modes. This interaction is of no relevance in the case of heteronuclear molecules,
such as AB; it is, however, important in the case of homonuclear molecules, such as AA. We
may, therefore, consider the two cases separately.

The states of the nuclei in the heteronuclear case may be treated separately from
the rotational states of the molecule. Proceeding in the same manner as for monatomic
molecules, we conclude that the effect of the nuclear states is adequately taken care of

9It may be pointed out that the vibrational motion of a molecule is influenced by the centrifugal force arising from
the molecular rotation. This leads to an interaction between the rotational and the vibrational modes. However, unless
the temperature is too high, this interaction can be neglected and the two modes treated independently of one another.

10In principle, these two effects are of the same order of magnitude.
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FIGURE 6.4 The vibrational specific heat of a gas of diatomic molecules. At T =2v, the specific heat is already
about 93 percent of the equipartition value.

through a degeneracy factor gn. Denoting the spins of the two nuclei by SA and SB,

gn = (2SA+ 1)(2SB+ 1). (14)

As before, we obtain a finite contribution toward the chemical potential and the entropy
of the gas but none toward the internal energy and the specific heat.

Now, the rotational levels of a linear “rigid” rotator, with two degrees of freedom (for
the axis of rotation) and the principal moments of inertia (I , I ,0), are given by

εrot = l(l+ 1)~2/2I , l = 0,1,2, . . . ; (15)

here, I = µr2
0 whereµ[=m1m2/(m1+m2)] is the reduced mass of the nuclei and r0 the equi-

librium distance between them. The rotational partition function of the molecule is then
given by

jrot(T)=
∞∑

l=0

(2l+ 1)exp

{
−l(l+ 1)

~2

2IkT

}

=

∞∑
l=0

(2l+ 1)exp
{
−l(l+ 1)

2r

T

}
; 2r =

~2

2Ik
. (16)

The values of 2r , for all gases except the ones involving the isotopes H and D, are much
smaller than room temperature. For example, the value of2r for HCl is about 15 K, for N2,
O2, and NO it lies between 2 K and 3 K, while for Cl2 it is about one-third of a degree. On
the other hand, the values of 2r for H2, D2, and HD are, respectively, 85 K, 43 K, and 64 K.
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These numbers give us an idea of the respective temperature ranges in which the effects
arising from the discreteness of the rotational states are expected to be important.

For T �2r , the spectrum of the rotational states may be approximated by a contin-
uum. The summation in (16) is then replaced by an integration:

jrot(T)≈

∞∫
0

(2l+ 1)exp
{
−l(l+ 1)

2r

T

}
dl =

T
2r

. (17)

The rotational specific heat is then given by

(CV )rot =Nk, (18)

consistent with the equipartition theorem.
A better evaluation of the sum in (16) can be made with the help of the Euler–Maclaurin

formula, namely

∞∑
n=0

f (n)=

∞∫
0

f (x)dx+
1
2

f (0)−
1

12
f ′(0)+

1
720

f ′′′(0)−
1

30,240
f v(0)+ ·· · . (19)

Writing

f (x)= (2x+ 1)exp{−x(x+ 1)2r/T},

one obtains

jrot(T)=
T
2r
+

1
3
+

1
15
2r

T
+

4
315

(
2r

T

)2

+ ·· · , (20)

which is the so-called Mulholland’s formula; as expected, the main term of this formula is
identical to the classical partition function (17). The corresponding result for the specific
heat is

(CV )rot =Nk

{
1+

1
45

(
2r

T

)2

+
16

945

(
2r

T

)3

+ ·· ·

}
, (21)

which shows that at high temperatures the rotational specific heat decreases with temper-
ature and ultimately tends to the classical value Nk. Thus, at high (but finite) temperatures
the rotational specific heat of a diatomic gas is greater than the classical value. On the other
hand, it must go to zero as T→ 0. We, therefore, conclude that it passes through at least
one maximum. Numerical studies show that there is only one maximum that appears at a
temperature of about 0.82r and has a value of about 1.1Nk; see Figure 6.5.
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FIGURE 6.5 The rotational specific heat of a gas of heteronuclear diatomic molecules.

In the other limiting case, when T �2r , one may retain only the first few terms of the
sum in (16); then

jrot(T)= 1+ 3e−22r/T
+ 5e−62r/T

+ ·· · , (22)

from which one obtains, in the lowest approximation,

(CV )rot ' 12Nk
(
2r

T

)2

e−22r/T . (23)

Thus, as T→ 0, the specific heat drops exponentially to zero; see again Figure 6.5. We,
therefore, conclude that at low enough temperatures the rotational degrees of freedom of
the molecules are also “frozen.”

At this stage it appears worthwhile to remark that, since the internal motions of the
molecules do not make any contribution toward the pressure of the gas (Aint being inde-
pendent of V ), the quantity (CP −CV ) is the same for a diatomic gas as for a monatomic
one. Moreover, under the assumptions made in the very beginning of this section, the
value of this quantity at all temperatures of interest would be equal to the classical value
Nk. Thus, at sufficiently low temperatures (when rotational as well as vibrational degrees
of freedom of the molecules are “frozen”), we have, by virtue of the translational motion
alone,

CV =
3
2

Nk, CP =
5
2

NK ; γ =
5
3

. (24)

As temperature rises, the rotational degrees of freedom begin to “loosen up” until we
reach temperatures that are much larger than2r but much smaller than2v; the rotational
degrees of freedom are then fully excited while the vibrational ones are still “frozen.”
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FIGURE 6.6 The rotational-vibrational specific heat, CP , of the diatomic gases HD, HT, and DT.

Accordingly, for2r � T �2v,

CV =
5
2

Nk, CP =
7
2

Nk; γ =
7
5

. (25)

As temperature rises further, the vibrational degrees of freedom as well start loosening up,
until we reach temperatures that are much larger than2v. Then, the vibrational degrees of
freedom are also fully excited and we have

CV =
7
2

Nk, CP =
9
2

Nk; γ =
9
7

. (26)

These features are displayed in Figure 6.6 where the experimental results for CP are plot-
ted for three gases HD, HT, and DT. We note that, in view of the considerable difference
between the values of 2r and 2v, the situation depicted by (25) prevails over a consider-
ably large range of temperatures. In passing, it may be pointed out that, for most diatomic
gases, the situation at room temperatures corresponds to the one depicted by (25).

We now study the case of homonuclear molecules, such as AA. To start with, we consider
the limiting case of high temperatures where classical approximation is admissible. The
rotational motion of the molecule may then be visualized as a rotation of the molecular
axis, that is, the line joining the two nuclei, about an “axis of rotation” that is perpendic-
ular to the molecular axis and passes through the center of mass of the molecule. Then,
the two opposing positions of the molecular axis, namely the ones corresponding to the
azimuthal angles φ and φ+π , differ simply by an interchange of the two identical nuclei
and, hence, correspond to only one distinct state of the molecule. Therefore, in the evalu-
ation of the partition function, the range of the angle φ should be taken as (0,π) instead of
the customary (0,2π). Moreover, since the energy of rotational motion does not depend on
angle φ, the only effect of this on the partition function of the molecule would be to reduce
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it by a factor of 2. We thus obtain, in the classical approximation,11

jnuc−rot(T)= (2SA+ 1)2
T

22r
. (27)

Obviously, the factor 2 here will not affect the specific heat of the gas; in the classical
approximation, therefore, the specific heat of a gas of homonuclear molecules is the same
as that of a corresponding gas of heteronuclear molecules.

In contrast, significant changes result at relatively lower temperatures where the states
of rotational motion have to be treated as discrete. These changes arise from the cou-
pling between the nuclear and the rotational states that in turn arises from the symmetry
character of the nuclear-rotational wavefunction. As discussed in Section 5.4, the total
wavefunction of a physical state must be either symmetric or antisymmetric (depend-
ing on the statistics obeyed by the particles involved) with respect to an interchange of
two identical particles. Now, the rotational wavefunction of a diatomic molecule is sym-
metric or antisymmetric depending on whether the quantum number l is even or odd.
The nuclear wavefunction, on the other hand, consists of a linear combination of the spin
functions of the two nuclei and its symmetry character depends on the manner in which
the combination is formed. It is not difficult to see that, of the (2SA+ 1)2 different com-
binations that one constructs, exactly (SA+ 1)(2SA+ 1) are symmetric with respect to an
interchange of the nuclei and the remaining SA(2SA+ 1) antisymmetric.12 In constructing
the total wavefunction, as a product of the nuclear and the rotational wavefunctions, we
then proceed as follows:

(i) If the nuclei are fermions (SA =
1
2 , 3

2 , . . .), as in the molecule H2, the total wavefunction
must be antisymmetric. To secure this, we may associate any one of the SA(2SA+ 1)
antisymmetric nuclear wavefunctions with any one of the even-l rotational
wavefunctions or any one of the (SA+ 1)(2SA+ 1) symmetric nuclear wavefunctions
with any one of the odd-l rotational wavefunctions. Accordingly, the nuclear-
rotational partition function of such a molecule would be

j(F.D.)
nuc−rot(T)= SA(2SA+ 1)reven+ (SA+ 1)(2SA+ 1)rodd, (28)

11It seems instructive to outline here the purely classical derivation of the rotational partition function. Specifying
the rotation of the molecule by the angles (θ ,φ) and the corresponding momenta (pθ ,pφ), the kinetic energy assumes the
form

εrot =
1
2I p2

θ +
1

2I sin2 θ
p2
φ ,

from which

jrot(T)= 1
h2

∫
e−εrot/kT (dpθdpφdθ dφ)= IkT

π~2

φmax∫
0

dφ.

For heteronuclear molecules φmax = 2π , while for homonuclear ones φmax = π .
12See, for example, Schiff (1968, Section 41).
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where

reven =

∞∑
l=0,2,...

(2l+ 1)exp{−l(l+ 1)2r/T} (29)

and

rodd =

∞∑
l=1,3,...

(2l+ 1)exp{−l(l+ 1)2r/T}. (30)

(ii) If the nuclei are bosons (SA = 0,1,2, . . .), as in the molecule D2, the total wavefunction
must be symmetric. To secure this, we may associate any one of the (SA+ 1)(2SA+ 1)
symmetric nuclear wavefunctions with any one of the even-l rotational wavefunc-
tions or any one of the SA(2SA+ 1) antisymmetric nuclear wavefunctions with any
one of the odd-l rotational wavefunctions. We then have

j(B.E.)
nuc−rot(T)= (SA+ 1)(2SA+ 1)reven+ SA(2SA+ 1)rodd. (31)

At high temperatures, it is the larger values of l that contribute most to the sums (29) and
(30). The difference between the two sums is then negligibly small, and we have

reven ' rodd '
1
2

jrot(T)= T/22r ; (32)

see equations (16) and (17). Consequently,

j(B.E.)
nuc−rot ' j(F.D.)

nuc−rot = (2SA+ 1)2T/22r , (33)

in agreement with our previous result (27). Under these circumstances, the statistics gov-
erning the nuclei does not make a significant difference to the thermodynamic behaviour
of the gas.

Things change when the temperature of the gas is in a range comparable to the value
of 2r . It seems most reasonable then to regard the gas as a mixture of two components,
generally referred to as ortho- and para-, whose relative concentrations in equilibrium are
determined by the relative magnitudes of the two parts of the partition function (28) or
(31), as the case may be. Customarily, the name ortho- is given to that component that
carries the larger statistical weight. Thus, in the case of fermions (as in H2), the ortho- to
para-ratio is given by

n(F.D.)
=
(SA+ 1)rodd

SAreven
, (34)

while in the case of bosons (as in D2), the corresponding ratio is given by

n(B.E.)
=
(SA+ 1)reven

SArodd
. (35)
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As temperature rises, the factor rodd/reven tends to unity and the ratio n, in each case,
approaches the temperature-independent value (SA+ 1)/SA. In the case of H2, this lim-
iting value is 3 (since SA =

1
2 ) while in the case of D2 it is 2 (since SA = 1). At sufficiently

low temperatures, one may retain only the main terms of the sums (29) and (30), with the
result that

rodd

reven
' 3exp

(
−

22r

T

)
(T �2r), (36)

which tends to zero as T→ 0. The ratio n then tends to zero in the case of fermions and
to infinity in the case of bosons. Hence, as T→ 0, the hydrogen gas is wholly para-, while
deuterium is wholly ortho-; of course, in each case, the molecules do settle down in the
rotational state l = 0.

At intermediate temperatures, one has to work with the equilibrium ratio (34), or (35),
and with the composite partition function (28), or (31), in order to compute the thermody-
namic properties of the gas. One finds, however, that the theoretical results so derived do
not generally agree with the ones obtained experimentally. This discrepancy was resolved
by Dennison (1927) who pointed out that the samples of hydrogen, or deuterium, ordi-
narily subjected to experiment are not in thermal equilibrium as regards the relative
magnitudes of the ortho- and para-components. These samples are ordinarily prepared
and kept at room temperatures that are well above 2r , with the result that the ortho- to
para-ratio in them is very nearly equal to the limiting value (SA+ 1)SA.

If now the temperature is lowered, one would expect this ratio to change in accordance
with equation (34), or (35). However, it does not do so for the following reason. Since
the transition of a molecule from one form of existence to another involves the flipping
of the spin of one of its nuclei, the transition probability of the process is quite small. Actu-
ally, the periods involved are of the order of a year! Obviously, one cannot expect to attain
the true equilibrium ratio n during the short times available. Consequently, even at lower
temperatures, what one generally has is a nonequilibrium mixture of two independent
substances, the relative concentration of which is preassigned. The partition functions (28)
and (31) as such are, therefore, inapplicable; we rather have directly for the specific heat

C(F.D.)
=

SA

2SA+ 1
Ceven+

SA+ 1
2SA+ 1

Codd (37)

and

C(B.E.)
=

SA+ 1
2SA+ 1

Ceven+
SA

2SA+ 1
Codd, (38)

where

Ceven/odd =Nk
∂

∂T

{
T 2(∂/∂T) lnreven/odd

}
. (39)

We have, therefore, to compute Ceven and Codd separately and then derive the net value
of the rotational specific heat with the help of formula (37) or (38), as the case may be.
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FIGURE 6.7 The theoretical specific heat of a 1:3 mixture of para-hydrogen and ortho-hydrogen. The experimental
points originate from various sources listed in Wannier (1966).

Figure 6.7 shows the relevant results for hydrogen. Curves 1 and 2 correspond to the para-
hydrogen (Ceven) and the ortho-hydrogen (Codd), respectively, while curve 3 represents the
weighted mean, as given by equation (37). The experimental results are also shown in the
figure; the agreement between theory and experiment is clearly good.

Further evidence in favor of Dennison’s explanation is obtained by performing exper-
iments with ortho–para mixtures of different relative concentration. This can be done by
speeding up the ortho–para conversion by passing hydrogen over activated charcoal. By
doing this at various temperatures, and afterwards removing the catalyst, one can fix the
ratio n at any desired value. The specific heat then follows a curve obtained by mixing Ceven

and Codd with appropriate weight factors. Further, if one measures the specific heat of the
gas in such a way that the ratio n, at every temperature T , has the value that is given by
formula (34), it indeed follows the curve obtained from expression (28) for the partition
function.

6.5.C Polyatomic molecules

Once again, the translational degrees of freedom of the molecules contribute their usual
share, 3

2 k per molecule, toward the specific heat of the gas. As regards the lowest electronic
state, it is, in most cases, far below any of the excited states; nevertheless, it generally pos-
sesses a multiplicity (depending on the orbital and spin angular momenta of the state)
that can be taken care of by a degeneracy factor ge. As regards the rotational states, they
can be treated classically because the large values of the moments of inertia characteris-
tic of polyatomic molecules make the quantum of rotational energy, ~2/2Ii, much smaller
than the thermal energy kT at practically all temperatures of interest. Consequently, the
interaction between the rotational states and the states of the nuclei can also be treated
classically. As a result, the nuclear-rotational partition function is given by the product of
the respective partition functions, divided by a symmetry number γ that denotes the num-
ber of physically indistinguishable configurations realized during one complete rotation of
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the molecule:13

jnuc−rot(T)=
gnuc jC

rot(T)
γ

; (40)

compare to equation (27). Here, jC
rot(T) is the rotational partition function of the molecule

evaluated in the classical approximation (without paying regard to the presence of identi-
cal nuclei, if any); it is given by

jC
rot(T)= π

1/2
(

2I1kT

~2

)1/2(2I2kT

~2

)1/2(2I3kT

~2

)1/2

(41)

where I1, I2, and I3 are the principal moments of inertia of the molecule; see Prob-
lem 6.27.14 The rotational specific heat is then given by

Crot =Nk
∂

∂T

{
T 2 ∂

∂T
ln jC

rot(T)
}
=

3
2

Nk, (42)

consistent with the equipartition theorem.
As regards vibrational states, we first note that, unlike a diatomic molecule, a poly-

atomic molecule has not one but several vibrational degrees of freedom. In particular, a
noncollinear molecule consisting of n atoms has 3n− 6 vibrational degrees of freedom, six
degrees of freedom out of the total 3n having gone into the translational and rotational
motions. On the other hand, a collinear molecule consisting of n atoms would have 3n− 5
vibrational degrees of freedom, for the rotational motion in this case has only two, not
three, degrees of freedom. The vibrational degrees of freedom correspond to a set of nor-
mal modes characterized by a set of frequencies ωi. It might happen that some of these
frequencies have identical values; we then speak of degenerate frequencies.15

In the harmonic approximation, these normal modes may be treated independently
of one another. The vibrational partition function of the molecule is then given by the
product of the partition functions corresponding to individual normal modes, that is,

jvib(T)=
∏

i

e−2i/2T

1− e−2i/T
; 2i =

~ωi

k
, (43)

13For example, the symmetry number γ for H2O (isosceles triangle) is 2, for NH3 (regular triangular pyramid) it is 3,
while for CH4 (tetrahedron) and C6H6 (regular hexagon) it is 12. For heteronuclear molecules, the symmetry number is
unity.

14In the case of a collinear molecule, such as N2O or CO2, there are only two degrees of freedom for rotation; con-
sequently, jC

rot(T) is given by (2IkT/~2), where I is the (common) value of the two moments of inertia of the molecule;
see equation (17). Of course, we must also take into account the symmetry number γ . In the examples quoted here,
the molecule N2O, being spatially asymmetric (NNO), has symmetry number 1, while the molecule CO2, being spatially
symmetric (OCO), has symmetry number 2.

15For example, of the four frequencies characterizing the normal modes of vibration of the collinear molecule OCO,

two that correspond to the (transverse) bending modes, namely
↑

O C O
↓ ↓

, are equal while the others that correspond to

(longitudinal) oscillations along the molecular axis, namely←O C→←O and←O C O→, are different; see Problem 6.28.
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and the vibrational specific heat is given by the sum of the contributions arising from the
individual modes:

Cvib =Nk
∑

i

{(
2i

T

)2 e2i/T(
e2i/T − 1

)2

}
. (44)

In general, the various 2i are of order 103 K; for instance, in the case of CO2, which was
cited in footnote 15, 21 =22 = 960 K, 23 = 1,990 K, and 24 = 3,510 K. For temperatures
large in comparison with all2i, the specific heat would be given by the equipartition value,
namely Nk for each of the normal modes. In practice, however, this limit can hardly be
realized because the polyatomic molecules generally break up well before such high tem-
peratures are reached. Secondly, the different frequencies ωi of a polyatomic molecule
are generally spread over a rather wide range of values. Consequently, as temperature
rises, different modes of vibration get gradually “included” into the process; in between
these “inclusions,” the specific heat of the gas may stay constant over considerably large
stretches of temperature.

6.6 Chemical equilibrium
The equilibrium amounts of chemicals in a chemical reaction are determined by the
chemical potentials of each of the species. Consider the following chemical reaction
between chemical species A and B to form species X and Y with stoichiometric coefficients
νA, νB, νX , and νY :

νAA+ νBB � νX X + νY Y . (1)

Each individual reaction that occurs changes the number of molecules of each species
according to the stoichiometric coefficients. If the initial numbers of molecules of the
species are N0

A, N0
B, N0

X , and N0
Y , then the numbers of each species after1N chemical reac-

tions have occurred would be NA =N0
A − νA1N , NB =N0

B− νB1N , NX =N0
X + νX1N , and

NY =N0
Y + νY1N . If 1N > 0, the reaction has proceeded in the positive direction increas-

ing the numbers of X and Y . If 1N < 0, the reaction has proceeded in the direction of
increasing the numbers of A and B. If the reaction takes place in a closed isothermal sys-
tem with fixed pressure, the Gibbs free energy G(NA,NB,NX ,NY ,P,T) is changed by the
amount

1G = (−νAµA− νBµB+ νXµX + νYµY )1N , (2)

where µA =

(
∂G
∂NA

)
T ,P

is the chemical potential of species A, and so on; see Sections 3.3,

4.7, and Appendix H. Since the Gibbs free energy decreases as a system approaches equi-
librium, 1G ≤ 0. When the system reaches chemical equilibrium, the Gibbs free energy
reaches its minimum value so 1G = 0. This gives us the general relationship for chemical
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equilibrium of the reaction in equation (1), namely

νAµA+ νBµB = νXµX + νYµY . (3)

Note that if a chemical species that acts as a catalyst is added in equal amounts to
both sides of equation (1), the equilibrium relation (3) is unaffected. Therefore, a cata-
lyst may serve to increase the rate of approach toward equilibrium, without affecting the
equilibrium condition itself.

If the free energy can be approximated as a sum of the free energies of the individual
species such as in an ideal gas or a dilute solution, then we can derive a simple rela-
tion between the equilibrium densities of the species. Following from equations (3.5.10)
and (6.5.4), the Helmholtz free energy of a classical ideal gas consisting of molecules with
internal degrees of freedom can be written as

A(N ,V ,T)=Nε+NkT ln

(
Nλ3

V

)
−NkT −NkT ln j(T), (4)

where ε is the ground state energy of the molecule, λ= h/
√

2πmkT is the thermal
deBroglie wavelength, and j(T) is the partition function for the internal degrees of freedom
of the molecule. This gives for the chemical potential of species A

µA =

(
∂A
∂NA

)
T ,V
= εA+ kT ln

(
nAλ

3
A

)
− kT ln jA(T), (5)

where nA is the number density of species A. The equilibrium condition then (3) gives

[X ]νX [Y ]νY

[A]νA [B]νB
= K (T)= exp

(
−β1µ(0)

)
, (6)

where [A]= nA/n0, and so on,

1µ(0) = νXµ
(0)
X + νYµ

(0)
Y − νAµ

(0)
A − νBµ

(0)
B , (7a)

µ
(0)
A = εA+ kT ln

(
n0λ

3
A

)
− kT ln jA(T), etc. (7b)

and K (T) is the equilibrium constant.
Equation (6) is called the law of mass action. The quantity n0 is a standard number

density and µ(0)A , and so on, are the chemical potentials of the species at temperature T
and standard number density n0. The quantity 1µ(0) represents the Gibbs free energy
change per chemical reaction at standard density. Note that the reaction constant K (T)
is a function only of the temperature and determines the densities of the components in
equilibrium at temperature T through equation (6). The standard number density for gases
is usually chosen to be the number density of an ideal gas at temperature T and standard
pressure, that is, n0 = (1atm)/kT . The standard density for aqueous solutions is usually
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chosen to be one mole per liter. The Gibbs free energy in chemical tables is expressed
relative to the standard states of the elements.

We now examine a specific example, the combustion of hydrocarbons with oxygen in
an internal combustion engine. The reaction used to power clean buses and automobiles
using natural gas is

CH4+ 2O2 � CO2+ 2H2O . (8)

The primary reaction products are carbon dioxide and water vapor but carbon monoxide
is also produced by the reaction

2CH4+ 3O2 � 2CO+ 4H2O . (9)

A primary goal for a clean burning engine is to combust nearly all the hydrocarbon fuel
while producing as little carbon monoxide as possible. By combining reactions (8) and (9),
we get a direct reaction between carbon monoxide, oxygen, and carbon dioxide:

2CO+O2 � 2CO2 . (10)

Equation (6) now gives the equilibrium ratio of CO to CO2 as

[CO]
[CO2]

=

√
1

K (T)[O2]
. (11)

At T ≈ 1,500K, as combustion occurs inside the cylinder of the engine, the equilibrium
constant K ≈ 1010 so carbon monoxide is present as a combustion product in the few
parts per million range — combustion reactions that are not in equilibrium can have CO
concentrations well above the equilibrium value. The exhaust gases cool quickly during
the power stroke of the engine. As these gases exit the exhaust at T ≈ 600K, the equilib-
rium constant K ≈ 1040, which should result in almost no carbon monoxide in the exhaust
stream. However, the reaction rate is typically too slow to keep the CO concentration in
chemical equilibrium during the rapid cooling, so the amount of CO present in the exhaust
stream remains close to the larger value determined at the higher temperature.16 Fortu-
nately, the leftover carbon monoxide can be converted into carbon dioxide at the exhaust
temperature in a catalytic converter that uses platinum and palladium as catalysts to
increase the reaction rate. Equation (11) indicates that the carbon monoxide fraction is
reduced by increasing the amount of oxygen present in the reaction. This is accomplished
by running the engine with a hydrocarbon/air ratio that is a little bit short of the stoichio-
metric point of equation (8). This reduces the amount of CO left from the combustion itself
and also leaves excess O2 in the exhaust stream for use in the catalytic converter.

16Very similar effects happened during the early stages of the universe as the temperature cooled but the cooling rate
was too rapid for some constituents to remain in thermal equilibrium; see Chapter 9.
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Problems
6.1. Show that the entropy of an ideal gas in thermal equilibrium is given by the formula

S= k
∑
ε

[
〈nε + 1〉 ln〈nε + 1〉− 〈nε〉 ln〈nε〉

]
in the case of bosons and by the formula

S= k
∑
ε

[−〈1−nε〉 ln〈1−nε〉− 〈nε〉 ln〈nε〉]

in the case of fermions. Verify that these results are consistent with the general formula

S=−k
∑
ε

{∑
n

pε(n) lnpε(n)

}
,

where pε(n) is the probability that there are exactly n particles in the energy state ε.
6.2. Derive, for all three statistics, the relevant expressions for the quantity 〈n2

ε 〉− 〈nε〉
2 from the

respective probabilities pε(n). Show that, quite generally,

〈n2
ε 〉− 〈nε〉

2
= kT

(
∂〈nε〉
∂µ

)
T

;

compare with the corresponding result, (4.5.3), for a system embedded in a grand canonical
ensemble.

6.3. Refer to Section 6.2 and show that, if the occupation number nε of an energy level ε is restricted
to the values 0,1, . . . , l, then the mean occupation number of that level is given by

〈nε〉 =
1

z−1eβε − 1
−

l+ 1

(z−1eβε)l+1− 1
.

Check that while l = 1 leads to 〈nε〉F.D., l→∞ leads to 〈nε〉B.E..
6.4. The potential energy of a system of charged particles, characterized by particle charge e and

number density n(r), is given by

U =
e2

2

∫∫
n(r)n(r′)
|r− r′|

drdr′+ e
∫

n(r)φext(r)dr,

where φext(r) is the potential of an external electric field. Assume that the entropy of the system,
apart from an additive constant, is given by the formula

S=−k
∫

n(r) lnn(r)dr;

compare to formula (3.3.13). Using these expressions, derive the equilibrium equations satisfied
by the number density n(r) and the total potential φ(r), the latter being

φext(r)+ e
∫

n(r′)
|r− r′|

dr′.

6.5. Show that the root-mean-square deviation in the molecular energy ε, in a system obeying
Maxwell–Boltzmann distribution, is

√
(2/3) times the mean molecular energy ε. Compare this

result with that of Problem 3.18.
6.6. Show that, for any law of distribution of molecular speeds,{

〈u〉
〈

1
u

〉}
≥ 1.

Check that the value of this quantity for the Maxwellian distribution is 4/π .



174 Chapter 6 . The Theory of Simple Gases

6.7. Through a small window in a furnace, which contains a gas at a high temperature T , the spectral
lines emitted by the gas molecules are observed. Because of molecular motions, each spectral line
exhibits Doppler broadening. Show that the variation of the relative intensity I(λ)with wavelength
λ in a line is given by

I(λ)∝ exp

{
−

mc2(λ− λ0)
2

2λ2
0kT

}
,

where m is the molecular mass, c the speed of light, and λ0 the mean wavelength of the line.
6.8. An ideal classical gas composed of N particles, each of mass m, is enclosed in a vertical cylinder of

height L placed in a uniform gravitational field (of acceleration g) and is in thermal equilibrium;
ultimately, both N and L→∞. Evaluate the partition function of the gas and derive expressions for
its major thermodynamic properties. Explain why the specific heat of this system is larger than that
of a corresponding system in free space.

6.9. Centrifuge-based uranium enrichment: Natural uranium is composed of two isotopes: 238U and
235U, with percentages of 99.27% and 0.72%, respectively. If uranium hexafluoride gas UF6 is
injected into a rapidly spinning hollow metal cylinder with inner radius R, the equilibrium pressure
of the gas is largest at the inner radius and isotopic concentration differences between the axis and
the inner radius allow enrichment of the concentration of 235U.
(a) Write down the Lagrangian L({qk, q̇k}) for particles of mass m moving in a cylindrical

coordinate system rotating at angular velocity ω and use a Legendre transformation

H({qk,pk})=
∑

k

pkq̇k −L,

to show that the one-particle Hamiltonian H in that cylindrical coordinate system is

H(r,θ ,z,pr ,pθ ,pz)=
p2

r

2m
+
(p2
θ −mr2ω)2

2mr2 +
p2

z

2m
.

Ignore the internal degrees of freedom of the molecules since they will not affect the density as
a function of position. Show that the one-particle partition function shown here can be written
as

Q1(V ,T)=
1

h3

∞∫
−∞

dpr

∞∫
−∞

dpθ

∞∫
−∞

dpz

R∫
0

dr

2π∫
0

dθ

H∫
0

dz exp(−βH) ,

by constructing the Jacobian of transformation between the cartesian and the cylindrical
coordinates for the phase space integral. Evaluate the partition function Q1 in a closed form
and determine the Helmholtz free energy of this system.

(b) Determine the number density n(r) as a function of the distance r from the axis for the N
molecules of gas in the rotating cylinder. Show that, in the limit ω→ 0, the density becomes
uniform with the value n=N/πR2H . Find an expression for the ratio of the pressure at the
inner radius of the cylinder R to the pressure at the axis of the cylinder as a function of ω
and R.

(c) Evaluate the pressure ratios for the two isotopically different UF6 gases at room temperature
for the case ωR= 500m/s. Show that the pressure ratio for 238U is approximately 20% larger
than the pressure ratio for 235U so that extracting gas near the axis results in an enriched
concentration of 235U. A series of centrifuges can be used to raise the concentration of 235U
to create a fissionable grade of uranium for use in power-generating reactors or in nuclear
weapons. Not surprisingly, this technology is a major concern for possible nuclear
proliferation.
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6.10. (a) Show that, if the temperature is uniform, the pressure of a classical gas in a uniform
gravitational field decreases with height according to the barometric formula

P(z)= P(0)exp
{
−mgz/kT

}
,

where the various symbols have their usual meanings.17

(b) Derive the corresponding formula for an adiabatic atmosphere, that is, the one in which
(PV γ ), rather than (PV ), stays constant. Also study the variation, with height, of the
temperature T and the density n in such an atmosphere.

6.11. (a) Show that the momentum distribution of particles in a relativistic Boltzmannian gas, with
ε = c(p2

+m2
0c2)1/2, is given by

f (p)dp= Ce−βc(p2
+m2

0c2)1/2
p2dp,

with the normalization constant

C =
β

m2
0cK2(βm0c2)

,

Kν(z) being a modified Bessel function.
(b) Check that in the nonrelativistic limit (kT �m0c2)we recover the Maxwellian distribution,

f (p)dp=
(

β

2πm0

)3/2

e−βp2/2m0 (4πp2 dp),

while in the extreme relativistic limit (kT �m0c2)we obtain

f (p)dp=
(βc)3

8π
e−βpc(4πp2 dp).

(c) Verify that, quite generally,

〈pu〉 = 3kT .

6.12. (a) Considering the loss of translational energy suffered by the molecules of a gas on reflection
from a receding wall, derive, for a quasistatic adiabatic expansion of an ideal nonrelativistic
gas, the well-known relation

PV γ
= const.,

where γ = (3a+ 2)/3a, a being the ratio of the total energy to the translational energy of
the gas.

(b) Show that, in the case of an extreme relativistic gas, γ = (3a+ 1)/3a.
6.13. (a) Determine the number of impacts made by gas molecules on a unit area of the wall in a unit

time for which the angle of incidence lies between θ and θ +dθ .
(b) Determine the number of impacts made by gas molecules on a unit area of the wall in a unit

time for which the speed of the molecules lies between u and u+du.
(c) A molecule AB dissociates if it hits the surface of a solid catalyst with a normal translational

energy greater than 10−19 J. Show that the rate of the dissociative reaction AB→ A+B is more
than doubled by raising the temperature of the gas from 300 K to 310 K.

6.14. Consider the effusion of molecules of a Maxwellian gas through an opening of area a in the walls of
a vessel of volume V .
(a) Show that, while the molecules inside the vessel have a mean kinetic energy 3

2 kT , the effused
ones have a mean kinetic energy 2kT , T being the quasistatic equilibrium temperature of
the gas.

17This formula was first given by Boltzmann (1879). For a critical study of its derivation, see Walton (1969).
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(b) Assuming that the effusion is so slow that the gas inside is always in a state of quasistatic
equilibrium, determine the manner in which the density, the temperature, and the pressure of
the gas vary with time.

6.15. A polyethylene balloon at an altitude of 30,000 m is filled with helium gas at a pressure of 10−2 atm
and a temperature of 300 K. The balloon has a diameter of 10 m, and has numerous pinholes of
diameter 10−5 m each. How many pinholes per square meter of the surface of the balloon must
there be if 1 percent of the gas were to leak out in 1 hour?

6.16. Consider two Boltzmannian gases A and B, at pressures PA and PB and temperatures TA and TB,
respectively, contained in two regions of space that communicate through a very narrow opening
in the partitioning wall; see Figure 6.8. Show that the dynamic equilibrium resulting from the
mutual effusion of the two kinds of molecules satisfies the condition

PA/PB = (mATA/mBTB)
1/2,

rather than PA = PB (which would be the case if the equilibrium had resulted from a hydrodynamic
flow).

A
(PA, TA)

B
(PB, TB)

FIGURE 6.8 The molecules of the gases A and B undergoing a two-way effusion.

6.17. A small sphere, with initial temperature T , is immersed in an ideal Boltzmannian gas at
temperature T0. Assuming that the molecules incident on the sphere are first absorbed and then
reemitted with the temperature of the sphere, determine the variation of the temperature of the
sphere with time.
[Note: The radius of the sphere may be assumed to be much smaller than the mean free path of the
molecules.]

6.18. Show that the mean value of the relative speed of two molecules in a Maxwellian gas is
√

2 times
the mean speed of a molecule with respect to the walls of the container.
[Note: A similar result for the root-mean-square speeds (instead of the mean speeds) holds under
much more general conditions.]

6.19. What is the probability that two molecules picked at random from a Maxwellian gas will have a
total energy between E and E+dE? Verify that 〈E〉 = 3kT .

6.20. The energy difference between the lowest electronic state 1S0 and the first excited state 3S1 of the
helium atom is 159,843 cm−1. Evaluate the relative fraction of the excited atoms in a sample of
helium gas at a temperature of 6000 K.

6.21. Derive an expression for the equilibrium constant K (T) for the reaction H2+D2↔ 2HD at
temperatures high enough to allow classical approximation for the rotational motion of the
molecules. Show that K (∞)= 4.

6.22. With the help of the Euler–Maclaurin formula (6.5.19), derive high-temperature expansions for
reven and rodd, as defined by equations (6.5.29) and (6.5.30), and obtain corresponding expansions
for Ceven and Codd, as defined by equation (6.5.39). Compare the mathematical trend of these
results with the nature of the corresponding curves in Figure 6.7. Also study the low-temperature
behavior of the two specific heats and once again compare your results with the relevant parts of
the aforementioned curves.

6.23. The potential energy between the atoms of a hydrogen molecule is given by the (semiempirical)
Morse potential

V (r)= V0{e−2(r−r0)/a
− 2e−(r−r0)/a

},
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where V0 = 7× 10−12 erg, r0 = 8× 10−9 cm, and a= 5× 10−9 cm. Evaluate the rotational and
vibrational quanta of energy, and estimate the temperatures at which the rotational and vibrational
modes of the molecules would begin to contribute toward the specific heat of the hydrogen gas.

6.24. Show that the fractional change in the equilibrium value of the internuclear distance of a diatomic
molecule, as a result of rotation, is given by

1r0

r0
'

(
~

µr2
0ω

)2

J(J + 1)= 4
(
2r

2v

)2

J(J + 1);

here, ω is the angular frequency of the vibrational state in which the molecule happens to be.
Estimate the numerical value of this fraction in a typical case.

6.25. The ground state of an oxygen atom is a triplet, with the following fine structure:

εJ=2 = εJ=1− 158.5 cm−1
= εJ=0− 226.5 cm−1.

Calculate the relative fractions of the atoms occupying different J-levels in a sample of atomic
oxygen at 300 K.

6.26. Calculate the contribution of the first excited electronic state, namely 11with ge = 2, of the O2
molecule toward the Helmholtz free energy and the specific heat of oxygen gas at a temperature
of 5000 K; the separation of this state from the ground state, namely 36 with ge = 3, is 7824 cm−1.
How would these results be affected if the parameters2r and2v of the O2 molecule had different
values in the two electronic states?

6.27. The rotational kinetic energy of a rotator with three degrees of freedom can be written as

εrot =
M2
ξ

2I1
+

M2
η

2I2
+

M2
ζ

2I3
,

where (ξ ,η,ζ ) are coordinates in a rotating frame of reference whose axes coincide with the
principal axes of the rotator, while (Mξ ,Mη,Mζ ) are the corresponding angular momenta. Carrying
out integrations in the phase space of the rotator, derive expression (6.5.41) for the partition
function jrot(T) in the classical approximation.

6.28. Determine the translational, rotational, and vibrational contributions toward the molar entropy
and the molar specific heat of carbon dioxide at NTP. Assume the ideal-gas formulae and use
the following data: molecular weight M = 44.01; moment of inertia I of a CO2 molecule= 71.67×
10−40 gcm2; wave numbers of the various modes of vibration: ν1 = ν2 = 667.3cm−1, ν3 =

1383.3 cm−1, and ν4 = 2439.3 cm−1.
6.29. Determine the molar specific heat of ammonia at a temperature of 300 K. Assume the ideal-gas

formula and use the following data: the principal moments of inertia: I1 = 4.44× 10−40gcm2,
I2 = I3 = 2.816× 10−40gcm2; wave numbers of the various modes of vibration:
ν1 = ν2 = 3336 cm−1, ν3 = ν4 = 950 cm−1, ν5 = 3414 cm−1, and ν6 = 1627 cm−1.

6.30. Derive the equilibrium concentration equation (6.6.6) from the equilibrium condition (6.6.3).
6.31. Use the following values to determine the equilibrium constant for the reaction 2CO+O2 � 2CO2.

At a combustion temperature of T = 1500K: βµ(0)CO2
=−60.95, βµ(0)CO =−35.18, and βµ(0)O2

=−27.08.
Use this data to compute the fraction [CO]/[CO2] for the case of [O2]= 0.01. Repeat for a catalytic
converter temperature of T = 600K, where βµ(0)CO2

=−103.45, βµ(0)CO =−45.38, and βµ(0)O2
=−23.49.

6.32. Derive an expression for the equilibrium constant K (T) for the reaction N2+O2 � 2NO
in terms of the ground state energy change1ε0 = 2εNO− εN2 − εO2 and the vibrational and
rotational partition functions of the diatomic molecules, using results from Section 6.5. Give
predictions for the ranges of temperatures where the rotational modes are classically excited but
the vibration modes are suppressed and for higher temperatures where both the rotational and
vibrational models are classically excited.

6.33. Analyze the combustion reaction

CH4+ 2O2 � CO2+ 2H2O , (6.6.8)
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assuming that at combustion temperatures the equilibrium constant K (T)� 1. Show that
conducting combustion at the stoichiometric point or just a bit short of the stoichiometric point
(so there is enough oxygen to oxidize all of the methane) will lead to low amounts of CH4 in the
exhaust. Determine the equilibrium amount of CH4 in terms of the initial excess amount of O2.
Determine the equilibrium constant at T = 1500K from the data βµ(0)CO2

=−60.95, βµ(0)O2
=−27.08,

βµ
(0)
CH4
=−31.95, and βµ(0)H2O =−44.62.

6.34. Determine the equilibrium ionization fraction for the reaction

Na � Na++ e−

in a sodium vapor. Treat all three species as ideal classical monatomic gases. The ionization energy
of sodium is 5.139 eV, Na+ ions are spin-zero, and neutral Na and free e− are both spin- 1

2 . Derive
the Saha equation for the ionized fraction [Na+]/([Na]+ [Na+]) for a neutral plasma as a function
of temperature at a fixed total density. Plot the ionized fraction as a function of temperature for
some chosen total density.

[Note that, this calculation is very similar to the one concerning ionized hydrogen fraction as a
function of temperature during the recombination era in the early universe; see Section 9.8.]
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Ideal Bose Systems

In continuation of Sections 6.1 through 6.3, we shall now investigate in detail the physical
behavior of a class of systems in which, while the intermolecular interactions are still neg-
ligible, the effects of quantum statistics (which arise from the indistinguishability of the
particles) assume an increasingly important role. This means that the temperature T and
the particle density n of the system no longer conform to the criterion

nλ3
≡

nh3

(2πmkT)3/2
� 1, (5.5.20)

where λ{≡ h/(2πmkT)1/2
} is the mean thermal wavelength or thermal deBroglie wave-

length of the particles. In fact, the quantity nλ3 turns out to be a very appropriate
parameter, in terms of which the various physical properties of the system can be ade-
quately expressed. In the limit nλ3

→ 0, all physical properties go over smoothly to their
classical counterparts. For small, but not negligible, values of nλ3, the various quantities
pertaining to the system can be expanded as power series in this parameter; from these
expansions one obtains the first glimpse of the manner in which departure from classi-
cal behavior sets in. When nλ3 becomes of the order of unity, the behavior of the system
becomes significantly different from the classical one and is characterized by quantum
effects. A study of the system under these circumstances brings us face to face with a set of
phenomena unknown in classical statistics.

It is evident that a system is more likely to display quantum behavior when it is at a
relatively low temperature and/or has a relatively high density of particles.1 Moreover, the
smaller the particle mass the larger the quantum effects.

Now, when nλ3 is of the order of unity, then not only does the behavior of a system
exhibit significant departure from typical classical behavior but it is also influenced by
whether the particles constituting the system obey Bose–Einstein statistics or Fermi–Dirac
statistics. Under these circumstances, the properties of the two kinds of systems are them-
selves very different. In the present chapter we consider systems belonging to the first
category while the succeeding chapter will deal with systems belonging to the second
category.

1Actually it is the ratio n/T 3/2, rather than the quantities n and T separately, that determines the degree of degeneracy
in a given system. For instance, white dwarf stars, even at temperatures of order 107 K, constitute statistically degenerate
systems; see Section 8.5.

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00007-4
© 2011 Elsevier Ltd. All rights reserved.
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7.1 Thermodynamic behavior of an ideal Bose gas
We obtained, in Sections 6.1 and 6.2, the following formulae for an ideal Bose gas:

PV
kT
≡ lnQ=−

∑
ε

ln(1− ze−βε) (1)

and

N ≡
∑
ε

〈nε〉 =
∑
ε

1

z−1eβε − 1
, (2)

where β = 1/kT , while z is the fugacity of the gas which is related to the chemical potential
µ through the formula

z ≡ exp(µ/kT); (3)

as noted earlier, ze−βε, for all ε, is less than unity. In view of the fact that, for large V , the
spectrum of the single-particle states is almost a continuous one, the summations on the
right sides of equations (1) and (2) may be replaced by integrations. In doing so, we make
use of the asymptotic expression (2.4.7) for the nonrelativistic density of states a(ε) in the
neighborhood of a given energy ε, namely2

a(ε)dε = (2πV /h3)(2m)3/2ε1/2dε. (4)

We, however, note that by substituting this expression into our integrals we are inadver-
tently giving a weight zero to the energy level ε = 0. This is wrong because in a quantum-
mechanical treatment we must give a statistical weight unity to each nondegenerate
single-particle state in the system. It is, therefore, advisable to take this particular state
out of the sum in question before carrying out the integration; for a rigorous justification
of this (unusual) step, see Appendix F. We thus obtain

P
kT
=−

2π

h3
(2m)3/2

∞∫
0

ε1/2 ln(1− ze−βε)dε−
1
V

ln(1− z) (5)

and

N
V
=

2π

h3
(2m)3/2

∞∫
0

ε1/2dε

z−1eβε − 1
+

1
V

z
1− z

; (6)

of course, the lower limit of these integrals can still be taken as 0, because the state ε = 0 is
not going to contribute toward them anyway.

Before proceeding further, a word about the relative importance of the last terms in
equations (5) and (6). For z� 1, which corresponds to situations not far removed from

2The theory of this section is restricted to a system of nonrelativistic particles. For the more general case, see Kothari
and Singh (1941) and Landsberg and Dunning-Davies (1965).
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the classical limit, each of these terms is of order 1/N and, therefore, negligible. How-
ever, as z increases and assumes values close to unity, the term z/(1− z)V in (6), which
is identically equal to N0/V (N0 being the number of particles in the ground state ε = 0),
can well become a significant fraction of the quantity N/V ; this accumulation of a macro-
scopic fraction of the particles into a single state ε = 0 leads to the phenomenon of
Bose–Einstein condensation. Nevertheless, since z/(1− z)=N0 and hence z =N0/(N0+ 1),
the term {−V−1 ln(1− z)} in (5) is equal to {V−1 ln(N0+ 1)}, which is at most O(N−1 lnN);
this term is, therefore, negligible for all values of z and hence may be dropped altogether.

We now obtain from equations (5) and (6), on substituting βε = x,

P
kT
=−

2π(2mkT)3/2

h3

∞∫
0

x1/2 ln(1− ze−x)dx =
1

λ3
g5/2(z) (7)

and

N −N0

V
=

2π(2mkT)3/2

h3

∞∫
0

x1/2dx

z−1ex− 1
=

1

λ3
g3/2(z), (8)

where

λ= h/(2πmkT)1/2, (9)

while gν(z) are Bose–Einstein functions defined by, see Appendix D,

gν(z)=
1

0(ν)

∞∫
0

xν−1dx

z−1ex− 1
= z+

z2

2ν
+

z3

3ν
+ ·· · ; (10)

note that to write (7) in terms of the function g5/2(z) we first carried out an integration by
parts. Equations (7) and (8) are our basic results; on elimination of z, they would give us
the equation of state of the system.

The internal energy of this system is given by

U ≡−
(
∂

∂β
lnQ

)
z,V
= kT 2

{
∂

∂T

(
PV
kT

)}
z,V

= kT 2V g5/2(z)
{

d
dT

(
1

λ3

)}
=

3
2

kT
V

λ3
g5/2(z); (11)

here, use has been made of equation (7) and of the fact that λ∝ T−1/2. Thus, quite
generally, our system satisfies the relationship

P =
2
3
(U/V ). (12)

For small values of z, we can make use of expansion (10); at the same time, we can neglect
N0 in comparison with N . An elimination of z between equations (7) and (8) can then be
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carried out by first inverting the series in (8) to obtain an expansion for z in powers of nλ3

and then substituting this expansion into the series appearing in (7). The equation of state
thereby takes the form of the virial expansion,

PV
NkT

=

∞∑
l=1

al

(
λ3

v

)l−1

, (13)

where v (≡ 1/n) is the volume per particle; the coefficients al, which are referred to as the
virial coefficients of the system, turn out to be

a1= 1,

a2=−
1

4
√

2
=−0.17678,

a3=−

(
2

9
√

3
−

1
8

)
=−0.00330,

a4=−

(
3

32
+

5

32
√

2
−

1

2
√

6

)
=−0.00011,


(14)

and so on. For the specific heat of the gas, we obtain

CV

Nk
≡

1
Nk

(
∂U
∂T

)
N ,V
=

3
2

{
∂

∂T

(
PV
Nk

)}
v

=
3
2

∞∑
l=1

5− 3l
2

al

(
λ3

v

)l−1

=
3
2

1+ 0.0884

(
λ3

v

)
+ 0.0066

(
λ3

v

)2

+ 0.0004

(
λ3

v

)3

+ ·· ·

. (15)

As T→∞ (and hence λ→ 0), both the pressure and the specific heat of the gas approach
their classical values, namely nkT and 3

2 Nk, respectively. We also note that at finite, but
large, temperatures the specific heat of the gas is larger than its limiting value; in other
words, the (CV ,T)-curve has a negative slope at high temperatures. On the other hand, as
T→ 0, the specific heat must go to zero. Consequently, it must pass through a maximum
somewhere. As seen later, this maximum is in the nature of a cusp that appears at a criti-
cal temperature Tc; the derivative of the specific heat is found to be discontinuous at this
temperature (see Figure 7.4 later in this section).

As the temperature of the system falls (and the value of the parameter λ3/v grows),
expansions such as (13) and (15) do not remain useful. We then have to work with formulae
(7), (8), and (11) as such. The precise value of z is now obtained from equation (8), which
may be rewritten as

Ne = V
(2πmkT)3/2

h3
g3/2(z), (16)
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where Ne is the number of particles in the excited states (ε 6= 0); of course, unless z gets
extremely close to unity, Ne 'N .3 It is obvious that, for 0≤ z ≤ 1, the function g3/2(z)
increases monotonically with z and is bounded, its largest value being

g3/2(1)= 1+
1

23/2
+

1

33/2
+ ·· · ≡ ζ

(
3
2

)
' 2.612; (17)

see equation (D.5) in Appendix D. Hence, for all z of interest,

g3/2(z)≤ ζ
(

3
2

)
. (18)

Consequently, for given V and T , the total (equilibrium) number of particles in all the
excited states taken together is also bounded, that is,

Ne ≤ V
(2πmkT)3/2

h3
ζ

(
3
2

)
. (19)

Now, so long as the actual number of particles in the system is less than this limiting value,
everything is well and good; practically all the particles in the system are distributed over
the excited states and the precise value of z is determined by equation (16), with Ne 'N .
However, if the actual number of particles exceeds this limiting value, then it is natural that
the excited states will receive as many of them as they can hold, namely

Ne = V
(2πmkT)3/2

h3
ζ

(
3
2

)
, (20)

while the rest will be pushed en masse into the ground state ε = 0 (whose capacity, under
all circumstances, is essentially unlimited):

N0 =N −

{
V
(2πmkT)3/2

h3
ζ

(
3
2

)}
. (21)

The precise value of z is now determined by the formula

z =
N0

N0+ 1
' 1−

1
N0

(22)

which, for all practical purposes, is unity. This curious phenomenon of a macroscopi-
cally large number of particles accumulating in a single quantum state (ε = 0) is generally
referred to as the phenomenon of Bose–Einstein condensation. In a certain sense, this
phenomenon is akin to the familiar process of a vapor condensing into the liquid state,
which takes place in the ordinary physical space. Conceptually, however, the two pro-
cesses are very different. Firstly, the phenomenon of Bose–Einstein condensation is purely

3Remember that the largest value z can have in principle is unity. In fact, as T→ 0, z =N0/(N0+ 1)→N/(N + 1),
which is very nearly unity (but certainly on the right side of it).
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of quantum origin (occurring even in the absence of intermolecular forces); secondly, it
takes place at best in the momentum space and not in the coordinate space.4

The condition for the onset of Bose–Einstein condensation is

N > VT 3/2 (2πmk)3/2

h3
ζ

(
3
2

)
(23)

or, if we hold N and V constant and vary T ,

T < Tc =
h2

2πmk

 N

V ζ
(

3
2

)


2/3

; (24)5

here, Tc denotes a characteristic temperature that depends on the particle mass m and
the particle density N/V in the system. Accordingly, for T < Tc, the system may be looked
on as a mixture of two “phases”:

(i) a normal phase, consisting of Ne {=N(T/Tc)
3/2
} particles distributed over the excited

states (ε 6= 0), and
(ii) a condensed phase, consisting of N0 {= (N −Ne)} particles accumulated in the ground

state (ε = 0).

Figure 7.1 shows the manner in which the complementary fractions (Ne/N) and (N0/N)
vary with T . For T > Tc, we have the normal phase alone; the number of particles in the
ground state, namely z/(1− z), is O(1), which is completely negligible in comparison with
the total number N . Clearly, the situation is singular at T = Tc. For later reference, we note
that, at T→ Tc from below, the condensate fraction vanishes as follows:

N0

N
= 1−

(
T
Tc

)3/2

≈
3
2

Tc −T
Tc

. (25)

A knowledge of the variation of z with T is also of interest here. It is, however, sim-
pler to consider the variation of z with (v/λ3), the latter being proportional to T 3/2.
For 0≤ (v/λ3)≤ (2.612)−1, which corresponds to 0≤ T ≤ Tc, the parameter z ' 1; see
equation (22). For (v/λ3) > (2.612)−1, z < 1 and is determined by the relationship

g3/2(z)= (λ
3/v) < 2.612; (26)6

4Of course, the repercussions of this phenomenon in the coordinate space are no less curious. It prepares the stage
for the onset of superfluidity, a quantum manifestation discussed in Section 7.6.

5For a rigorous discussion of the onset of Bose–Einstein condensation, see Landsberg (1954b), where an attempt
has also been made to coordinate much of the previously published work on this topic. For a more recent study, see
Greenspoon and Pathria (1974), Pathria (1983), and Appendix F.

6An equivalent relationship is g3/2(z)/g3/2(1)= (Tc/T)3/2 < 1.
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FIGURE 7.1 Fractions of the normal phase and the condensed phase in an ideal Bose gas as a function of the
temperature parameter (T/Tc).
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FIGURE 7.2 The fugacity of an ideal Bose gas as a function of (v/λ3).

see equation (8). For (v/λ3)� 1, we have g3/2(z)� 1 and, hence, z� 1. Under these
circumstances, g3/2(z)' z; see equation (10). Therefore, in this region, z ' (v/λ3)−1, in
agreement with the classical case.7 Figure 7.2 shows the variation of z with (v/λ3).

Next, we examine the (P,T)-diagram of this system, that is, the variation of P with T ,
keeping v fixed. Now, for T < Tc, the pressure is given by equation (7), with z replaced by
unity:

P(T)=
kT

λ3
ζ

(
5
2

)
, (27)

which is proportional to T 5/2 and is independent of v — implying infinite compressibility.
At the transition point the value of the pressure is

P(Tc)=

(
2πm

h2

)3/2

(kTc)
5/2ζ

(
5
2

)
; (28)

7Equation (6.2.12) gives, for an ideal classical gas, lnQ= zV /λ3. Accordingly, N ≡ z(∂ lnQ/∂z)= z(V /λ3), with the
result that z = (λ3/v).
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with the help of (24), this can be written as

P(Tc)=
ζ
(

5
2

)
ζ
(

3
2

) (N
V

kTc

)
' 0.5134

(
N
V

kTc

)
. (29)

Thus, the pressure exerted by the particles of an ideal Bose gas at the transition temper-
ature Tc is about one-half of that exerted by the particles of an equivalent Boltzmannian
gas.8 For T > Tc, the pressure is given by

P =
N
V

kT
g5/2(z)

g3/2(z)
, (30)

where z(T) is determined by the implicit relationship

g3/2(z)=
λ3

v
=

N
V

h3

(2πmkT)3/2
. (26a)

Unless T is very high, the pressure P cannot be expressed in any simpler terms; of course,
for T � Tc, the virial expansion (13) can be used. As T→∞, the pressure approaches the
classical value NkT/V . All these features are shown in Figure 7.3. The transition line in
the figure portrays equation (27). The actual (P,T)-curve follows this line from T = 0 up
to T = Tc and thereafter departs, tending asymptotically to the classical limit. It may be
pointed out that the region to the right of the transition line belongs to the normal phase
alone, the line itself belongs to the mixed phase, while the region to the left is inaccessible
to the system.

In view of the direct relationship between the internal energy of the gas and its pres-
sure, see equation (12), Figure 7.3 depicts equally well the variation of U with T (of course,
with v fixed). Its slope should, therefore, be a measure of the specific heat CV (T) of the gas.
We readily observe that the specific heat is vanishingly small at low temperatures and rises
with T until it reaches a maximum at T = Tc; thereafter, it decreases, tending asymptoti-
cally to the constant classical value. Analytically, for T ≤ Tc, we obtain [see equations (15)
and (27)]

CV

Nk
=

3
2

V
N
ζ

(
5
2

)
d

dT

(
T

λ3

)
=

15
4
ζ

(
5
2

)
v

λ3
, (31)

8Actually, for all T ≤ Tc , we can write

P(T)= P(Tc) · (T/Tc)
5/2
' 0.5134(NekT/V ).

We infer that, while particles in the condensed phase do not exert any pressure at all, particles in the excited states are
about half as effective as in the Boltzmannian case.
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FIGURE 7.3 The pressure and the internal energy of an ideal Bose gas as a function of the temperature parameter
(T/Tc).

which is proportional to T 3/2. At T = Tc, we have

CV (Tc)

Nk
=

15
4

ζ
(

5
2

)
ζ
(

3
2

) ' 1.925, (32)

which is significantly higher than the classical value 1.5. For T > Tc, we obtain an implicit
formula. First of all,

CV

Nk
=

[
∂

∂T

(
3
2

T
g5/2(z)

g3/2(z)

)]
v

; (33)

see equations (11) and (26). To carry out the differentiation, we need to know (∂z/∂T)v;
this can be obtained from equation (26) with the help of the recurrence relation (D.10) in
Appendix D. On one hand, since g3/2(z)∝ T−3/2,[

∂

∂T
g3/2(z)

]
v
=−

3
2T

g3/2(z); (34)

on the other,

z
∂

∂z
g3/2(z)= g1/2(z). (35)

Combining these two results, we obtain

1
z

(
∂z
∂T

)
v
=−

3
2T

g3/2(z)

g1/2(z)
. (36)
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Equation (33) now gives

CV

Nk
=

15
4

g5/2(z)

g3/2(z)
−

9
4

g3/2(z)

g1/2(z)
; (37)

the value of z, as a function of T , is again to be determined from equation (26). In the
limit z→ 1, the second term in (37) vanishes because of the divergence of g1/2(z), while
the first term gives exactly the result appearing in (32). The specific heat is, therefore, con-
tinuous at the transition point. Its derivative is, however, discontinuous, the magnitude of
the discontinuity being(

∂CV

∂T

)
T=Tc−0

−

(
∂CV

∂T

)
T=Tc+0

=
27Nk
16πTc

{
ζ

(
3
2

)}2

' 3.665
Nk
Tc

; (38)

see Problem 7.6. For T > Tc, the specific heat decreases steadily toward the limiting value(
CV

Nk

)
z→0
=

15
4
−

9
4
=

3
2

. (39)

Figure 7.4 shows all these features of the (CV ,T)-relationship. It may be noted that it
was the similarity of this curve with the experimental one for liquid He4 (Figure 7.5) that
prompted F. London to suggest, in 1938, that the curious phase transition that occurs in
liquid He4 at a temperature of about 2.19K might be a manifestation of the Bose–Einstein
condensation taking place in the liquid. Indeed, if we substitute, in (24), data for liquid
He4, namely m= 6.65× 10−24 g and V = 27.6cm3/mole, we obtain for Tc a value of about
3.13K, which is not drastically different from the observed transition temperature of the
liquid. Moreover, the interpretation of the phase transition in liquid He4 as Bose–Einstein
condensation provides a theoretical basis for the two-fluid model of this liquid, which was
empirically put forward by Tisza (1938a,b) to explain the physical behavior of the liquid
below the transition temperature.

According to London, the N0 particles that occupy a single, entropyless state (ε = 0)
could be identified with the “superfluid component” of the liquid and the Ne particles
that occupy the excited states (ε 6= 0) with the “normal component.” As required in the
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FIGURE 7.4 The specific heat of an ideal Bose gas as a function of the temperature parameter (T/Tc).
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FIGURE 7.5 The specific heat of liquid He4 under its own vapor pressure (after Keesom and coworkers).

model of Tisza, the superfluid fraction makes its appearance at the transition tempera-
ture Tc, and builds up at the cost of the normal fraction until at T = 0 the whole fluid
becomes superfluid; compare to Figure 7.1. Of course, the actual temperature dependence
of these fractions, and of other physical quantities pertaining to liquid He4, is consider-
ably different from what the simple-minded ideal Bose gas suggests. London had expected
that the inclusion of intermolecular interactions would improve the quantitative agree-
ment. Although this expectation has been partially vindicated, there have been other
advances in the field that provide alternative ways of looking at the helium problem; see
Section 7.6. Nevertheless, many of the features provided by London’s interpretation of this
phenomenon continue to be of value.

Historically, the experimental measurements of the specific heat of liquid He4, which
led to the discovery of this so-called He I–He II transition, were first made by Keesom in
1927 and 1928. Struck by the shape of the (CV ,T)-curve, Keesom gave this transition the
name λ-transition; as a result, the term transition temperature (or transition point) also
came to be known as λ-temperature (or λ-point).

We shall now look at the isotherms of the ideal Bose gas; that is, the variation of the
pressure of the gas with its volume, keeping T fixed. The Bose–Einstein condensation now
sets in at a characteristic volume vc, given by

vc = λ
3/ζ

(
3
2

)
; (40)

see (23). We note that vc ∝ T−3/2. For v < vc, the pressure of the gas is independent of v and
is given by

P0 =
kT

λ3
ζ

(
5
2

)
; (41)
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FIGURE 7.6 The isotherms of an ideal Bose gas.

see (27). The region of the mixed phase in the (P,v)-diagram is marked by a boundary line
(called the transition line) given by the equation

P0v5/3
c =

h2

2πm

ζ
(

5
2

)
{
ζ
(

3
2

)}5/3
= const.; (42)

see Figure 7.6. Clearly, the region to the left of this line belongs to the mixed phase, while
the region to the right belongs to the normal phase alone.

Finally, we examine the adiabats of the ideal Bose gas. For this, we need an expression
for the entropy of the system. Making use of the thermodynamic formula

U −TS+PV ≡Nµ (43)

and the expressions for U and P obtained above, we get

S
Nk
≡

U +PV
NkT

−
µ

kT
=


5
2

g5/2(z)

g3/2(z)
− lnz for T > Tc, (44a)

5
2

v
λ3 ζ

(
5
2

)
for T ≤ Tc; (44b)

again, the value of z(T), for T > Tc, is to be obtained from equation (26). Now, a reversible
adiabatic process implies the constancy of S and N . For T > Tc, this implies the constancy
of z as well and in turn, by (26), the constancy of (v/λ3). For T ≤ Tc, it again implies the
same. We thus obtain, quite generally, the following relationship between the volume and
the temperature of the system when it undergoes a reversible adiabatic process:

vT 3/2
= const. (45)

The corresponding relationship between the pressure and the temperature is

P/T 5/2
= const.; (46)
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see equations (7) and (27). Eliminating T , we obtain

Pv5/3
= const. (47)

as the equation for an adiabat of the ideal Bose gas.
Incidentally, the foregoing results are exactly the same as for an ideal classical gas. There

is, however, a significant difference between the two cases; that is, while the exponent 5
3 in

formula (47) is identically equal to the ratio of the specific heats CP and CV in the case of
the ideal classical gas, it is not so in the case of the ideal Bose gas. For the latter, this ratio
is given by

γ ≡
CP

CV
= 1+

4
9

CV

Nk

g1/2(z)

g3/2(z)
(48a)

=
5
3

g5/2(z)g1/2(z)

{g3/2(z)}2
; (48b)

see Problems 7.4 and 7.5. It is only for T � Tc that γ ' 5
3 . At any finite temperature, γ > 5

3
and as T→ Tc,γ →∞. Equation (47), on the other hand, holds for all T .

In the mixed-phase region (T < Tc), the entropy of the gas may be written as

S=Ne ·
5
2

k
ζ
(

5
2

)
ζ
(

3
2

) ∝Ne; (49)

see equations (20) and (44b). As expected, the N0 particles that constitute the “condensate”
do not contribute toward the entropy of the system, while the Ne particles that constitute
the normal part contribute an amount of 5

2 kζ(5
2 )/ζ(

3
2 ) per particle.

7.2 Bose–Einstein condensation in ultracold
atomic gases

The first demonstration of Bose–Einstein condensation in ultracold atomic gases came in
1995. Cornell and Wieman Bose-condensed 87Rb (Anderson, Ensher, Matthews, Wieman,
and Cornell (1995)) and Ketterle Bose-condensed 23Na (Davis, Mewes, Andrews, van
Druten, Durfee, Kurn, and Ketterle (1995)) using magneto-optical traps (MOTs) and
magnetic traps to cool vapors of tens of thousands of atoms to temperatures of a few
nanokelvin.9 A survey of the theory and experiments can be found in Pitaevskii and
Stringari (2003), Leggett (2006), and Pethick and Smith (2008).

The first step of the cooling of the atomic vapor uses three sets of counter-propagating
laser beams oriented along cartesian axes that are tuned just below the resonant frequency

9Since 1995, many isotopes have been Bose-condensed including 7Li, 23Na, 41K, 52Cr, 84Sr, 85Rb, 87Rb, 133Cs, and
174Yb. The first molecular Bose–Einstein condensates were created in 2003 by the research groups of Rudolf Grimm at the
University of Innsbruck, Deborah S. Jin at the University of Colorado at Boulder, and Wolfgang Ketterle at Massachusetts
Institute of Technology.
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of the atoms in the trap. Atoms that are stationary are just off resonance and so rarely
absorb a photon. Moving atoms are Doppler shifted on resonance to the laser beam that is
propagating opposite to the velocity vector of the atom. Those atoms preferentially absorb
photons from that direction and then reemit in random directions, resulting in a net
momentum kick opposite to the direction of motion. This results in an “optical molasses”
that slows the atoms. This cooling method is constrained by the “recoil limit” in which the
atoms have a minimum momentum of the order of the momentum of the photons used
to cool the gas. This gives a limiting temperature of (hf )2/2mc2k ≈ 1µK, where f is the
frequency of the spectral line used for cooling and m is the mass of an atom.

In the next step of the cooling process, the lasers are turned off and a spatially vary-
ing magnetic field creates an attractive anisotropic harmonic oscillator potential near the
center of the magnetic trap

V (r)=
1
2

m
(
ω2

1x2
+ω2

2y2
+ω2

3z2
)

. (1)

The frequencies of the trap ωα are controlled by the applied magnetic field. One can then
lower the trap barrier using a resonant transition to remove the highest energy atoms in
the trap. If the atoms in the vapor are sufficiently coupled to one other, then the remaining
atoms in the trap are cooled by evaporation.

If the interactions between the atoms in the gas can be neglected, the energy of each
atom in the harmonic oscillator potential is

εl1,l2,l3
= ~ω1l1+~ω2l2+~ω3l3+

1
2

~(ω1+ω2+ω3) , (2)

where lα (= 0,1,2, . . .∞) are the quantum numbers of the harmonic oscillator. If the
three frequencies are all the same, then the quantum degeneracy of a level with energy
ε = ~ω(l+ 3/2) is (l+ 1)(l+ 2)/2; see Problem 3.26.

For the general anisotropic case, the smoothed density of states as a function of energy
(suppressing the zero point energy and assuming ε� ~ωα) is given by

a(ε)=

∞∫
0

∞∫
0

∞∫
0

δ
(
ε−~ω1l1−~ω2l2−~ω3l3

)
dl1dl2dl3 =

ε2

2(~ω0)
3

, (3)

where ω0 = (ω1ω2ω3)
1/3; this assumes a single spin state per atom. The thermodynamic

potential5, see Appendix H, for bosons in the trap is then given by

5(µ,T)=−

(
kT
)4

2(~ω0)
3

∞∫
0

x2 ln
(

1− e−xeβµ
)

dx =

(
kT
)4

(~ω0)
3

g4(z), (4)
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where z = exp(βµ) is the fugacity and gν(z) is defined in Appendix D. Volume is not a
parameter in the thermodynamic potential since the atoms are confined by the har-
monic trap. The average number of atoms in the excited states in the trap is

N(µ,T)=
(
∂5

∂µ

)
T
=

(
kT
~ω0

)3

g3(z) . (5)

For fixed N , the chemical potential monotonically increases as temperature is lowered
until Bose–Einstein condensation occurs when µ= 0 (z = 1). The critical temperature for
N trapped atoms is then given by

kTc

~ω0
=

(
N
ζ(3)

)1/3

, (6)

where ζ(3)= g3(1)' 1.202. While the spacing of the energy levels is of order ~ω0, the crit-
ical temperature for condensation is much larger than the energy spacing of the lowest
levels for N � 1. A typical magnetic trap oscillation frequency f ≈ 100Hz. For N = 2× 104,
as in Cornell and Wieman’s original experiment, kTc/~ω0 ≈ 25.5. The observed critical
temperature was about 170nK (Anderson et al. (1995)).

For T < Tc, the number of atoms in the excited states is

Nexcited

N
=
ζ(3)

N

(
kT
~ω0

)3

=

(
T
Tc

)3

, (7)

so the fraction of atoms that condense into the ground state of the harmonic oscillator is

N0

N
= 1−

(
T
Tc

)3

; (8)

see de Groot, Hooyman, and ten Seldam (1950), and Bagnato, Pritchard, and Kleppner
(1987). In the thermodynamic limit, a nonzero fraction of the atoms occupy the ground
state for T < Tc. By contrast, the occupancy of the first excited state is only of order N1/3, so
in the thermodynamic limit the occupancy fraction in each excited state is zero. A compar-
ison of the experimentally measured Bose-condensed fraction with equation (8) is shown
in Figure 7.7.

7.2.A Detection of the Bose–Einstein condensate

The linear size of the ground state wavefunction in cartesian direction α is

aα =

√
~

mωα
, (9)
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FIGURE 7.7 Experimental measurement of the Bose-condensed fraction vs. temperature, as compared to
equation (8). The scaled temperature on the horizontal axis is the temperature divided by the N-dependent critical
temperature given in equation (6). The inset shows the total number of atoms in the trap after the evaporative
cooling. From Ensher et al. (1996). Reprinted with permission; copyright © 1996, American Physical
Society.

while the linear size of the thermal distribution of the noncondensed atoms in that
direction is

athermal =

√
kT

mω2
α

= aα

√
kT
~ωα

. (10)

At trap frequency f = 100 Hz and temperature T = 100 nK, these sizes are about 1 µm
and 5 µm, respectively. Instead of measuring the atoms directly in the trapping potential,
experimenters usually measure the momentum distribution of the ultracold gas by a time-
of-flight experiment. At time t = 0, the magnetic field is turned off suddenly, eliminating
the trapping potential. The atomic cloud then expands according to the momentum dis-
tribution the atoms had in the harmonic trap. The cloud is allowed to expand for about 100
milliseconds. The speed of the atoms at this temperature is a few millimeters per second,
so the cloud expands to a few hundred microns in this period of time. The cloud is then
illuminated with a laser pulse on resonance with the atoms, leaving a shadow on a CCD
in the image plane of the optics. The size and shape of the light intensity pattern directly
measures the momentum distribution the atoms had in the trap at t = 0. The expanding
cloud can be divided into two components, the N0 atoms that had been Bose-condensed
into the ground state and the remaining N −N0 atoms that were in the excited states of the
harmonic oscillator potential. The Bose-condensed atoms have smaller momenta than the
atoms that were in the excited states. After time t, the quantum evolution of the ground
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state has a spatial number density

n0(r, t)=N0 |ψ0(r, t)|2 =
N0

π3/2

3∏
α=1

 1

aα
√

1+ω2
αt2

exp

(
−r2

α

a2
α

(
1+ω2

αt2
))
; (11)

see Pitaevskii and Stringari (2003), Pethick and Smith (2008), and Problem 7.15.
The atoms that are not condensed into the ground state can be treated semiclassi-

cally, that is, the position-momentum distribution function is treated classically while the
density follows the Bose–Einstein distribution function:

f (r, p,0)=
1

exp
(
βp2

2m +
βm

2

(
ω2

1x2+ω2
2y2+ω2

3z2
)
−βµ

)
− 1

. (12)

After the potential is turned off at t = 0, the distribution evolves ballistically:

f (r, p, t)= f
(

r+
pt
m

, p,0
)

. (13)

The spatial number density of atoms in the excited states is

nexcited(r, t)=
1

h3

∫
f
(

r+
pt
m

, p, t
)

dp , (14)

which can be integrated to give

nexcited(r, t)=
1

λ3

∞∑
j=1

eβµj

j3/2


3∏
α=1

 1√
1+ω2

αt2
exp

(
−βjmω2

αr2
α

2
(
1+ω2

αt2
))
 , (15)

where λ= h/
√

2πmkT is the thermal deBroglie wavelength; see Pethick and Smith (2008),
and Problem 7.16. The integrals over the condensed state and the excited states correctly
count all the atoms:

N0 =

∫
n0(r, t)dr, (16a)

N −N0 =

∫
nexcited(r, t)dr =Nexcited; (16b)

see Problem 7.18.
Note that at early times (ωαt� 1) both the condensed and the excited distributions are

anisotropic due to the anisotropic trapping potential. However, at late times (ωαt� 1), the
atoms from the excited states form a spherically symmetric cloud because of the isotropic
momentum dependence of the t = 0 distribution function. By contrast, the atoms that
were condensed into the ground state expand anisotropically due to the different spa-
tial extents of the ground state wavefunction at t = 0. The direction that has the largest
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FIGURE 7.8 The two-dimensional time-of-flight number density equations (11) and (15) at late times (ω0t� 1) for
T/Tc = 0.98 using the experimental parameters in Anderson et al. (1995): N = 2× 104 atoms in the trap and
ω2 =

√
8ω1. The plot shows the full density and, underneath, the broader isotropic density just due to the excited

states. The z-dimension has been integrated out. The Bose-condensed peak is anisotropic: the y-direction spread is
81/4
= 1.68 times larger than in the x-direction while the broad peak caused by the excited states is isotropic. The

distance scale v0t = t
√

~ω1/m determines the width of the distribution that results from the Bose-condensed peak
in the x-direction at late times; compare to Figure 7.9.

ωα is quantum mechanically squeezed the most at t = 0; so, according to the uncertainty
principle, it expands the fastest. This is an important feature of the experimental data that
confirms the onset of Bose–Einstein condensation;10 see Figures 7.8 and 7.9.

7.2.B Thermodynamic properties of the Bose–Einstein condensate

The temperature, condensate fraction, and internal energy can all be observed using time-
of-flight measurements. The internal energy can also be written in terms of the function
gν(z):

U(µ,T)=

∞∫
0

ε3

2(~ω0)
3

1

eβ(ε−µ)− 1
dε = 3

(
kT
)4

(~ω0)
3

g4(z). (17)

10Repulsive interactions between atoms create additional forces that modify the time-of-flight expansion. This is
especially important in condensates with a very large numbers of atoms, as many as 107 or more in some experiments;
see Section 11.2.A.
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FIGURE 7.9 Time-of-flight images from the first observation of Bose–Einstein condensation in a dilute vapor of 87Rb
by Anderson et al. (1995) at temperatures just above and below the phase transition temperature. The anisotropic
pattern of the Bose-condensed fraction is evident; compare to Figure 7.8. Courtesy of NIST/JILA/University of
Colorado.

The heat capacity at constant number can be written as

CN (T)=
(
∂U
∂T

)
N
=

(
∂U
∂T

)
µ

+

(
∂U
∂µ

)
T

(
∂µ

∂T

)
N

=

(
∂U
∂T

)
µ

−

(
∂U
∂T

)
µ

(
∂N
∂T

)
µ(

∂N
∂µ

)
T

. (18)

Equations (5) and (6) can be used to determine the fugacity z numerically, as shown in
Figure 7.10(a). The fugacity can then be used in equation (17) to obtain the scaled internal
energy

U
NkTc

=


3
(

T
Tc

)4
ζ(4)
ζ(3)

for T ≤ Tc,

3
(

T
Tc

)4 g4(z)
ζ(3)

for T ≥ Tc;

(19)
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see Figures 7.10(b) and 7.12. The scaled specific heat is given by

CN

Nk
=


12ζ(4)
ζ(3)

(
T
Tc

)3

for T < Tc,

1
ζ(3)

(
T
Tc

)3
(

12g4(z)−
9g2

3 (z)

g2(z)

)
for T > Tc,

(20)

and is shown in Figure 7.11. Unlike the case of Bose–Einstein condensation of free parti-
cles in a box (Figure 7.4), the specific heat of a condensate in a harmonic trap displays a
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FIGURE 7.10 Fugacity (a) and scaled internal energy (b) vs. scaled temperature (T/Tc) for a Bose–Einstein
condensate in a harmonic trap.
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FIGURE 7.11 Scaled specific heat of a Bose–Einstein condensate in a harmonic trap as a function of the scaled
temperature (T/Tc); compare with Figure 7.4 for a free-particle Bose gas.
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discontinuity at the critical temperature:

CN

Nk
→


12ζ(4)
ζ(3)

' 10.805 as T→ T−c ,

12ζ(4)
ζ(3)

−
9ζ(3)
ζ(2)

' 4.228 as T→ T+c .

(21)

Figure 7.12 shows experimental data for the internal energy of a Bose–Einstein con-
densate of 87Rb. The break in slope is an indication of the discontinuous specific heat.
Naturally, in a system with a finite number of particles, all nonanalyticities associated with
the phase transition are removed. When N is finite, the condensate fraction approaches
zero smoothly and the discontinuity in the heat capacity is rounded off. Pathria (1998) has
derived N-dependent temperature markers that indicate the onset of Bose–Einstein con-
densation in terms of the condensate fraction and the specific heat; see also Kirsten and
Toms (1996) and Haugerud, Haugest, and Ravndal (1997).
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FIGURE 7.12 Comparison of the experimental measurements of Ensher et al. (1996) (diamonds) with the
noninteracting internal energy result — see equation (19) and Figure 7.10(b) — (dotted curve), the zero-order
solution including interactions (full curve), first-order perturbative treatment (dashed curve), and numerical
solution (circles). The straight line is the classical Maxwell–Boltzmann result. The inset is an enlargement of
the region around the critical temperature. The break in slope is an indication of the discontinuity in the
thermodynamic limit specific heat shown in Figure 7.11; from Minguzzi, Conti, and Tosi (1997). Reprinted
with permission; copyright © 1997, American Institute of Physics.
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7.3 Thermodynamics of the blackbody radiation
One of the most important applications of Bose–Einstein statistics is to investigate the
equilibrium properties of the blackbody radiation. We consider a radiation cavity of vol-
ume V at temperature T . Historically, this system has been looked on from two, practically
identical but conceptually different, points of view:

(i) as an assembly of harmonic oscillators with quantized energies (ns+
1
2 )}ωs, where

ns = 0,1,2, . . ., and ωs is the (angular) frequency of an oscillator, or
(ii) as a gas of identical and indistinguishable quanta — the so-called photons — the

energy of a photon (corresponding to the frequency ωs of the radiation mode)
being ~ωs.

The first point of view is essentially the one adopted by Planck (1900), except that we
have also included here the zero-point energy of the oscillator; for the thermodynamics
of the radiation, this energy is of no great consequence and may be dropped altogether.
The oscillators, being distinguishable from one another (by the very values of ωs), would
obey Maxwell–Boltzmann statistics; however, the expression for the single-oscillator par-
tition function Q1(V ,T) would be different from the classical expression because now the
energies accessible to the oscillator are discrete, rather than continuous; compare to equa-
tions (3.8.2) and (3.8.14). The expectation value of the energy of a Planck oscillator of
frequency ωs is then given by equation (3.8.20), excluding the zero-point term 1

2 }ωs:

〈εs〉 =
}ωs

e}ωs/kT − 1
. (1)

Now, the number of normal modes of vibration per unit volume of the cavity in the
frequency range (ω,ω+dω) is given by the Rayleigh expression

2 · 4π
(

1
λ

)2

d
(

1
λ

)
=
ω2dω

π2c3
, (2)

where the factor 2 has been included to take into account the duplicity of the transverse
modes;11 the symbol c here denotes the speed of light. By equations (1) and (2), the energy
density associated with the frequency range (ω,ω+dω) is given by

u(ω)dω =
}

π2c3

ω3dω

e}ω/kT − 1
, (3)

which is Planck’s formula for the distribution of energy over the blackbody spectrum.
Integrating (3) over all values of ω, we obtain the total energy density in the cavity.

The second point of view originated with Bose (1924) and Einstein (1924, 1925). Bose
investigated the problem of the “distribution of photons over the various energy levels”
in the system; however, instead of worrying about the allocation of the various photons

11As is well-known, the longitudinal modes play no role in the case of radiation.
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to the various energy levels (as one would have ordinarily done), he concentrated on the
statistics of the energy levels themselves! He examined questions such as the “probability
of an energy level εs(= }ωs) being occupied by ns photons at a time,” “the mean values of
ns and εs,” and so on. The statistics of the energy levels is indeed Boltzmannian; the mean
values of ns and εs, however, turn out to be

〈ns〉 =

∞∑
ns=0

nse−ns}ωs/kT

/
∞∑

ns=0

e−ns}ωs/kT

=
1

e}ωs/kT − 1
(4)

and hence

〈εs〉 = }ωs〈ns〉 =
}ωs

e}ωs/kT − 1
, (5)

identical with our earlier result (1). To obtain the number of photon states with momenta
lying between }ω/c and }(ω+dω)/c, Bose made use of the connection between this
number and the “volume of the relevant region of the phase space,” with the result

g(ω)dω ≈ 2 ·
V

h3

{
4π
(

}ω
c

)2(}dω
c

)}
=

Vω2dω

π2c3
, (6)12

which is also identical to our earlier result (2). Thus, he finally obtained the distribution
formula of Planck. It must be noted here that, although emphasis lay elsewhere, the math-
ematical steps that led Bose to his final result went literally parallel to the ones occurring
in the oscillator approach!

Einstein, on the other hand, went deeper into the problem and pondered over the
statistics of both the photons and the energy levels, taken together. He inferred (from
Bose’s treatment) that the basic fact to keep in mind during the process of distributing
photons over the various energy levels is that the photons are indistinguishable — a fact
that had been implicitly taken care of in Bose’s treatment. Einstein’s derivation of the
desired distribution was essentially the same as given in Section 6.1, with one important
difference, that is, since the total number of photons in any given volume was indefinite,
the constraint of a fixed N was no longer present. As a result, the Lagrange multiplier α did
not enter into the discussion and to that extent the final formula for 〈nε〉was simpler:

〈nε〉 =
1

eε/kT − 1
; (7)

compare to equation (6.1.18a) or (6.2.22). The foregoing result is identical to (4), with
ε = hωs. The subsequent steps in Einstein’s treatment were the same as in Bose’s.

12The factor 2 in this expression arises essentially from the same cause as in the Rayleigh expression (2). However, in
the present context, it would be more appropriate to regard it as representing the two states of polarization of the photon
spin.
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FIGURE 7.13 The spectral distribution of energy in the blackbody radiation. The solid curve represents the
quantum-theoretical formula of Planck. The long-wavelength approximation of Rayleigh–Jeans and the
short-wavelength approximation of Wien are also shown.

Looking back at the two approaches, we note that there is a complete correspondence
between them — “an oscillator in the eigenstate ns, with energy (ns+

1
2 )}ωs” in the first

approach corresponds to “the occupation of the energy level hωs by ns photons” in the
second approach, “the average energy 〈εs〉 of an oscillator” corresponds to “the mean
occupation number 〈ns〉 of the corresponding energy level,” and so on.13

Figure 7.13 shows a plot of the distribution function (3), which may be written in the
dimensionless form

u′(x)dx =
x3dx

ex− 1
, (8)

where

u′(x)=
π2}3c3

(kT)4
u(x) and x =

}ω
kT

. (9)

For long wavelengths (x� 1), formula (8) reduces to the classical approximation of
Rayleigh (1900) and Jeans (1905), namely14

u′(x)≈ x2, (10)

while for short wavelengths (x� 1), it reduces to the rival formula of Wien (1896), namely

u′(x)≈ x3e−x. (11)

13Compared to the standard Bose–Einstein result (7.1.2), formula (7) suggests that we are dealing here with a case for
which z is precisely equal to unity. It is not difficult to see that this is due to the fact that the total number of particles in
the present case is indefinite. For then, their equilibrium number N has to be determined by the condition that the free
energy of the system is at its minimum, that is, {(∂A/∂N)N=N }V ,T = 0, which, by definition, implies that µ= 0 and hence
z = 1.

14The Rayleigh–Jeans formula follows directly if we use for 〈εs〉 the equipartition value kT rather than the quantum-
theoretical value (1).
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For comparison, the limiting forms (10) and (11) are also included in the figure. We note
that the areas under the Planck curve and the Wien curve are π4/15(' 6.49) and 6, respec-
tively. The Rayleigh–Jeans curve, however, suffers from a high-frequency catastrophe!

For the total energy density in the cavity, we obtain from equations (8) and (9)

U
V
=

∞∫
0

u(x)dx =
(kT)4

π2}3c3

∞∫
0

x3dx
ex− 1

=
π2k4

15}3c3
T 4. (12)15

If there is a small opening in the walls of the cavity, the photons will “effuse” through
it. The net rate of flow of the radiation, per unit area of the opening, will be given by, see
equation (6.4.12),

1
4

U
V

c =
π2k4

60}3c2
T 4
= σT 4, (13)

where

σ =
π2k4

60}3c2
= 5.670× 10−8 Wm−2 K−4. (14)

Equation (13) describes the Stefan–Boltzmann law of blackbody radiation, σ being the Ste-
fan constant. This law was deduced from experimental observations by Stefan in 1879; five
years later, Boltzmann derived it from thermodynamic considerations.

For further study of thermodynamics, we evaluate the grand partition function of the
photon gas. Using equation (6.2.17) with z = 1, we obtain

lnQ(V ,T)≡
PV
kT
=−

∑
ε

ln(1− e−ε/kT ). (15)

Replacing summation by integration and making use of the extreme relativistic formula

a(ε)dε = 2V
4πp2dp

h3
=

8πV

h3c3
ε2dε, (16)

we obtain, after an integration by parts,

lnQ(V ,T)≡
PV
kT
=

8πV

3h3c3

1
kT

∞∫
0

ε3dε

eε/kT − 1
.

15Here, use has been made of the fact that the value of the definite integral is 6ζ(4)= π4/15; see Appendix D.
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By a change of variable, this becomes

PV =
8πV

3h3c3
(kT)4

∞∫
0

x3dx
ex− 1

=
8π5V

45h3c3
(kT)4 =

1
3

U . (17)

We thus obtain the well-known result of the radiation theory; that is, the pressure of the
radiation is equal to one-third its energy density; see also equations (6.4.3) and (6.4.4).
Next, since the chemical potential of the system is zero, the Helmholtz free energy is equal
to−PV ; therefore

A=−PV =−
1
3

U , (18)

whereby

S≡
U −A

T
=

4
3

U
T
∝ VT 3 (19)

and

CV = T
(
∂S
∂T

)
V
= 3S. (20)

If the radiation undergoes a reversible adiabatic change, the law governing the variation of
T with V would be, see (19),

VT 3
= const. (21)

Combining (21) with the fact that P ∝ T 4, we obtain an equation for the adiabats of the
system, namely

PV 4/3
= const. (22)

It should be noted, however, that the ratio CP/CV of the photon gas is not 4/3; it is infinite!
Finally, we derive an expression for the equilibrium number N of photons in the

radiation cavity. We obtain

N =
V

π2c3

∞∫
0

ω2dω

e}ω/kT − 1

= V
2ζ(3)(kT)3

π2h3c3
∝ VT 3. (23)

Instructive though it may be, formula (23) cannot be taken at its face value because in the
present problem the magnitude of the fluctuations in the variable N , which is determined
by the quantity (∂P/∂V )−1, is infinitely large; see equation (4.5.7).
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One of the most important examples of blackbody radiation is the 2.7K cosmic
microwave background, which is a remnant from the Big Bang. Equations (12) and (23)
play an important role in our understanding of the thermodynamics of the early universe;
see Problem 7.24 and Chapter 9.

7.4 The field of sound waves
A problem mathematically similar to the one discussed in Section 7.3 arises from the
vibrational modes of a macroscopic body, specifically a solid. As in the case of black-
body radiation, the problem of the vibrational modes of a solid can be studied equally
well by regarding the system as a collection of harmonic oscillators or by regarding it as
an enclosed region containing a gas of sound quanta — the so-called phonons. To illus-
trate this point, we consider the Hamiltonian of a classical solid composed of N atoms
whose positions in space are specified by the coordinates (x1,x2, . . . ,x3N ). In the state of
lowest energy, the values of these coordinates may be denoted by (x1,x2, . . . ,x3N ). Denoting
the displacements (xi− xi) of the atoms from their equilibrium positions by the variables
ξi(i= 1,2, . . . ,3N), the kinetic energy of the system in configuration (xi) is given by

K =
1
2

m
3N∑
i=1

ẋ2
i =

1
2

m
3N∑
i=1

ξ̇2
i , (1)

and the potential energy by

8≡8(xi)=8(xi)+
∑

i

(
∂8

∂xi

)
(xi)=(xi)

(xi− xi)

+

∑
i,j

1
2

(
∂28

∂xi∂xj

)
(xi)=(xi)

(xi− xi)(xj − xj)+ ·· · . (2)

The main term in this expansion represents the (minimum) energy of the solid when all
the atoms are at rest at their mean positions xi; this energy may be denoted by the symbol
80. The next set of terms is identically zero because the function 8(xi) has a minimum
at (xi)= (xi) and hence all its first derivatives vanish there. The second-order terms of the
expansion represent the harmonic component of the vibrations of the atoms about their
mean positions. If we assume that the overall amplitude of these vibrations is not large we
may retain only the harmonic terms of the expansion and neglect all successive ones; we
are then working in the so-called harmonic approximation. Thus, we may write

H =80+

∑
i

1
2

mξ̇2
i +

∑
i,j

αijξiξj

, (3)
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where

αij =
1
2

(
∂28

∂xi∂xj

)
(xi)=(xi)

. (4)

We now introduce a linear transformation, from the coordinates ξi to the so-called normal
coordinates qi, and choose the transformation matrix such that the new expression for the
Hamiltonian does not contain any cross terms, that is,

H =80+
∑

i

1
2

m
(

q̇2
i +ω

2
i q2

i

)
, (5)

where ωi(i= 1,2, . . . ,3N) are the characteristic frequencies of the normal modes of the sys-
tem and are determined essentially by the quantities αij or, in turn, by the nature of the
potential energy function 8(xi). Equation (5) suggests that the energy of the solid, over
and above the (minimum) value 80, may be considered as arising from a set of 3N one-
dimensional, noninteracting, harmonic oscillators whose characteristic frequencies ωi are
determined by the interatomic interactions in the system.

Classically, each of the 3N normal modes of vibration corresponds to a wave of distor-
tion of the lattice, that is, a sound wave. Quantum-mechanically, these modes give rise to
quanta, called phonons, in much the same way as the vibrational modes of the electromag-
netic field give rise to photons. There is one important difference, however, that is, while
the number of normal modes in the case of an electromagnetic field is infinite, the num-
ber of normal modes (or the number of phonon energy levels) in the case of a solid is fixed
by the number of lattice sites.16 This introduces certain differences in the thermodynamic
behavior of the sound field in contrast to the thermodynamic behavior of the radiation
field; however, at low temperatures, where the high-frequency modes of the solid are not
very likely to be excited, these differences become rather insignificant and we obtain a
striking similarity between the two sets of results.

The thermodynamics of the solid can now be studied along the lines of Section 3.8. First
of all, we note that the eigenvalues of the Hamiltonian (5) are

E{ni} =80+
∑

i

(
ni+

1
2

)
}ωi, (6)

where the numbers ni denote the “states of excitation” of the various oscillators (or, equally
well, the occupation numbers of the various phonon levels in the system). The internal
energy of the system is then given by

U(T)=

{
80+

∑
i

1
2

}ωi

}
+

∑
i

}ωi

e}ωi/kT − 1
. (7)

16Of course, the number of phonons themselves is indefinite. As a result, the chemical potential of the phonon gas is
also zero.
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The expression within the curly brackets gives the energy of the solid at absolute zero. The
term 80 is negative and larger in magnitude than the total zero-point energy,

∑
i

1
2 }ωi, of

the oscillators: together, they determine the binding energy of the lattice. The last term
in (7) represents the temperature-dependent part of the energy,17 which determines the
specific heat of the solid:

CV (T)≡
(
∂U
∂T

)
V
= k

∑
i

(~ωi/kT)2e}ωi/kT

(e}ωi/kT − 1)2
. (8)

To proceed further, we need to know the frequency spectrum of the solid. To obtain
this from first principles is not an easy task. Accordingly, one obtains this spectrum either
through experiment or by making certain plausible assumptions about it. Einstein, who
was the first to apply the quantum concept to the theory of solids (1907), assumed, for
simplicity, that the frequencies ωi are all equal. Denoting this (common) value by ωE , the
specific heat of the solid is given by

CV (T)= 3NkE(x), (9)

where E(x) is the so-called Einstein function:

E(x)=
x2ex

(ex− 1)2
, (10)

with

x = }ωE/kT =2E/T . (11)

The dashed curve in Figure 7.14 depicts the variation of the specific heat with tempera-
ture, as given by the Einstein formula (9). At sufficiently high temperatures, where T �2E

and hence x� 1, the Einstein result tends toward the classical one, namely 3Nk.18 At
sufficiently low temperatures, where T �2E and hence x� 1, the specific heat falls expo-
nentially fast and tends to zero as T→ 0. The theoretical rate of fall, however, turns out to
be too fast in comparison with the observed one. Nevertheless, Einstein’s approach did at
least provide a theoretical basis for understanding the observed departure of the specific
heat of solids from the classical law of Dulong and Petit, whereby CV = 3R' 5.96 calories
per mole per degree.

Debye (1912), on the other hand, allowed a continuous spectrum of frequencies, cut
off at an upper limit ωD such that the total number of normal modes of vibration is 3N ,

17The thermal energy of the solid may well be written as
∑

i〈ni〉~ωi, where 〈ni〉{= (e~ωi/kT
− 1)−1

} is the mean
occupation number of the phonon level εi. Clearly, the phonons, like photons, obey Bose–Einstein statistics, with µ= 0.

18Actually, when the temperature is high enough, so that all (~ωi/kT)� 1, the general formula (8) itself reduces to the
classical one. This corresponds to the situation when each of the 3N modes of vibration possesses a thermal energy kT .
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FIGURE 7.14 The specific heat of a solid, according to the Einstein model: – – – , and according to the Debye
model: —–. The circles denote the experimental results for copper.

that is

ωD∫
0

g(ω)dω = 3N , (12)

where g(ω)dω denotes the number of normal modes of vibration whose frequency lies in
the range (ω,ω+dω). For g(ω), Debye adopted the Rayleigh expression (7.3.2), modified so
as to suit the problem under study. Writing cL for the velocity of propagation of the longi-
tudinal modes and cT for that of the transverse modes (and noting that, for any frequency
ω, the transverse mode is doubly degenerate), equation (12) becomes

ωD∫
0

V

(
ω2dω

2π2c3
L

+
ω2dω

π2c3
T

)
= 3N , (13)

from which one obtains for the cutoff frequency

ω3
D = 18π2 N

V

(
1

c3
L

+
2

c3
T

)−1

. (14)

Accordingly, the Debye spectrum may be written as

g(ω)=


9N

ω3
D

ω2 for ω ≤ ωD,

0 for ω > ωD.
(15)

Before we proceed further to calculate the specific heat of solids on the basis of the
Debye spectrum, two remarks seem to be in order. First, the Debye spectrum is only an
idealization of the actual situation obtaining in a solid; it may, for instance, be compared
with a typical spectrum such as the one shown in Figure 7.15. While for low-frequency
modes (the so-called acoustic modes) the Debye approximation is reasonable, serious dis-
crepancies are seen in the case of high-frequency modes (the so-called optical modes). At
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FIGURE 7.15 The normal-mode frequency distribution g(ω) for aluminum. The solid curve is derived from
x-ray scattering measurements [Walker (1956)] while the dashed curve represents the corresponding Debye
approximation.

any rate, for “averaged” quantities, such as the specific heat, the finer details of the spec-
trum are not very important. Second, the longitudinal and the transverse modes of the
solid should have their own cutoff frequencies, ωD,L and ωD,T say, rather than a common
cutoff at ωD, for the simple reason that, of the 3N normal modes of the lattice, exactly N
are longitudinal and 2N transverse. Accordingly, we should have, instead of (13),

ωD,L∫
0

V
ω2dω

2π2c3
L

=N and

ωD,T∫
0

V
ω2dω

π2c3
T

= 2N . (16)

We note that the two cutoffs correspond to a common wavelength λmin{= (4πV /3N)1/3
},

which is comparable to the mean interatomic distance in the solid. This is quite reasonable
because, for wavelengths shorter than λmin, it would be rather meaningless to speak of a
wave of atomic displacements.

In the Debye approximation, formula (8) gives

CV (T)= 3NkD(x0), (17)

where D(x0) is the so-called Debye function:

D(x0)=
3

x3
0

x0∫
0

x4exdx

(ex− 1)2
, (18)

with

x0 =
}ωD

kT
=
2D

T
, (19)
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2D being the so-called Debye temperature of the solid. Integrating by parts, the expression
for the Debye function becomes

D(x0)=−
3x0

ex0 − 1
+

12

x3
0

x0∫
0

x3dx
ex− 1

. (20)

For T �2D, which means x0� 1, the function D(x0) may be expressed as a power series
in x0:

D(x0)= 1−
x2

0

20
+ ·· · . (21)

Thus, as T→∞,CV → 3Nk; moreover, according to this theory, the classical result should
be applicable to within 1

2 percent so long as T > 32D. For T �2D, which means x0� 1,
the function D(x0)may be written as

D(x0)=
12

x3
0

∞∫
0

x3dx
ex− 1

+O(e−x0),

≈
4π4

5x3
0

=
4π4

5

(
T
2D

)3

. (22)

Thus, at low temperatures the specific heat of the solid obeys the Debye T 3-law :

CV =
12π4

5
Nk
(

T
2D

)3

= 464.4
(

T
2D

)3

cal mole−1K−1. (23)

It is clear from equation (23) that a measurement of the low-temperature specific heat of
a solid should enable us not only to check the validity of the T 3-law but also to obtain an
empirical value of the Debye temperature 2D.19 The value of 2D can also be obtained by
computing the cutoff frequency ωD from a knowledge of the parameters N/V ,cL and cT ;
see equations (14) and (19). The closeness of these estimates is further evidence in favor
of Debye’s theory. Once 2D is known, the whole temperature range can be covered theo-
retically by making use of the tabulated values of the function D(x0).20 A typical case was
shown earlier in Figure 7.14. We saw that not only was the T 3-law obeyed at low temper-
atures, but also the agreement between theory and experiment was good throughout the
range of observations.

19It can be shown that, according to this theory, deviations from the T 3-law should not exceed 2 percent so long as
T <2D/10. However, in the case of metals, one cannot expect to reach a true T 3-region because, well before that, the
specific heat of the electron gas might become a dominant contribution (see Section 8.3); unless the two contributions
are separated out, one is likely to obtain a somewhat suppressed value of2D from these observations.

20See, for example, Fowler and Guggenheim (1960, p. 144).
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As another illustration of agreement in the low-temperature regime, we include here
another plot, Figure 7.16, which is based on data obtained with the KCl crystal at temper-
atures below 5K; see Keesom and Pearlman (1953). Here, the observed values of CV /T are
plotted against T 2. It is evident that the data fall quite well on a straight line from whose
slope the value of2D can be determined. One thus obtains, for KCl,2D = 233± 3K, which
is in reasonable agreement with the values of 230 to 246 K coming from various estimates
of the relevant elastic constants.

In Table 7.1 we list the values of2D for several crystals, as derived from the specific heat
measurements and from the values of the elastic constants.

In general, if the specific heat measurements of a given system conform to a T 3-law, one
may infer that the thermal excitations in the system are accounted for solely by phonons.
We expect something similar to happen in liquids as well, with two important differences.
First, since liquids cannot withstand shear stress they cannot sustain transverse modes of
vibration; a liquid composed of N atoms will, therefore, have only N longitudinal modes
of vibration. Second, the normal modes of a liquid cannot be expected to be strictly har-
monic; consequently, in addition to phonons, we might have other types of excitation
such as vortex flow or turbulence (or even a modified kind of excitation, such as rotons
in liquid He4).
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FIGURE 7.16 A plot of (CV /T) versus T 2 for KCl, showing the validity of the Debye T 3-law. The experimental points
are from Keesom and Pearlman (1953).

Table 7.1 The Values of the Debye Temperature 2D for Different Crystals

Crystal Pb Ag Zn Cu Al C NaCl KCl MgO

2D from the specific 88 215 308 345 398 ∼1850 308 233 ∼850
heat measurements

2D from the elastic 73 214 305 332 402 – 320 240 ∼950
constants
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Now, helium is the only substance that remains liquid at temperatures low enough to
exhibit the T 3-behavior. In the case of the lighter isotope, He3, the results are strongly influ-
enced by the Fermi–Dirac statistics; as a result, a specific heat proportional to the first
power of T dominates the scene (see Section 8.1). In the case of the heavier isotope, He4,
the low-temperature situation is completely governed by phonons; accordingly, we expect
its specific heat to be given by, see equations (16) and (23),

CV =
4π4

5
Nk
(

kT
}ωD

)3

, (24)

where

ωD =

(
6π2N

V

)1/3

c, (25)

c being the velocity of sound in the liquid. The specific heat per unit mass of the liquid is
then given by

cV =
2π2k4

15ρ}3c3
T 3, (26)

where ρ is the mass density. Substituting ρ = 0.1455g/cm3 and c = 238m/s, the foregoing
result becomes

cV = 0.0209T 3 jouleg−1K−1. (27)

The experimental measurements of Wiebes et al. (1957), for 0< T < 0.6K, conformed to
the expression

cV = (0.0204± 0.0004)T 3 jouleg−1K−1. (28)

The agreement between the theoretical result and the experimental observations is clearly
good.

7.5 Inertial density of the sound field
For further understanding of the low-temperature behavior of liquid He4, we determine
the “inertial mass” associated with a gas of sound quanta in thermal equilibrium. For
this, we consider “a phonon gas in mass motion,” for then by determining the relation-
ship between the momentum P of the gas and the velocity v of its mass motion we can
readily evaluate the property in question. Now, since the total number of phonons in the
system is indefinite, the problem is free from the constraint of a fixed N ; consequently,
the undetermined multiplier α may be taken to be identically zero. However, we now have
a new constraint on the system, namely that of a fixed total momentum P, additional to
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the constraint of the fixed total energy E. Under these constraints, the mean occupation
number of the phonon level ε(p)would be

〈n(p)〉 =
1

exp(βε+ γ ·p)− 1
. (1)

As usual, the parameter β is equal to 1/kT . To determine γ , it seems natural to evaluate
the drift velocity of the gas. Choosing the z-axis in the direction of the mass motion, the
magnitude v of the drift velocity will be given by “the mean value of the component uz of
the individual phonon velocities”:

v = 〈ucosθ〉. (2)

Now, for phonons

ε = pc and u≡
dε
dp
= c, (3)

where c is the velocity of sound in the medium. Moreover, by reasons of symmetry, we
expect the undetermined vector γ to be either parallel or antiparallel to the direction of
mass motion; hence, we may write

γ ·p= γzpz = γzpcosθ . (4)

In view of equations (1), (3), and (4), equation (2) becomes

v =

∫
∞

0

∫ π
0 [exp{βpc(1+ (γz/βc)cosθ)}− 1]−1(c cosθ)(p2dp2π sinθdθ)∫
∞

0

∫ π
0 [exp{βpc(1+ (γz/βc)cosθ)}− 1]−1(p2dp2π sinθdθ)

. (5)

Making the substitutions

cosθ = η, p(1+ (γz/βc)η)= p′

and cancelling away the integrations over p′, we obtain

v = c

∫ 1
−1(1+ (γz/βc)η)−3ηdη∫ 1
−1(1+ (γz/βc)η)−3dη

=−γz/β.

It follows that

γ =−βv. (6)

Accordingly, the expression for the mean occupation number becomes

〈n(p)〉 =
1

exp{β(ε− v ·p)}− 1
. (7)
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A comparison of (7) with the corresponding result in the rest frame of the gas, namely

〈n0(p0)〉 =
1

exp(βε0)− 1
, (8)

shows that the change caused by the imposition of mass motion on the system is noth-
ing but a straightforward manifestation of the Galilean transformation between the two
frames of reference.

Alternatively, equation (7) may be written as

〈n(p)〉 =
1

exp(βp′c)− 1
=

1
exp{βpc(1− (v/c)cosθ)}− 1

. (9)

As such, formula (9) lays down a serious restriction on the drift velocity v, that is, it must
not exceed c, the velocity of the phonons, for otherwise some of the occupation num-
bers would become negative! Actually, as our subsequent analysis will show, the formalism
developed in this section breaks down as v approaches c. The velocity c may, therefore, be
regarded as the critical velocity for the flow of the phonon gas:

(vc)ph = c. (10)

The relevance of this result to the problem of superfluidity in liquid helium II will be seen
in the following section.

Next we now calculate the total momentum P of the phonon gas:

P =
∑

p

〈n(p)〉p. (11)

Indeed, the vector P will be parallel to the vector v, the latter being already in the direction
of the z-axis. We have, therefore, to calculate only the z-component of the momentum:

P = Pz =
∑

p

〈n(p)〉pz

=

∞∫
0

π∫
0

pcosθ
exp{βpc(1− (v/c)cosθ)}− 1

(
Vp2dp2π sinθdθ

h3

)

=
2πV

h3

∞∫
0

p′3dp′

exp(βp′c)− 1

π∫
0

{1− (v/c)cosθ}−4 cosθ sinθdθ

= V
16π5

45h3c3β4
·

v/c2

(1− v2/c2)3
. (12)
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The total energy E of the gas is given by

E =
∑

p

〈n(p)〉pc

=
2πVc

h3

∞∫
0

p′3dp′

exp(βp′c)− 1

π∫
0

{1− (v/c)cosθ}−4 sinθdθ

= V
4π5

15h3c3β4

1+ 1
3 v2/c2

(1− v2/c2)3
. (13)

It is now natural to regard the ratio P/v as the “inertial mass” of the phonon gas. The
corresponding mass density ρ is, therefore, given by

ρ =
P

vV
=

16π5k4T 4

45h3c5

1

(1− v2/c2)3
. (14)

For (v/c)� 1, which is generally true, the mass density of the phonon gas is given by

(ρ0)ph =
16π5k4

45h3c5
T 4
=

4

3c2
(E0/V ). (15)

Substituting the value of c for liquid He4 at low temperatures, the phonon mass density, as
a fraction of the actual density of the liquid, is given by

(ρ0)ph/ρHe = 1.22× 10−4T 4; (16)

thus, for example, at T = 0.3K the value of this fraction turns out to be about 9.9× 10−7.
Now, at a temperature like 0.3K, phonons are the only excitations in liquid He4 that need to
be considered; the calculated result should, therefore, correspond to the “ratio of the den-
sity ρn of the normal fluid in the liquid to the total density ρ of the liquid.” It is practically
impossible to make a direct determination of a fraction as small as that; however, indirect
evaluations that make use of other experimentally viable properties of the liquid provide a
striking confirmation of the foregoing result; see Figure 7.17.

7.6 Elementary excitations in liquid helium II
Landau (1941, 1947) developed a simple theoretical scheme that explains reasonably well
the behavior of liquid helium II at low temperatures not too close to the λ-point. Accord-
ing to this scheme, the liquid is treated as a weakly excited quantum-mechanical system,
in which deviations from the ground state (T = 0K) are described in terms of “a gas of ele-
mentary excitations” hovering over a quiescent background. The gas of excitations corre-
sponds to the “normal fluid,” while the quiescent background represents the “superfluid.”
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FIGURE 7.17 The normal fraction (ρn/ρ), as obtained from experimental data on (i) the velocity of second sound
and (ii) the entropy of liquid He II (after de Klerk, Hudson, and Pellam, 1953).

At T = 0K, there are no excitations at all (ρn = 0) and the whole of the fluid constitutes the
superfluid background (ρs = ρHe). At higher temperatures, we may write

ρs(T)= ρHe(T)− ρn(T), (1)

so that at T = Tλ, ρn = ρHe and ρs = 0. At T > Tλ, the liquid behaves in all respects as a
normal fluid, commonly known as liquid helium I.

Guided by purely empirical considerations, Landau also proposed an energy–
momentum relationship ε(p) for the elementary excitations in liquid helium II. At
low momenta, the relationship between ε and p was linear (which is characteristic of
phonons), while at higher momenta it exhibited a nonmonotonic character. The excita-
tions were assumed to be bosons and, at low temperatures (when their number is not very
large), mutually noninteracting; the macroscopic properties of the liquid could then be
calculated by following a straightforward statistical-mechanical approach. It was found
that Landau’s theory could explain quite successfully the observed properties of liquid
helium II over a temperature range of about 0 to 2 K; however, it still remained to be ver-
ified that the actual excitations in the liquid did, in fact, conform to the proposed energy
spectrum.

Following a suggestion by Cohen and Feynman (1957), a number of experimental work-
ers set out to investigate the spectrum of excitations in liquid helium II by scattering
long-wavelength neutrons (λ& 4Å) from the liquid. At temperatures below 2K, the most
important scattering process is the one in which a neutron creates a single excitation in the
liquid. By measuring the modified wavelength λf of the neutrons scattered at an angle φ,
the energy ε and the momentum p of the excitation created in the scattering process could
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be determined on the basis of the relevant conservation laws:

ε = h2(λ−2
i − λ

−2
f )/2m, (2)

p2
= h2(λ−2

i + λ
−2
f − 2λ−1

i λ−1
f cosφ), (3)

where λi is the initial wavelength of the neutrons and m the neutron mass. By varying φ, or
λi, one could map the entire spectrum of the excitations.

The first exhaustive investigation along these lines was carried out by Yarnell et al.
(1959); their results, shown in Figure 7.18, possess a striking resemblance to the empiri-
cal spectrum proposed by Landau. The more important features of the spectrum, which
was obtained at a temperature of 1.1K, are the following:

(i) If we fit a linear, phonon-like spectrum (ε = pc) to points in the vicinity of

p/~= 0.55Å
−1

, we obtain for c a value of (239± 5)m/s, which is in excellent
agreement with the measured value of the velocity of sound in the liquid, namely
about 238m/s.

(ii) The spectrum passes through a maximum value of ε/k = (13.92± 0.10)K at

p/~= (1.11± 0.02) Å
−1

.

(iii) This is followed by a minimum at p/~= (1.92± 0.01)Å
−1

, whose neighborhood may
be represented by Landau’s roton spectrum:

ε(p)=1+
(p−p0)

2

2µ
, (4)
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FIGURE 7.18 The energy spectrum of the elementary excitations in liquid He II at 1.1K [after Yarnell et al. (1959)];
the dashed line emanating from the origin has a slope corresponding to the velocity of sound in the liquid, namely
(239±5) m/s.
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with

1/k = (8.65± 0.04)K,

p0/~= (1.92± 0.01)Å
−1

, (5)21

and

µ= (0.16± 0.01)mHe.

(iv) Above p/~' 2.18Å
−1

, the spectrum rises linearly, again with a slope equal to c. Data
were also obtained at temperatures 1.6K and 1.8K. The spectrum was found to be of
the same general shape as at 1.1K; only the value of1was slightly lower.

In a later investigation, Henshaw and Woods (1961) extended the range of observation
at both ends of the spectrum; their results are shown in Figure 7.19. On the lower side,

they carried out measurements down to p/~= 0.26Å
−1

and found that the experimental
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FIGURE 7.19 The energy spectrum of the elementary excitations in liquid He II at 1.12K (after Henshaw and Woods,
1961); the dashed straight lines have a common slope corresponding to the velocity of sound in the liquid, namely
237m/s. The parabolic curve rising from the origin represents the energy spectrum, ε(p)= p2/2m, of free helium
atoms.

21The term “roton” for these excitations was coined by Landau who had originally thought that these excitations
might, in some way, represent local disturbances of a rotational character in the liquid. However, subsequent theoretical
work, especially that of Feynman (1953, 1954) and of Brueckner and Sawada (1957), did not support this contention.
Nevertheless, the term “roton” has remained.
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points indeed lie on a straight line (of slope 237m/s). On the upper side, they pushed their

measurements up to p/~= 2.68Å
−1

and found that, after passing through a minimum at

1.91Å
−1

, the curve rises with an increasing slope up to about 2.4Å
−1

at which point the
second derivative ∂2ε/∂p2 changes sign; the subsequent trend of the curve suggests the
possible existence of a second maximum in the spectrum!22

To evaluate the thermodynamics of liquid helium II, we first of all note that at suf-
ficiently low temperatures we have only low-lying excitations, namely the phonons.
The thermodynamic behavior of the liquid is then governed by formulae derived in
Sections 7.4 and 7.5. At temperatures higher than about 0.5K, the second group of exci-
tations, namely the rotons (with momenta in the vicinity of p0), also shows up. Between
0.5K and about 1K, the behavior of the liquid is governed by phonons and rotons together.
Above 1K, however, the phonon contributions to the various thermodynamic properties
of the liquid become rather unimportant; then, rotons are the only excitations that need
to be considered.

We shall now study the temperature dependence of the roton contributions to the
various thermodynamic properties of the liquid. In view of the continuity of the energy
spectrum, it is natural to expect that, like phonons, rotons also obey Bose–Einstein statis-
tics. Moreover, their total number N in the system is quite indefinite; consequently, their
chemical potential µ is identically zero. We then have for the mean occupation numbers
of the rotons

〈n(p)〉 =
1

exp{βε(p)}− 1
, (6)

where ε(p) is given by equations (4) and (5). Now, at all temperatures of interest (namely
T ≤ 2K), the minimum value of the term exp{βε(p)}, namely exp(1/kT), is considerably
larger than unity. We may, therefore, write

〈n(p)〉 ' exp{−βε(p)}. (7)

The q-potential of the system of rotons is, therefore, given by

q(V ,T)≡
PV
kT
=−

∑
p

ln[1− exp{−βε(p)}]'
∑

p

exp{−βε(p)} 'N , (8)

where N is the “equilibrium” number of rotons in the system. The summation over p may
be replaced by integration, with the result

PV
kT
=N =

V

h3

∞∫
0

e
−

{
1+

(p−p0)
2

2µ

}/
kT
(4πp2dp). (9)

22This seems to confirm a remarkable prediction by Pitaevskii (1959) that an end point in the spectrum might occur
at a “critical” value pc of the excitation momentum where εc is equal to 21 and (∂ε/∂p)c is zero.
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Substituting p= p0+ (2µkT)1/2x, we get

PV
kT
=N =

4πp2
0V

h3
e−1/kT (2µkT)1/2

∫
e−x2

{
1+

(2µkT)1/2

p0
x

}2

dx. (10)

The “relevant” range of the variable x that makes a significant contribution toward this
integral is fairly symmetric about the value x = 0; consequently, the net effect of the linear
term in the integrand is vanishingly small. The quadratic term too is unimportant because
its coefficient (2µkT)/p2

0� 1. Thus, all we have to consider is the integral of exp(−x2). Now,
one can readily verify that the limits of this integral are such that, without seriously affect-
ing the value of the integral, they may be taken as−∞ and+∞; the value of the integral is
then simply π1/2. We thus obtain

PV
kT
=N =

4πp2
0V

h3
(2πµkT)1/2e−1/kT . (11)23

The free energy of the roton gas is given by (since µ= 0)

A=−PV =−NkT ∝ T 3/2e−1/kT , (12)

which gives

S=−
(
∂A
∂T

)
V
=−A

{
3

2T
+

1

kT 2

}
=Nk

{
3
2
+
1

kT

}
, (13)

U = A+TS=N
(
1+

1
2

kT
)

(14)24

and

CV =

(
∂U
∂T

)
V
=Nk

{
3
4
+
1

kT
+

(
1

kT

)2
}

. (15)

Clearly, as T→ 0, all these results tend to zero (essentially exponentially).
We now determine the inertial mass density of the roton gas. Proceeding as in

Section 7.5, we obtain for a gas of excitations with energy spectrum ε(p)

ρ0 =
M0

V
= lim

v→0

1
v

∫
n(ε− v ·p)p

d3p

h3
, (16)

23Looking back at integral (9), what we have done here amounts to replacing p2 in the integrand by its mean value p2
0

and then carrying out integration over the “complete” range of the variable (p−p0).
24This result is highly suggestive of the fact that for rotons there is only one true degree of freedom, namely the

magnitude of the roton momentum, that is thermally effective!
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where n(ε− v ·p) is the mean occupation number of the state ε(p), as observed in a frame
of reference K with respect to which the gas is in mass motion with a drift velocity v.25

For small v, the function n(ε− v ·p) may be expanded as a Taylor series in v and only the
terms n(ε)− (v ·p)∂n(ε)/∂ε retained. The integral over the first part denotes the momen-
tum density of the system, as observed in the rest frame K0, and is identically zero. We are
thus left with

ρ0 =−
1

h3

∫
p2 cos2 θ

∂n(ε)
∂ε

(p2dp2π sinθdθ)

=−
4π

3h3

∞∫
0

∂n(ε)
∂ε

p4dp, (17)

which holds for any energy spectrum and for any statistics.
For phonons, we obtain

(ρ0)ph =−
4π

3h3c

∞∫
0

dn(p)
dp

p4dp

=−
4π

3h3c

n(p) ·p4
∣∣∣∣∞
0
−

∞∫
0

n(p) · 4p3dp


=

4

3c2

∞∫
0

n(p) ·pc

(
4πp2dp

h3

)
=

4

3c2
(E0)ph/V , (18)

which is identical to our earlier result (7.5.15).
For rotons, n(ε)' exp(−βε); hence, ∂n(ε)/∂ε '−βn(ε). Accordingly, by (17),

(ρ0)rot =
4πβ

3h3

∫
n(ε)p4dp

=
β

3
〈p2
〉

N
V
'

p2
0

3kT
N
V

(19)

=
4πp4

0

3h3

(
2πµ
kT

)1/2

e−1/kT ; (20)

At very low temperatures (T < 0.3K), the roton contribution toward the inertia of the
fluid is negligible in comparison with the phonon contribution. At relatively higher tem-
peratures (T ∼ 0.6K), the two contributions become comparable. At temperatures above
1K, the roton contribution is far more dominant than the phonon contribution; at such
temperatures, the roton density alone accounts for the density ρn of the normal fluid.

25The drift velocity v must satisfy the condition (v ·p)≤ ε, for otherwise some of the occupation numbers will become
negative! This leads to the existence of a critical velocity vc for these excitations, such that for v exceeding vc the formalism
developed here would break down. It is not difficult to see that this (critical) velocity is given by the relation vc = (ε/p)min,
as in equation (24).
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It would be instructive to determine the critical temperature Tc at which the theoreti-
cal value of the density ρn became equal to the actual density ρHe of the liquid; this would
mean the disappearance of the superfluid component of the liquid (and hence a transition
from liquid He II to liquid He I). In this manner, we find that Tc ' 2.5K, as opposed to the
experimental value of Tλ, which is' 2.19 K. The comparison is not too bad, considering
the fact that in the present calculation we have assumed the roton gas to be a noninteract-
ing system right up to the transition point; in fact, due to the presence of an exceedingly
large number of excitations at higher temperatures, this assumption would not remain
plausible.

Equation (19) suggests that a roton excitation possesses an effective mass p2
0/3kT .

Numerically, this is about 10 to 15 times the mass of a helium atom (and, hence, orders of
magnitude larger than the parameter µ of the roton spectrum). However, the more impor-
tant aspect of the roton effective mass is that it is inversely proportional to the temperature
of the roton gas! Historically, this aspect was first discovered empirically by Landau (1947)
on the basis of the experimental data on the velocity of second sound in liquid He II and its
specific heat. Now, since the effective mass of an excitation is generally determined by the
quantity 〈p2

〉/3kT , Landau concluded that the quantity 〈p2
〉 of the relevant excitations in

this liquid must be temperature-independent. Thus, as the temperature of the liquid rises,
the mean value of p2 of the excitations must stay constant; this value may be denoted by
p2

0. The mean value of ε, on the other hand, must rise with temperature. The only way to
reconcile the two was to invoke a nonmonotonic spectrum with a minimum at p= p0.

Finally, we would like to touch on the question of the critical velocity of superflow.
For this, we consider a mass M of excitation-free superfluid in mass motion; its kinetic
energy E and momentum P are given by 1

2 Mv2 and Mv, respectively. Any changes in these
quantities are related as follows:

δE = (v · δP). (21)

Supposing that these changes came about as a result of the creation of an excitation ε(p)
in the fluid, we must have, by the principles of conservation,

δE =−ε and δP =−p. (22)

Equations (21) and (22) lead to the result

ε = (v ·p)≤ vp. (23)

Thus, it is impossible to create an excitation ε(p) in the fluid unless the drift velocity v of
the fluid is greater than, or at least equal to, the quantity (ε/p). Accordingly, if v is less than
even the lowest value of ε/p, no excitation at all can be created in the fluid, which will there-
fore maintain its superfluid character. We thus obtain a condition for the maintenance of
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superfluidity, namely

v < vc = (ε/p)min, (24)

which is known as the Landau criterion for superflow. The velocity vc is called the criti-
cal velocity of superflow; it marks an “upper limit” to the flow velocities at which the fluid
exhibits superfluid behavior. The observed magnitude of the critical velocity varies signifi-
cantly with the geometry of the channel employed; as a rule, the narrower the channel the
larger the critical velocity. The observed values of vc range from about 0.1cm/s to about
70cm/s.

The theoretical estimates of vc are clearly of interest. On one hand, we find that if the
excitations obey the ideal-gas relationship, namely ε = p2/2m, then the critical velocity
turns out to be exactly zero. Any velocity v is then greater than the critical velocity; accord-
ingly, no superflow is possible at all. This is a very significant result, for it brings out very
clearly the fact that interatomic interactions in the liquid, which give rise to an excita-
tion spectrum different from the one characteristic of the ideal gas, play a fundamental
role in bringing about the phenomenon of superfluidity. Thus, while an ideal Bose gas
does undergo the phenomenon of Bose–Einstein condensation, it cannot support the phe-
nomenon of superfluidity as such! On the other hand, we find that (i) for phonons, vc =

c ' 2.4× 104 cm/s and (ii) for rotons, vc = {(p2
0+ 2µ1)1/2

−p0}/µ'1/p0 ' 6.3× 103 cm/s,
which are too high in comparison with the observed values of vc. In fact, there is another
type of collective excitations that can appear in liquid helium II, namely quantized vortex
rings, with energy–momentum relationship of the form: ε ∝ p1/2. The critical velocity for
the creation of these rings turns out to be numerically consistent with the experimental
findings; not only that, the dependence of vc on the geometry of the channel can also be
understood in terms of the size of the rings created.

For a review of this topic, especially in regard to Feynman’s contributions, see Mehra
and Pathria (1994); see also Sections 11.4 through 11.6 of this text.

Quantized dissipationless bosonic flow has also been observed in the solid phase of
helium-4. This “supersolid” behavior was observed by Kim and Chan (2004a, 2004b) using
a torsional oscillator containing solid helium infused silica with atomic-sized pores. At P =
60atm, the torsional frequency increases abruptly for temperatures below 175mK. These
authors interpret this result as helium atoms in the solid phase in the pores being free to
flow without dissipation.

Problems
7.1. By considering the order of magnitude of the occupation numbers 〈nε〉, show that it makes no

difference to the final results of Section 7.1 if we combine a finite number of (ε 6= 0)-terms of the
sum (7.1.2) with the (ε = 0)-part of equation (7.1.6) or include them in the integral over ε.

7.2. Deduce the virial expansion (7.1.13) from equations (7.1.7) and (7.1.8), and verify the quoted values
of the virial coefficients.
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7.3. Combining equations (7.1.24) and (7.1.26), and making use of the first two terms of formula (D.9)
in Appendix D, show that, as T approaches Tc from above, the parameter α(=−lnz) of the ideal
Bose gas assumes the form

α ≈
1
π

(
3ζ(3/2)

4

)2(T −Tc

Tc

)2

.

7.4. Show that for an ideal Bose gas

1
z

(
∂z
∂T

)
P
=−

5
2T

g5/2(z)

g3/2(z)
;

compare this result with equation (7.1.36). Hence show that

γ ≡
CP

CV
=
(∂z/∂T)P
(∂z/∂T)v

=
5
3

g5/2(z)g1/2(z)

{g3/2(z)}2
,

as in equation (7.1.48b). Check that, as T approaches Tc from above, both γ and CP diverge as
(T −Tc)

−1.
7.5. (a) Show that the isothermal compressibility κT and the adiabatic compressibility κS of an ideal

Bose gas are given by

κT =
1

nkT

g1/2(z)

g3/2(z)
, κS =

3
5nkT

g3/2(z)

g5/2(z)
,

where n(=N/V ) is the particle density in the gas. Note that, as z→ 0, κT and κS approach their
respective classical values, namely 1/P and 1/γP. How do they behave as z→ 1?

(b) Making use of the thermodynamic relations

CP −CV = T
(
∂P
∂T

)
V

(
∂V
∂T

)
P
= TV κT

(
∂P
∂T

)2

V

and

CP/CV = κT/κS,

derive equations (7.1.48a) and (7.1.48b).
7.6. Show that for an ideal Bose gas the temperature derivative of the specific heat CV is given by

1
Nk

(
∂CV

∂T

)
V
=


1
T

[
45
8

g5/2(z)

g3/2(z)
−

9
4

g3/2(z)

g1/2(z)
−

27
8

{g3/2(z)}2g−1/2(z)

{g1/2(z)}3

]
for T > Tc,

45
8

v
Tλ3 ζ

( 5
2

)
for T < Tc.

Using these results and the main term of formula (D.9), verify equation (7.1.38).
7.7. Evaluate the quantities (∂2P/∂T 2)v, (∂2µ/∂T 2)v, and (∂2µ/∂T 2)P for an ideal Bose gas and check

that your results satisfy the thermodynamic relationships

CV = VT

(
∂2P
∂T 2

)
v

−NT

(
∂2µ

∂T 2

)
v

,

and

CP =−NT

(
∂2µ

∂T 2

)
P

.

Examine the behavior of these quantities as T→ Tc from above and from below.
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7.8. The velocity of sound in a fluid is given by the formula

w =
√
(∂P/∂ρ)s,

where ρ is the mass density of the fluid. Show that for an ideal Bose gas

w2
=

5kT
3m

g5/2(z)

g3/2(z)
=

5
9
〈u2
〉,

where 〈u2
〉 is the mean square speed of the particles in the gas.

7.9. Show that for an ideal Bose gas

〈u〉
〈

1
u

〉
=

4
π

g1(z)g2(z)
{g3/2(z)}2

,

u being the speed of a particle. Examine and interpret the limiting cases z→ 0 and z→ 1;
compare with Problem 6.6.

7.10. Consider an ideal Bose gas in a uniform gravitational field of acceleration g. Show that the
phenomenon of Bose–Einstein condensation in this gas sets in at a temperature Tc given by

Tc ' T 0
c

1+
8
9

1

ζ
(

3
2

) (πmgL

kT 0
c

)1/2
 ,

where L is the height of the container and mgL� kT 0
c . Also show that the condensation here is

accompanied by a discontinuity in the specific heat CV of the gas:

(1CV )T=Tc '−
9

8π
ζ

(
3
2

)
Nk

(
πmgL

kT 0
c

)1/2

;

see Eisenschitz (1958).
7.11. Consider an ideal Bose gas consisting of molecules with internal degrees of freedom. Assuming

that, besides the ground state ε0 = 0, only the first excited state ε1 of the internal spectrum needs
to be taken into account, determine the condensation temperature of the gas as a function of ε1.
Show that, for (ε1/kT 0

c )� 1,

Tc

T 0
c
' 1−

2
3

ζ
(

3
2

) e−ε1/kT 0
c

while, for (ε1/kT 0
c )� 1,

Tc

T 0
c
'

(
1
2

)2/3
1+

24/3

3ζ
(

3
2

) ( πε1

kT 0
c

)1/2
 .

[Hint: To obtain the last result, use the first two terms of formula (D.9) in Appendix D.]
7.12. Consider an ideal Bose gas in the grand canonical ensemble and study fluctuations in the total

number of particles N and the total energy E. Discuss, in particular, the situation when the gas
becomes highly degenerate.

7.13. Consider an ideal Bose gas confined to a region of area A in two dimensions. Express the number of
particles in the excited states, Ne, and the number of particles in the ground state, N0, in terms of
z, T , and A, and show that the system does not exhibit Bose–Einstein condensation unless T→ 0K.

Refine your argument to show that, if the area A and the total number of particles N are held
fixed and we require both Ne and N0 to be of order N , then we do achieve condensation when

T ∼
h2

mkl2

1
lnN

,
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where l [∼
√
(A/N)] is the mean interparticle distance in the system. Of course, if both A and

N→∞, keeping l fixed, then the desired T does go to zero.
7.14. Consider an n-dimensional Bose gas whose single-particle energy spectrum is given by ε∝ps,

where s is some positive number. Discuss the onset of Bose–Einstein condensation in this system,
especially its dependence on the numbers n and s. Study the thermodynamic behavior of this
system and show that,

P =
s
n

U
V

, CV (T→∞)=
n
s

Nk, and CP(T→∞)=
(n

s
+ 1

)
Nk.

7.15. At time t = 0, the ground state wavefunction of a one-dimensional quantum harmonic oscillator
with potential V (x)= 1

2 mω2
0x2 is given by

ψ(x,0)=
1

π1/4
√

a
exp

(
−

x2

2a2

)
,

where a=
√

~
mω0

. At t = 0, the harmonic potential is abruptly removed. Use the momentum

representation of the wavefunction at t = 0 and the time-dependent Schrodinger equation to
determine the spatial wavefunction and density at time t > 0; compare to equation (7.2.11).

7.16. At time t = 0, a collection of classical particles is in equilibrium at temperature T in a three-
dimensional harmonic oscillator potential V (r)= 1

2 mω2
0 |r|

2. At t = 0, the harmonic potential is
abruptly removed. Use the momentum distribution at t = 0 to determine the spatial density at
time t > 0. Show that this is equivalent to the high temperature limit of equation (7.2.15).

7.17. As shown in Section 7.1, nλ3 is a measure of the quantum nature of the system. Use equations
(7.2.11) and (7.2.15) to determine nλ3 at the center of the harmonic trap at T = Tc/2 for the
condensed and noncondensed fractions.

7.18. Show that the integral of the semiclassical spatial density in equation (7.2.15) gives the correct
counting of the atoms that are not condensed into the ground state.

7.19. Construct a theory for N bosons in an isotropic two-dimensional trap. This corresponds to a trap in
which the energy level spacing due to excitations in the z direction is much larger than the spacing
in the other directions. Determine the density of states a(ε) of this system. Can a Bose–Einstein
condensate form in this trap? If so, find the critical temperature as a function of the trapping
frequencies and N . How much larger must the frequency in the third direction be for the system
to display two-dimensional behavior?

7.20. The (canonical) partition function of the blackbody radiation may be written as

Q(V ,T)=
∏
ω

Q1(ω,T),

so that

lnQ(V ,T)=
∑
ω

lnQ1(ω,T)≈

∞∫
0

lnQ1(ω,T)g(ω)dω;

here, Q1(ω,T) is the single-oscillator partition function given by equation (3.8.14) and g(ω) is the
density of states given by equation (7.3.2). Using this information, evaluate the Helmholtz free
energy of the system and derive other thermodynamic properties such as the pressure P and the
(thermal) energy density U/V . Compare your results with the ones derived in Section 7.3 from the
q-potential of the system.

7.21. Show that the mean energy per photon in a blackbody radiation cavity is very nearly 2.7kT .
7.22. Considering the volume dependence of the frequencies ω of the vibrational modes of the radiation

field, establish relation (7.3.17) between the pressure P and the energy density U/V .
7.23. The sun may be regarded as a black body at a temperature of 5800K. Its diameter is about

1.4× 109 m while its distance from the earth is about 1.5× 1011m.
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(a) Calculate the total radiant intensity (in W/m2) of sunlight at the surface of the earth.
(b) What pressure would it exert on a perfectly absorbing surface placed normal to the rays of

the sun?
(c) If a flat surface on a satellite, which faces the sun, were an ideal absorber and emitter, what

equilibrium temperature would it ultimately attain?
7.24. Calculate the photon number density, entropy density, and energy density of the 2.725K cosmic

microwave background.
7.25. Figure 7.20 is a plot of CV (T) against T for a solid, the limiting value CV (∞) being the classical

result 3Nk. Show that the shaded area in the figure, namely

∞∫
0

{CV (∞)−CV (T)}dT ,

is exactly equal to the zero-point energy of the solid. Interpret the result physically.

Cv (`)

0
0

C
v
(T

)

T

FIGURE 7.20

7.26. Show that the zero-point energy of a Debye solid composed of N atoms is equal to 9
8 Nk2D.

[Note that this implies, for each vibrational mode of the solid, a mean zero-point energy 3
8 k2D,

that is, ω = 3
4ωD.]

7.27. Show that, for T �2D, the quantity (CP −CV ) of a Debye solid varies as T 7 and hence the ratio
(CP/CV )' 1.

7.28. Determine the temperature T , in terms of the Debye temperature2D, at which one-half of the
oscillators in a Debye solid are expected to be in the excited states.

7.29. Determine the value of the parameter2D for liquid He4 from the empirical result (7.4.28).
7.30. (a) Compare the “mean thermal wavelength” λT of neutrons at a typical room temperature with

the “minimum wavelength” λmin of phonons in a typical crystal.
(b) Show that the frequency ωD for a sodium chloride crystal is of the same order of magnitude as

the frequency of an electromagnetic wave in the infrared.
7.31. Proceeding under conditions (7.4.16) rather than (7.4.13), show that

CV (T)=Nk{D(x0,L)+ 2D(x0,T )},

where x0,L = (~ωD,L/kT) and x0,T = (~ωD,T/kT). Compare this result with equation (7.4.17), and
estimate the nature and the magnitude of the error involved in the latter.

7.32. A mechanical system consisting of n identical masses (each of mass m) connected in a straight line
by identical springs (of stiffness K ) has natural vibrational frequencies given by

ωr = 2

√(
K
m

)
sin
( r

n
·
π

2

)
;r = 1,2, . . . (n− 1).
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Correspondingly, a linear molecule composed of n identical atoms may be regarded as having a
vibrational spectrum given by

νr = νc sin
( r

n
·
π

2

)
;r = 1,2, . . . (n− 1),

where vc is a characteristic vibrational frequency of the molecule. Show that this model leads to a
vibrational specific heat per molecule that varies as T 1 at low temperatures and tends to the
limiting value (n− 1)k at high temperatures.

7.33. Assuming the dispersion relation ω = Aks, where ω is the angular frequency and k the wave number
of a vibrational mode existing in a solid, show that the respective contribution toward the specific
heat of the solid at low temperatures is proportional to T 3/s.
[Note that while s= 1 corresponds to the case of elastic waves in a lattice, s= 2 applies to spin
waves propagating in a ferromagnetic system.]

7.34. Assuming the excitations to be phonons (ω = Ak), show that their contribution toward the specific
heat of an n-dimensional Debye system is proportional to T n.
[Note that the elements selenium and tellurium form crystals in which atomic chains are arranged
in parallel so that in a certain sense they behave as one-dimensional; accordingly, over a certain
range of temperatures, the T 1-law holds. For a similar reason, graphite obeys a T 2-law over a
certain range of temperatures.]

7.35. The (minimum) potential energy of a solid, when all its atoms are “at rest” at their equilibrium
positions, may be denoted by the symbol80(V ), where V is the volume of the solid. Similarly, the
normal frequencies of vibration, ωi (i= 1,2, . . . ,3N − 6), may be denoted by the symbols ωi(V ).
Show that the pressure of this solid is given by

P =−
∂80

∂V
+ γ

U ′

V
,

where U ′ is the internal energy of the solid arising from the vibrations of the atoms, while γ is the
Grüneisen constant:

γ =−
∂ lnω
∂ lnV

≈
1
3

.

Assuming that, for V ' V0,

80(V )=
(V −V0)

2

2κ0V0
,

where κ0 and V0 are constants and κ0CV T � V0, show that the coefficient of thermal expansion (at
constant pressure P ' 0) is given by

α ≡
1
V

(
∂V
∂T

)
N ,P
=
γ κ0CV

V0
.

Also show that

CP −CV =
γ 2κ0C2

V T

V0
.

7.36. Apply the general formula (6.4.3) for the kinetic pressure of a gas, namely

P =
1
3

n〈pu〉,

to a gas of rotons and verify that the result so obtained agrees with the Boltzmannian relationship
P = nkT .

7.37. Show that the free energy A and the inertial density ρ of a roton gas in mass motion are given by

A(v)= A(0)
sinhx

x
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and

ρ(v)= ρ(0)
3(x coshx− sinhx)

x3 ,

where x = vp0/kT .
7.38. Integrating (7.6.17) by parts, show that the effective mass of an excitation, whose energy–

momentum relationship is denoted by ε(p), is given by

meff =

〈
1

3p2

{
d

dp

(
p4 dp

dε

)}〉
.

Check the validity of this result by considering the examples of (i) an ideal-gas particle, (ii) a
phonon, and (iii) a roton.



8
Ideal Fermi Systems

8.1 Thermodynamic behavior of an ideal Fermi gas
According to Sections 6.1 and 6.2, we obtain for an ideal Fermi gas

PV
kT
≡ lnQ=

∑
ε

ln(1+ ze−βε) (1)

and

N ≡
∑
ε

〈nε〉 =
∑
ε

1

z−1eβε + 1
, (2)

where β = 1/kT and z = exp(µ/kT). Unlike the Bose case, the parameter z in the Fermi
case can take on unrestricted values: 0≤ z <∞. Moreover, in view of the Pauli exclusion
principle, the question of a large number of particles occupying a single energy state does
not even arise in this case; hence, there is no phenomenon like Bose–Einstein condensa-
tion here. Nevertheless, at sufficiently low temperatures, Fermi gas displays its own brand
of quantal behavior, a detailed study of which is of great physical interest.

If we replace summations over ε by corresponding integrations, equations (1) and (2)
in the case of a nonrelativistic gas become

P
kT
=

g

λ3
f5/2(z) (3)

and

N
V
=

g

λ3
f3/2(z), (4)

where g is a weight factor arising from the “internal structure” of the particles (e.g., spin),
λ is the mean thermal wavelength of the particles

λ= h/(2πmkT)1/2, (5)

while fν(z) are Fermi–Dirac functions defined by, see Appendix E,

fν(z)=
1

0(ν)

∞∫
0

xν−1dx

z−1ex+ 1
= z−

z2

2ν
+

z3

3ν
− ·· · . (6)

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00008-6
© 2011 Elsevier Ltd. All rights reserved.
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Eliminating z between equations (3) and (4), we obtain the equation of state of the Fermi
gas.

The internal energy U of the Fermi gas is given by

U ≡−
(
∂

∂β
lnQ

)
z,V
= kT 2

(
∂

∂T
lnQ

)
z,V

=
3
2

kT
gV

λ3
f5/2(z)=

3
2

NkT
f5/2(z)

f3/2(z)
; (7)

thus, quite generally, this system satisfies the relationship

P =
2
3
(U/V ). (8)

The specific heat CV of the gas can be obtained by differentiating (7) with respect to T ,
keeping N and V constant, and making use of the relationship

1
z

(
∂z
∂T

)
v
=−

3
2T

f3/2(z)

f1/2(z)
, (9)

which follows from equation (4) and the recurrence formula (E.6) in Appendix E. The final
result is

CV

Nk
=

15
4

f5/2(z)

f3/2(z)
−

9
4

f3/2(z)

f1/2(z)
. (10)

For the Helmholtz free energy of the gas, we get

A≡Nµ−PV =NkT
{

lnz−
f5/2(z)

f3/2(z)

}
, (11)

and for the entropy

S≡
U −A

T
=Nk

{
5
2

f5/2(z)

f3/2(z)
− lnz

}
. (12)

In order to determine the various properties of the Fermi gas in terms of the particle den-
sity n(=N/V ) and the temperature T , we need to know the functional dependence of the
parameter z on n and T ; this information is formally contained in the implicit relationship
(4). For detailed studies, one is sometimes obliged to make use of numerical evaluation
of the functions fν(z); for physical understanding, however, the various limiting forms of
these functions serve the purpose well (see Appendix E).

Now, if the density of the gas is very low and/or its temperature very high, then the
situation might correspond to

f3/2(z)=
nλ3

g
=

nh3

g(2πmkT)3/2
� 1; (13)
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we then speak of the gas as being nondegenerate and, therefore, equivalent to a classical
ideal gas discussed in Section 3.5. In view of expansion (6), this implies that z� 1 and
hence fν(z)' z. Expressions for the various thermodynamic properties of the gas then
become

P =NkT/V , U =
3
2

NkT , CV =
3
2

Nk, (14)

A=NkT

{
ln

(
nλ3

g

)
− 1

}
, (15)

and

S=Nk

{
5
2
− ln

(
nλ3

g

)}
. (16)

If the parameter z is small in comparison with unity but not very small, then we should
make a fuller use of series (6) in order to eliminate z between equations (3) and (4). The
procedure is just the same as in the corresponding Bose case, that is, we first invert the
series appearing in (4) to obtain an expansion for z in powers of (nλ3/g) and then substi-
tute this expansion into the series appearing in (3). The equation of state then takes the
form of the virial expansion

PV
NkT

=

∞∑
l=1

(−1)l−1al

(
λ3

gv

)l−1

, (17)

where v = 1/n, while the coefficients al are the same as quoted in (7.1.14) but alternate in
sign compared to the Bose case. For the specific heat, in particular, we obtain

CV =
3
2

Nk
∞∑

l=1

(−1)l−1 5− 3l
2

al

(
λ3

gv

)l−1

=
3
2

Nk

1− 0.0884

(
λ3

gv

)
+ 0.0066

(
λ3

gv

)2

− 0.0004

(
λ3

gv

)3

+ ·· ·

 . (18)

Thus, at finite temperatures, the specific heat of the gas is smaller than its limiting value
3
2 Nk. As will be seen in the sequel, the specific heat of the ideal Fermi gas decreases mono-
tonically as the temperature of the gas falls; see Figure 8.2 later in the section and compare
it with the corresponding Figure 7.4 for the ideal Bose gas.

If the density n and the temperature T are such that the parameter (nλ3/g) is of order
unity, the foregoing expansions cannot be of much use. In that case, one may have to make
recourse to numerical calculation. However, if (nλ3/g)� 1, the functions involved can be
expressed as asymptotic expansions in powers of (lnz)−1; we then speak of the gas as being
degenerate. As (nλ3/g)→∞, our functions assume a closed form, with the result that the
expressions for the various thermodynamic quantities pertaining to the system become
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highly simplified; we then speak of the gas as being completely degenerate. For simplicity,
we first discuss the main features of the system in a state of complete degeneracy.

In the limit T→ 0, which implies (nλ3/g)→∞, the mean occupation numbers of the
single-particle state ε(p) become

〈nε〉 ≡
1

e(ε−µ)/kT + 1
=

{
1 for ε < µ0

0 for ε > µ0,
(19)

where µ0 is the chemical potential of the system at T = 0. The function 〈nε〉 is thus a step
function that stays constant at the (highest) value 1 right from ε = 0 to ε = µ0 and then
suddenly drops to the (lowest) value 0; see the dotted line in Figure 8.1. Thus, at T = 0,
all single-particle states up to ε = µ0 are “completely” filled, with one particle per state
(in accordance with the Pauli principle), while all single-particle states with ε > µ0 are
empty. The limiting energy µ0 is generally referred to as the Fermi energy of the system
and is denoted by the symbol εF ; the corresponding value of the single-particle momen-
tum is referred to as the Fermi momentum and is denoted by the symbol pF . The defining
equation for these parameters is

εF∫
0

a(ε)dε =N , (20)

where a(ε)denotes the density of states of the system and is given by the general expression

a(ε)=
gV

h3
4πp2 dp

dε
. (21)

We readily obtain

N =
4πgV

3h3
p3

F , (22)

which gives

pF =

(
3N

4πgV

)1/3

h; (23)

1.0

0.5

0
0

��4 ��2 ��2 ��4�

x

(e
x�

�
�

1)
�

1

FIGURE 8.1 Fermi distribution at low temperatures, with x = ε/kT and ξ = µ/kT . The rectangle denotes the limiting
distribution as T→ 0; in that case, the Fermi function is unity for ε < µ0 and zero for ε > µ0.
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accordingly, in the nonrelativistic case,

εF =

(
3N

4πgV

)2/3 h2

2m
=

(
6π2n

g

)2/3
~2

2m
. (24)

The ground-state, or zero-point, energy of the system is then given by

E0 =
4πgV

h3

PF∫
0

(
p2

2m

)
p2dp

=
2πgV

5mh3
p5

F , (25)

which gives

E0

N
=

3p2
F

10m
=

3
5
εF . (26)

The ground-state pressure of the system is in turn given by

P0 =
2
3
(E0/V )=

2
5

nεF . (27)

Substituting for εF , the foregoing expression takes the form

P0 =

(
6π2

g

)2/3
~2

5m
n5/3
∝ n5/3. (28)

The zero-point motion seen here is clearly a quantum effect arising because of the Pauli
principle, according to which, even at T = 0K, the particles constituting the system cannot
settle down into a single energy state (as we had in the Bose case) and are therefore spread
over a requisite number of lowest available energy states. As a result, the Fermi system,
even at absolute zero, is quite live!

For a discussion of properties such as the specific heat and the entropy of the system,
we must extend our study to finite temperatures. If we decide to restrict ourselves to low
temperatures, then deviations from the ground-state results will not be too large; accord-
ingly, an analysis based on the asymptotic expansions of the functions fν(z)would be quite
appropriate. However, before we do that it seems useful to carry out a physical assessment
of the situation with the help of the expression

〈nε〉 =
1

e(ε−µ)/kT + 1
. (29)

The situation corresponding to T = 0 is summarized in equation (19) and is shown as a step
function in Figure 8.1. Deviations from this, when T is finite (but still much smaller than
the characteristic temperature µ0/k), will be significant only for those values of ε for which
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the magnitude of the quantity (ε−µ)/kT is of order unity (for otherwise the exponential
term in (29) will not be much different from its ground-state value, namely, e±∞); see the
solid curve in Figure 8.1.

We, therefore, conclude that the thermal excitation of the particles occurs only in a nar-
row energy range that is located around the energy value ε = µ0 and has a width O(kT). The
fraction of the particles that are thermally excited is, therefore, O(kT/εF )— the bulk of the
system remaining uninfluenced by the rise in temperature.1 This is the most characteris-
tic feature of a degenerate Fermi system and is essentially responsible for both qualitative
and quantitative differences between the physical behavior of this system and that of a
corresponding classical system.

To conclude the argument, we observe that since the thermal energy per “excited” par-
ticle is O(kT), the thermal energy of the whole system will be O(Nk2T 2/εF ); accordingly, the
specific heat of the system will be O(Nk · kT/εF ). Thus, the low-temperature specific heat
of a Fermi system differs from the classical value 3

2 Nk by a factor that not only reduces
it considerably in magnitude but also makes it temperature-dependent (varying as T 1). It
will be seen repeatedly that the first-power dependence of CV on T is a typical feature of
Fermi systems at low temperatures.

For an analytical study of the Fermi gas at finite, but low, temperatures, we observe
that the value of z, which was infinitely large at absolute zero, is now finite, though still
large in comparison with unity. The functions fν(z) can, therefore, be expressed as asymp-
totic expansions in powers of (lnz)−1; see Sommerfeld’s lemma (E.17) in Appendix E. For
the values of ν we are presently interested in, namely 5

2 , 3
2 , and 1

2 , we have to the first
approximation

f5/2(z)=
8

15π1/2
(lnz)5/2

[
1+

5π2

8
(lnz)−2

+ ·· ·

]
, (30)

f3/2(z)=
4

3π1/2
(lnz)3/2

[
1+

π2

8
(lnz)−2

+ ·· ·

]
, (31)

and

f1/2(z)=
2

π1/2
(lnz)1/2

[
1−

π2

24
(lnz)−2

+ ·· ·

]
. (32)

Substituting (31) into (4), we obtain

N
V
=

4πg
3

(
2m

h2

)3/2

(kT lnz)3/2

[
1+

π2

8
(lnz)−2

+ ·· ·

]
. (33)

1We, therefore, speak of the totality of the energy levels filled at T = 0 as “the Fermi sea” and the small fraction of
the particles that are excited near the top, when T > 0, as a “mist above the sea.” Physically speaking, the origin of this
behavior again lies in the Pauli exclusion principle, according to which a fermion of energy ε cannot absorb a quantum of
thermal excitation εT if the energy level ε+ εT is already filled. Since εT =O(kT), only those fermions that occupy energy
levels near the top level εF , up to a depth O(kT), can be thermally excited to go over to the unfilled energy levels.
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In the zeroth approximation, this gives

kT lnz ≡ µ'
(

3N
4πgV

)2/3 h2

2m
, (34)

which is identical to the ground-state resultµ0 = εF ; see equation (24). In the next approxi-
mation, we obtain

kT lnz ≡ µ' εF

[
1−

π2

12

(
kT
εF

)2
]

. (35)

Substituting (30) and (31) into (7), we obtain

U
N
=

3
5
(kT lnz)

[
1+

π2

2
(lnz)−2

+ ·· ·

]
; (36)

with the help of (35), this becomes

U
N
=

3
5
εF

[
1+

5π2

12

(
kT
εF

)2

+ ·· ·

]
. (37)

The pressure of the gas is then given by

P =
2
3

U
V
=

2
5

nεF

[
1+

5π2

12

(
kT
εF

)2

+ ·· ·

]
. (38)

As expected, the main terms of equations (37) and (38) are identical to the ground-state
results (26) and (27). From the temperature-dependent part of (37), we obtain for the low-
temperature specific heat of the gas

CV

Nk
=
π2

2
kT
εF
+ ·· · . (39)

Thus, for T � TF , where TF (= εF/k) is the Fermi temperature of the system, the specific
heat varies as the first power of temperature; moreover, in magnitude, it is consider-
ably smaller than the classical value 3

2 Nk. The overall variation of CV with T is shown in
Figure 8.2.

The Helmholtz free energy of the system follows directly from equations (35) and (38):

A
N
= µ−

PV
N

=
3
5
εF

[
1−

5π2

12

(
kT
εF

)2

+ ·· ·

]
, (40)
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FIGURE 8.2 The specific heat of an ideal Fermi gas; the dotted line depicts the linear behavior at low temperatures.

which gives

S
Nk
=
π2

2
kT
εF
+ ·· · . (41)

Thus, as T→ 0,S→ 0 in accordance with the third law of thermodynamics.

8.2 Magnetic behavior of an ideal Fermi gas
We now turn our attention to studying the equilibrium state of a gas of noninteracting
fermions in the presence of an external magnetic field B. The main problem here is to
determine the net magnetic moment M acquired by the gas (as a function of B and T ) and
then calculate the susceptibility χ(T). The answer naturally depends on the intrinsic mag-
netic moment µ∗ of the particles and the corresponding multiplicity factor (2J + 1); see,
for instance, the treatment given in Section 3.9. According to the Boltzmannian treatment,
one obtains a (positive) susceptibility χ(T) which, at high temperatures, obeys the Curie
law : χ ∝ T−1; at low temperatures, one obtains a state of magnetic saturation. However,
if we treat the problem on the basis of Fermi statistics we obtain significantly different
results, especially at low temperatures.

In particular, since the Fermi gas is pretty live even at absolute zero, no magnetic sat-
uration ever results; we rather obtain a limiting susceptibility χ0, which is independent of
temperature but is dependent on the density of the gas. Studies along these lines were first
made by Pauli, in 1927, when he suggested that the conduction electrons in alkali metals
be regarded as a “highly degenerate Fermi gas”; these studies enabled him to explain the
physics behind the feeble and temperature-independent character of the paramagnetism of
metals. Accordingly, this phenomenon is referred to as Pauli paramagnetism — in contrast
to the classical Langevin paramagnetism.

In quantum statistics, we encounter yet another effect which is totally absent in clas-
sical statistics. This is diamagnetic in character and arises from the quantization of the
orbits of charged particles in the presence of an external magnetic field or, one may say,
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from the quantization of the (kinetic) energy of charged particles associated with their
motion perpendicular to the direction of the field. The existence of this effect was first
established by Landau (1930); so, we refer to it as Landau diamagnetism. This leads to an
additional susceptibility χ(T), which, though negative in sign, is somewhat similar to the
paramagnetic susceptibility, in that it obeys Curie’s law at high temperatures and tends
to a temperature-independent but density-dependent limiting value as T→ 0. In gen-
eral, the magnetic behavior of a Fermi gas is determined jointly by the intrinsic magnetic
moment of the particles and the quantization of their orbits. If the spin–orbit interaction
is negligible, the resultant behavior is given by a simple addition of the two effects.

8.2.A Pauli paramagnetism

The energy of a particle, in the presence of an external magnetic field B, is given by

ε =
p2

2m
−µ∗ · B, (1)

where µ∗ is the intrinsic magnetic moment of the particle and m its mass. For simplicity,
we assume that the particle spin is 1

2 ; the vector µ∗ will then be either parallel to the vector
B or antiparallel. We thus have two groups of particles in the gas:

(i) those having µ∗ parallel to B, with ε = p2/2m−µ∗B, and
(ii) those having µ∗ antiparallel to B, with ε = p2/2m+µ∗B.

At absolute zero, all energy levels up to the Fermi level εF will be filled, while all levels
beyond εF will be empty. Accordingly, the kinetic energy of the particles in the first group
will range between 0 and (εF +µ

∗B), while the kinetic energy of the particles in the second
group will range between 0 and (εF −µ

∗B). The respective numbers of occupied energy
levels (and hence of particles) in the two groups will, therefore, be

N+ =
4πV

3h3
{2m(εF +µ

∗B)}3/2 (2)

and

N− =
4πV

3h3
{2m(εF −µ

∗B)}3/2. (3)

The net magnetic moment acquired by the gas is then given by

M = µ∗(N+−N−)=
4πµ∗V (2m)3/2

3h3
{(εF +µ

∗B)3/2
− (εF −µ

∗B)3/2
}. (4)

We thus obtain for the low-field susceptibility (per unit volume) of the gas

χ0 = Lim
B→0

(
M
VB

)
=

4πµ∗2(2m)3/2ε
1/2
F

h3
. (5)
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Making use of formula (8.1.24), with g = 2, the foregoing result may be written as

χ0 =
3
2

nµ∗2/εF . (6)

For comparison, the corresponding high-temperature result is given by equation (3.9.26),
with g = 2 and J = 1

2 :

χ∞ = nµ∗2/kT . (7)

We note that χ0/χ∞ =O(kT/εF ).
To obtain an expression for χ that holds for all T , we proceed as follows. Denoting the

number of particles with momentum p and magnetic moment parallel (or antiparallel) to
the field by the symbol n+p (or n−p ), the total energy of the gas can be written as

En =
∑

p

[(
p2

2m
−µ∗B

)
n+p +

(
p2

2m
+µ∗B

)
n−p

]

=

∑
p

(n+p +n−p )
p2

2m
−µ∗B(N+−N−), (8)

where N+ and N− denote the total number of particles in the two groups, respectively. The
partition function of the system is then given by

Q(N)=
∑

{n+p },{n
−
p }

′

exp(−βEn), (9)

where the primed summation is subject to the conditions

n+p ,n−p = 0 or 1, (10)

and ∑
p

n+p +
∑

p

n−p =N++N− =N . (11)

To evaluate the sum in (9), we first fix an arbitrary value of the number N+ (which auto-
matically fixes the value of N− as well) and sum over all n+p and n−p that conform to the
fixed values of the numbers N+ and N− as well as to condition (10). Next, we sum over all
possible values of N+, namely from N+ = 0 to N+ =N . We thus have

Q(N)=
N∑

N+=0

eβµ
∗B(2N+−N)


∑
{n+p }

′′

exp

−β∑
p

p2

2m
n+p

∑
{n−p }

′′′

exp

−β∑
p

p2

2m
n−p



 ; (12)
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here, the summation
∑
′′ is subject to the restriction

∑
p n+p =N+, while

∑
′′′ is subject to

the restriction
∑

p n−p =N −N+.
Now, let Q0(N ) denote the partition function of an ideal Fermi gas of N “spinless”

particles of mass m; then, obviously,

Q0(N )=
∑
{np}

′

exp

−β∑
p

p2

2m
np

≡ exp{−βA0(N )}, (13)

where A0(N ) is the free energy of this fictitious system. Equation (12) can then be
written as

Q(N)= e−βµ
∗BN

N∑
N+=0

[e2βµ∗BN+Q0(N
+)Q0(N −N+)], (14)

which gives

1
N

lnQ(N)=−βµ∗B+
1
N

ln
N∑

N+=0

[exp{2βµ∗BN+−βA0(N
+)−βA0(N −N+)}]. (15)

As before, the logarithm of the sum
∑

N+ may be replaced by the logarithm of the largest
term in the sum; the error committed in doing so would be negligible in comparison with
the term retained. Now, the value N+, of N+, which corresponds to the largest term in
the sum, can be ascertained by setting the differential coefficient of the general term, with
respect to N+, equal to zero; this gives

2µ∗B−
[
∂A0(N+)
∂N+

]
N+=N+

−

[
∂A0(N −N+)

∂N+

]
N+=N+

= 0,

that is

µ0(N+)−µ0(N −N+)= 2µ∗B, (16)

where µ0(N ) is the chemical potential of the fictitious system ofN “spinless” fermions.
The foregoing equation contains the general solution being sought. To obtain an

explicit expression for χ , we introduce a dimensionless parameter r, defined by

M = µ∗(N+−N−)= µ∗(2N+−N)= µ∗Nr (0≤ r ≤ 1); (17)

equation (16) then becomes

µ0

(
1+ r

2
N
)
−µ0

(
1− r

2
N
)
= 2µ∗B. (18)

If the magnetic field B vanishes so does r, which corresponds to a completely random ori-
entation of the elementary moments. For small B, r would also be small; so, we may carry



242 Chapter 8 . Ideal Fermi Systems

out a Taylor expansion of the left side of (18) about r = 0. Retaining only the first term of
the expansion, we obtain

r '
2µ∗B

∂µ0(xN)
∂x

∣∣
x=1/2

. (19)

The low-field susceptibility (per unit volume) of the system is then given by

χ =
M
VB
=
µ∗Nr

VB
=

2nµ∗2

∂µ0(xN)
∂x

∣∣
x=1/2

, (20)

which is the desired result valid for all T .
For T→ 0, the chemical potential of the fictitious system can be obtained from

equation (8.1.34), with g = 1:

µ0(xN)=
(

3xN
4πV

)2/3 h2

2m
,

which gives

∂µ0(xN)
∂x

∣∣∣∣
x=1/2

=
24/3

3

(
3N

4πV

)2/3 h2

2m
. (21)

On the other hand, the Fermi energy of the actual system is given by the same equa-
tion (8.1.34), with g = 2:

εF =

(
3N

8πV

)2/3 h2

2m
. (22)

Making use of equations (21) and (22), we obtain from (20)

χ0 =
2nµ∗2

4
3εF

=
3
2

nµ∗2/εF , (23)

in complete agreement with our earlier result (6). For finite but low temperatures, one has
to use equation (8.1.35) instead of (8.1.34). The final result turns out to be

χ ' χ0

[
1−

π2

12

(
kT
εF

)2
]

. (24)

On the other hand, for T→∞, the chemical potential of the fictitious system follows
directly from equation (8.1.4), with g = 1 and f3/2(z)' z, with the result

µ0(xN)= kT ln(xNλ3/V ),
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which gives

∂µ0(xN)
∂x

∣∣∣∣
x=1/2

= 2kT . (25)

Equation (20) then gives

χ∞ = nµ∗2/kT , (26)

in complete agreement with our earlier result (7). For large but finite temperatures, one
has to take f3/2(z)' z− (z2/23/2). The final result then turns out to be

χ ' χ∞

(
1−

nλ3

25/2

)
; (27)

the correction term here is proportional to (TF/T)3/2 and tends to zero as T→∞.

8.2.B Landau diamagnetism

We now study the magnetism arising from the quantization of the orbital motion of
(charged) particles in the presence of an external magnetic field. In a uniform field of
intensity B, directed along the z-axis, a charged particle would follow a helical path whose
axis is parallel to the z-axis and whose projection on the (x,y)-plane is a circle. Motion
along the z-direction has a constant linear velocity uz, while that in the (x,y)-plane has a
constant angular velocity eB/mc; the latter arises from the Lorentz force, e(u×B)/c, expe-
rienced by the particle. Quantum-mechanically, the energy associated with the circular
motion is quantized in units of e~B/mc. The energy associated with the linear motion
along the z-axis is also quantized but, in view of the smallness of the energy intervals, this
may be taken as a continuous variable. We thus have for the total energy of the particle2

ε =
e~B
mc

(
j+

1
2

)
+

p2
z

2m
( j = 0,1,2, . . .). (28)

Now, these quantized energy levels are degenerate because they result from a “coalescing
together” of an almost continuous set of zero-field levels. A little reflection shows that all
those levels for which the value of the quantity (p2

x+p2
y)/2m lay between e~Bj/mc and

e~B( j+ 1)/mc now “coalesce together” into a single level characterized by the quantum
number j. The number of these levels is given by

1

h2

∫
dx dy dpxdpy =

LxLy

h2
π

[
2m

e~B
mc
{( j+ 1)− j}

]
= LxLy

eB
hc

, (29)

2See, for instance, Goldman et al. (1960); Problem 6.3.
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FIGURE 8.3 The single-particle energy levels, for a two-dimensional motion, in the absence of an external magnetic
field (B= 0) and in the presence of an external magnetic field (B> 0).

which is independent of j. The multiplicity factor (29) is a quantum-mechanical measure
of the freedom available to the particle for the center of its orbit to be “located” anywhere
in the total area LxLy of the physical space. Figure 8.3 depicts the manner in which the
zero-field energy levels of the particle group themselves into a spectrum of oscillator-like
levels on the application of the external magnetic field.

The grand partition function of the gas is given by the standard formula

lnQ=
∑
ε

ln(1+ ze−βε), (30)

where the summation has to be carried over all single-particle states in the system. Sub-
stituting (28) for ε, making use of the multiplicity factor (29) and replacing the summation
over pz by an integration, we get

lnQ=

∞∫
−∞

Lzdpz

h

 ∞∑
j=0

(
LxLy

eB
hc

)
ln
{

1+ ze−βe~B[j+(1/2)]/mc−βp2
z/2m

} . (31)

At high temperatures, z� 1; so, the system is effectively Boltzmannian. The grand parti-
tion function then reduces to

lnQ=
zVeB

h2c

∞∫
−∞

e−βp2
z/2mdpz

∞∑
j=0

e−βe~B[j+(1/2)]/mc

=
zVeB

h2c

(
2πm
β

)1/2{
2sinh

(
βe~B
2mc

)}−1

. (32)

The equilibrium number of particles N and the magnetic moment M of the gas are then
given by
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N =
(

z
∂

∂z
lnQ

)
B,V ,T

, (33)

and

M =
〈
−
∂H
∂B

〉
=

1
β

(
∂

∂B
lnQ

)
z,V ,T

, (34)

where H is the Hamiltonian of the system; compare with equation (3.9.4). We thus obtain

N =
zV

λ3

x
sinhx

, (35)

and

M =
zV

λ3
µeff

{
1

sinhx
−

x coshx

sinh2 x

}
, (36)

where λ{= h/(2πmkT)1/2
} is the mean thermal wavelength of the particles, while

x = βµeffB
(
µeff = eh/4πmc

)
. (37)

Clearly, if e and m are the electronic charge and the electronic mass, thenµeff is the familiar
Bohr magneton µB. Combining (35) and (36), we get

M =−NµeffL(x), (38)

where L(x) is the Langevin function:

L(x)= cothx−
1
x

. (39)

This result is very similar to the one obtained in the Langevin theory of paramagnetism;
see Section 3.9. The presence of the negative sign, however, means that the effect obtained
in the present case is diamagnetic in nature. We also note that this effect is a direct con-
sequence of quantization; it vanishes if we let h→ 0. This is in complete accord with the
Bohr–van Leeuwen theorem, according to which the phenomenon of diamagnetism does
not arise in classical physics; see Problem 3.43.

If the field intensity B and the temperature T are such that µeffB� kT , then the
foregoing results become

N '
zV

λ3
(40)

and

M '−Nµ2
effB/3kT . (41)
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Equation (40) is in agreement with the zero-field formula z ' nλ3, while (41) leads to the
diamagnetic counterpart of the Curie law:

χ∞ =
M
VB
=−nµ2

eff/3kT ; (42)

see equation (3.9.12). It should be noted here that the diamagnetic character of this
phenomenon is independent of the sign of the electric charge on the particle. For an elec-
tron gas, in particular, the net susceptibility at high temperatures is given by the sum of
expression (7), with µ∗ replaced by µB, and expression (42):

χ∞ =
n
(
µ2

B−
1
3µ
′2
B

)
kT

, (43)

where µ′B = eh/4πm′c, m′ being the effective mass of the electron in the given system.
We now look at this problem at all temperatures, though we will continue to assume

the magnetic field to be weak, so that µeffB� kT . In view of the latter, the summation in
(31) may be handled with the help of the Euler summation formula,

∞∑
j=0

f
(

j+
1
2

)
'

∞∫
0

f (x)dx+
1

24
f ′(0), (44)

with the result

lnQ'
VeB

h2c

 ∞∫
0

dx

∞∫
−∞

dpz ln
{

1+ ze−β(2µeffBx+p2
z/2m)

}

−
1

12
βµeffB

∞∫
−∞

dpz

z−1eβ(p
2
z/2m)+ 1

 . (45)

The first part here is independent of B, which can be seen by changing the variable from x
to x′ = Bx. The second part, with the substitution βp2

z/2m= y, becomes

−
πV (2m)3/2

6h3
(µeffB)

2β1/2

∞∫
0

y−1/2dy

z−1ey + 1
. (46)

The low-field susceptibility (per unit volume) of the gas is then given by

χ =
M
VB
=

1
βVB

(
∂

∂B
lnQ

)
z,V ,T

=−
(2πm)3/2µ2

eff

3h3β1/2
f1/2(z), (47)
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which is the desired result. Note that, as before, the effect is diamagnetic in character —
irrespective of the sign of the charge on the particle.

For z� 1, f1/2(z)' z ' nλ3; we then recover our previous result (42). For z� 1 (which
corresponds to T � TF ), f1/2(z)≈ (2/π1/2)(lnz)1/2; we then get

χ0 ≈−
2π(2m)3/2µ2

effε
1/2
F

3h3
=−

1
2

nµ2
eff/εF ; (48)

here, use has also been made of the fact that (β−1 lnz)' εF . Note that, in magnitude, this
result is precisely one-third of the corresponding paramagnetic result (6), provided that we
take the µ∗ of that expression to be equal to the µeff of this one.

8.3 The electron gas in metals
One physical system where the application of Fermi–Dirac statistics helped remove a
number of inconsistencies and discrepancies is that of conduction electrons in metals.
Historically, the electron theory of metals was developed by Drude (1900) and Lorentz
(1904–1905), who applied the statistical mechanics of Maxwell and Boltzmann to the
electron gas and derived theoretical results for the various properties of metals. The
Drude–Lorentz model did provide a reasonable theoretical basis for a partial understand-
ing of the physical behavior of metals; however, it encountered a number of serious
problems of a qualitative as well as quantitative nature. For instance, the observed spe-
cific heat of metals appeared to be almost completely accountable by the lattice vibrations
alone and practically no contribution seemed to be coming from the electron gas. The
theory, however, demanded that, on the basis of the equipartition theorem, each electron
in the gas should possess a mean thermal energy 3

2 kT and hence make a contribution
of 3

2 k to the specific heat of the metal. Similarly, one expected the electron gas to exhibit
the phenomenon of paramagnetism arising from the intrinsic magnetic momentµB of the
electrons. According to the classical theory, the paramagnetic susceptibility would be given
by (8.2.7), with µ∗ replaced by µB. Instead, one found that the susceptibility of a normal
nonferromagnetic metal was not only independent of temperature but had a magnitude
which, at room temperatures, was hardly 1 percent of the expected value.

The Drude–Lorentz theory was also applied to study transport properties of met-
als, such as the thermal conductivity K and the electrical conductivity σ . While the
results for the individual conductivities were not very encouraging, their ratio did con-
form to the empirical law of Wiedemann and Franz (1853), as formulated by Lorenz
(1872), namely that the quantity K/σT was a (universal) constant. The theoretical value
of this quantity, which is generally known as the Lorenz number, turned out to be
3(k/e)2 ' 2.48× 10−13 e.s.u./deg2; the corresponding experimental values for most alkali
and alkaline–earth metals were, however, found to be scattered around a mean value of
2.72× 10−13 e.s.u./deg2. A still more uncomfortable feature of the classical theory was the
uncertainty in assigning an appropriate value to the mean free path of the electrons in
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a given metal and in ascribing to it an appropriate temperature dependence. For these
reasons, the problem of the transport properties of metals also remained in a rather
unsatisfactory state until the correct lead was provided by Sommerfeld (1928).

The most significant change introduced by Sommerfeld was the replacement of
Maxwell–Boltzmann statistics by Fermi–Dirac statistics for describing the electron gas in
a metal. With this single stroke of genius, he was able to set most of the things right. To
see how it worked, let us first estimate the Fermi energy εF of the electron gas in a typical
metal, say sodium. Referring to equation (8.1.24), with g = 2,

εF =

(
3N

8πV

)2/3 h2

2m′
, (1)

where m′ is the effective mass of an electron in the gas.3 The electron density N/V , in the
case of a cubic lattice, may be written as

N
V
=

nena

a3
, (2)

where ne is the number of conduction electrons per atom, na the number of atoms per
unit cell and a the lattice constant (or the cell length).4 For sodium, ne = 1, na = 2, and a=
4.29 Å. Substituting these numbers into (2) and writing m′ = 0.98me, we obtain from (1)

(εF )Na = 5.03× 10−12 erg = 3.14 eV. (3)

Accordingly, for the Fermi temperature of the gas is

(TF )Na = (1.16× 104)× εF ( in eV)

= 3.64× 104K, (4)

which is considerably larger than the room temperature T (∼ 3× 102 K). The ratio T/TF

being of the order of 1 percent, the conduction electrons in sodium constitute a highly
degenerate Fermi system. This statement, in fact, applies to all metals because their Fermi
temperatures are generally of order 104

− 105 K.
Now, the very fact that the electron gas in metals is a highly degenerate Fermi system

is sufficient to explain away some of the basic difficulties of the Drude–Lorentz theory. For
instance, the specific heat of this gas would no longer be given by the classical formula,

3To justify the assumption that the conduction electrons in a metal may be treated as “free” electrons, it is necessary
to ascribe to them an effective mass m′ 6=m. This is an indirect way of accounting for the fact that the electrons in a metal
are not really free; the ratio m′/m accordingly depends on the structural details of the metal and, therefore, varies from
metal to metal. In sodium, m′/m' 0.98.

4Another way of expressing the electron density is to write N/V = f ρ/M , where f is the valency of the metal, ρ its
mass density, and M the mass of an atom (ρ/M , thus, being the number density of the atoms).
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CV =
3
2 Nk, but rather by equation (8.1.39), namely

CV =
π2

2
Nk(kT/εF ); (5)

obviously, the new result is much smaller in value because, at ordinary temperatures,
the ratio (kT/εF )≡ (T/TF )=O(10−2). It is then hardly surprising that, at ordinary tem-
peratures, the specific heat of metals is almost completely determined by the vibrational
modes of the lattice and very little contribution comes from the conduction electrons. Of
course, as temperature decreases, the specific heat due to lattice vibrations also decreases
and finally becomes considerably smaller than the classical value; see Section 7.4, espe-
cially Figure 7.14. A stage comes when the two contributions, both nonclassical, become
comparable in value. Ultimately, at very low temperatures, the specific heat due to lattice
vibrations, being proportional to T 3, becomes even smaller than the electronic specific
heat, which is proportional to T 1. In general, we may write, for the low-temperature
specific heat of a metal,

CV = γT + δT 3, (6)

where the coefficient γ is given by equation (5) or, more generally, can be shown to be
proportional to the density of states at the Fermi energy (see Problem 8.13), while the coef-
ficient δ is given by equation (7.4.23). An experimental determination of the specific heat
of metals at low temperatures is, therefore, expected not only to verify the theoretical result
based on quantum statistics but also to evaluate some of the parameters of the problem.

Such determinations have been made, among others, by Corak et al. (1955) who worked
with copper, silver and, gold in the temperature range 1 to 5 K. Their results for copper are
shown in Figure 8.4. The very fact that the (CV /T) versus T 2 plot is well approximated by a
straight line vindicates the theoretical formula (6). Furthermore, the slope of this line gives
the value of the coefficient δ, from which one can extract the Debye temperature 2D of
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FIGURE 8.4 The observed specific heat of copper at low temperatures (after Corak et al., 1955).
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the metal. One thus gets for copper: 2D = (343.8± 0.5)K, which compares favorably with
Leighton’s theoretical estimate of 345 K (based on the elastic constants of the metal). The
intercept on the (CV /T)-axis yields the value of the coefficient γ , namely (0.688± 0.002)
millijoule mole−1 deg−2, which agrees favorably with Jones’ estimate of 0.69 millijoule
mole−1 deg−2 (based on a density-of-states calculation).

The general pattern of the magnetic behavior of the electron gas in nonferromagnetic
metals can be understood likewise. In view of the highly degenerate nature of the gas, the
magnetic susceptibility χ is given by the Pauli result (8.2.6) plus the Landau result (8.2.48),
and not by the classical result (8.2.7). In complete agreement with the observation, the
new result is (i) independent of temperature and (ii) considerably smaller in magnitude
than the classical one.

As regards transport properties K and σ , the new theory again led to the Wiedemann–
Franz law ; the Lorenz number, however, became (π2/3)(k/e)2, instead of the classical
3(k/e)2. The resulting theoretical value, namely 2.71× 10−13 e.s.u./deg2, turned out to
be much closer to the experimental mean value quoted earlier. Of course, the situa-
tion regarding individual conductivities and the mean free path of the electrons did not
improve until Bloch (1928) developed a theory that took into account interactions among
the electron gas and the ion system in the metal. The theory of metals has continued
to become more and more sophisticated; the important point to note here is that this
development has all along been governed by the new statistics!

Before leaving this topic, we would like to give a brief account of the phenomena of
thermionic and photoelectric emission of electrons from metals. In view of the fact that
electronic emission does not take place spontaneously, we infer that the electrons inside
a metal find themselves caught in some sort of a “potential well” created by the ions. The
detailed features of the potential energy of an electron in this well must depend on the
structure of the given metal. For a study of electronic emission, however, we need not
worry about these details and may assume instead that the potential energy of an elec-
tron stays constant (at a negative value,−W , say) throughout the interior of the metal and
changes discontinuously to zero at the surface. Thus, while inside the metal, the electrons
move about freely and independently of one another; however, as soon as any one of them
approaches the surface of the metal and tries to escape, it encounters a potential barrier
of height W . Accordingly, only those electrons whose kinetic energy (associated with the
motion perpendicular to the surface) is greater than W can expect to escape through this
barrier. At ordinary temperatures, especially in the absence of any external stimulus, such
electrons are too few in any given metal, with the result that there is practically no spon-
taneous emission from metals. At high temperatures, and more so if there is an external
stimulus present, the population of such electrons in a given metal could become large
enough to yield a sizeable emission. We then speak of phenomena such as thermionic effect
and photoelectric effect.

Strictly speaking, these phenomena are not equilibrium phenomena because electrons
are flowing out steadily through the surface of the metal. However, if the number of elec-
trons lost in a given interval of time is small in comparison with their total population in
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the metal, then the magnitude of the emission current may be calculated on the assump-
tion that the gas inside continues to be in a state of quasistatic thermal equilibrium. The
mathematical procedure for this calculation is very much the same as the one followed in
Section 6.4 (for determining the rate of effusion R of the particles of a gas through an open-
ing in the walls of the container). There is one difference, however; whereas in the case of
effusion any particle that reached the opening with uz > 0 could escape unquestioned,
here we must have uz > (2W/m)1/2, so that the particle in question could successfully
cross over the potential barrier at the surface. Moreover, even if this condition is satisfied,
there is no guarantee that the particle will really escape because the possibility of an inward
reflection cannot be ruled out. In the following discussion, we shall disregard this possi-
bility; however, if one is looking for a numerical comparison of theory with experiment,
the results derived here must be multiplied by a factor (1− r), where r is the reflection
coefficient of the surface.

8.3.A Thermionic emission (the Richardson effect)

The number of electrons emitted per unit area of the metal surface per unit time is given
by

R=

∞∫
pz=(2mW )1/2

∞∫
px=−∞

∞∫
py=−∞

{
2dpxdpydpz

h3

1

e(ε−µ)/kT + 1

}
uz; (7)

compare with the corresponding expression in Section 6.4. Integration over the variables
px and py may be carried out by changing over to polar coordinates (p′,φ), with the result

R=
2

h3

∞∫
pz=(2mW )1/2

pz

m
dpz

∞∫
p′=0

2πp′dp′

exp{[(p′2/2m)+ (p2
z/2m)−µ]/kT}+ 1

=
4πkT

h3

∞∫
pz=(2mW )1/2

pzdpz ln[1+ exp {(µ−p2
z/2m)/kT}]

=
4πmkT

h3

∞∫
εz=W

dεz ln[1+ e(µ−εz)/kT ]. (8)

It so happens that the exponential term inside the logarithm, at all temperatures of inter-
est, is much smaller than unity; see Note 5. We may, therefore, write ln(1+ x)' x, with the
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result

R=
4πmkT

h3

∞∫
εz=W

dεze(µ−εz)/kT

=
4πmk2T 2

h3
e(µ−W )/kT . (9)

The thermionic current density is then given by

J = eR=
4πmek2

h3
T 2e(µ−W )/kT . (10)

It is only now that the difference between the classical statistics and the Fermi statistics
really shows up! In the case of classical statistics, the fugacity of the gas is given by (see
equation (8.1.4), with f3/2(z)' z)

z ≡ eµ/kT
=

nλ3

g
=

nh3

2(2πmkT)3/2
; (11)

accordingly,

Jclass = ne
(

k
2πm

)1/2

T 1/2e−φ/kT (φ =W ). (12)

In the case of Fermi statistics, the chemical potential of the (highly degenerate) electron
gas is practically independent of temperature and is very nearly equal to the Fermi energy
of the gas (µ' µ0 ≡ εF ); accordingly,

JF.D. =
4πmek2

h3
T 2e−φ/kT (φ =W − εF ). (13)

The quantity φ is generally referred to as the work function of the metal. According to (12),
φ is exactly equal to the height of the surface barrier; according to (13), it is equal to the
height of the barrier over and above the Fermi level (see Figure 8.5).

�

Outside

W

Outside

�0

Fermi level

Fermi sea

FIGURE 8.5 The work function φ of a metal represents the height of the surface barrier over and above the
Fermi level.
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The theoretical results embodied in equations (12) and (13) differ in certain important
respects. The most striking difference seems to be in regard to the temperature depen-
dence of the thermionic current density J . However, the major dependence on T comes
through the factor exp(−φ/kT)— so much so that whether we plot ln( J/T 1/2) against (1/T)
or ln( J/T 2) against (1/T) we obtain, in each case, a fairly good straight-line fit. Thus, from
the point of view of the temperature dependence of J , a choice between formulae (12) and
(13) is rather hard to make. However, the slope of the experimental line should give us
directly the value of W if formula (12) applies or of (W − εF ) if formula (13) applies!

Now, the value of W can be determined independently, for instance, by studying the
refractive index of a given metal for de Broglie waves associated with an electron beam
impinging on the metal. For a beam of electrons whose initial kinetic energy is E, we have

λout =
h

√
(2mE)

and λin =
h

√
[2m(E+W )]

, (14)

so that the refractive index of the metal is given by

n=
λout

λin
=

(
E+W

E

)1/2

. (15)

By studying electron diffraction for different values of E, one can derive the relevant value
of W . In this manner, Davisson and Germer (1927) derived the value of W for a number of
metals. For instance, they obtained for tungsten: W ' 13.5eV. The experimental results on
thermionic emission from tungsten are shown in Figure 8.6. The value of φ resulting from
the slope of the experimental line was about 4.5 eV. The large difference between these
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FIGURE 8.6 Thermionic current from tungsten as a function of the temperature of the metal. The continuous line
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2 while the broken line corresponds to r = 0,r being the reflection coefficient of the surface.
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two values clearly shows that the classical formula (12) does not apply. That the quantum-
statistical formula (13) applies is shown by the fact that the Fermi energy of tungsten is
very nearly 9eV; so, the value 4.5eV for the work function of tungsten is correctly given
by the difference between the depth W of the potential well and the Fermi energy εF . To
quote another example, the experimental value of the work function for nickel was found
to be about 5.0eV, while the theoretical estimate for its Fermi energy turns out to be about
11.8eV. Accordingly, the depth of the potential well in the case of nickel should be about
16.8 eV. The experimental value of W , obtained by studying electron diffraction in nickel,
is indeed (17± 1)eV.5

The second point of difference between formulae (12) and (13) relates to the actual
value of the current obtained. In this respect, the classical formula turns out to be a com-
plete failure while the quantum-statistical formula fares reasonably well. The constant
factor in the latter formula is

4πmek2

h3
= 120.4 amp cm−2 deg−2; (16)

of course, this has yet to be multiplied by the transmission coefficient (1− r). The corre-
sponding experimental number, for most metals with clean surfaces, turns out to be in the
range 60 to 120 amp cm−2 deg−2.

Finally, we examine the influence of a moderately strong electric field on the thermionic
emission from a metal — the so-called Schottky effect. Denoting the strength of the electric
field by F and assuming the field to be uniform and directed perpendicular to the metal
surface, the difference1 between the potential energy of an electron at a distance x above
the surface and of one inside the metal is given by

1(x)=W − eFx−
e2

4x
(x > 0), (17)

where the first term arises from the potential well of the metal, the second from the (attrac-
tive) field present, and the third from the attraction between the departing electron and the
“image” induced in the metal; see Figure 8.7. The largest value of the function1(x) occurs
at x = (e/4F)1/2, so that

1max =W − e3/2F1/2; (18)

thus, the field has effectively reduced the height of the potential barrier by an amount
e3/2F1/2. A corresponding reduction should take place in the work function as well.

5In light of the numbers quoted here, one can readily see that the quantity e(µ−εz)/kT in equation (8), being at most
equal to e(µ0−W )/kT

≡ e−φ/kT , is, at all temperatures of interest, much smaller than unity. This means that we are oper-
ating here in the (Maxwellian) tail of the Fermi–Dirac distribution and hence the approximation made in going from
equation (8) to equation (9) was justified.
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FIGURE 8.7 A schematic diagram to illustrate the Schottky effect.

Accordingly, the thermionic current density in the presence of the field F would be
higher than the one in the absence of the field:

JF = J0 exp(e3/2F1/2/kT). (19)

A plot of ln( JF/J0) against (F1/2/T) should, therefore, be a straight line, with slope e3/2/k.
Working along these lines, De Bruyne (1928) obtained for the electronic charge a value of
4.84× 10−10 e.s.u., which is remarkably close to the actual value of e.

The theory of the Schottky effect, as outlined here, holds for field strengths up to about
106 volts/cm. For fields stronger than that, one obtains the so-called cold emission, which
means that the electric field is now strong enough to make the potential barrier practically
ineffective; for details, see Fowler and Nordheim (1928).

8.3.B Photoelectric emission (the Hallwachs effect)

The physical situation in the case of photoelectric emission is different from that in the
case of thermionic emission, in that there exists now an external agency, the photon in the
incoming beam of light, that helps an electron inside the metal in overcoming the potential
barrier at the surface. The condition to be satisfied by the momentum component pz of an
electron in order that it could escape from the metal now becomes

(p2
z/2m)+hν >W , (20)6

where ν is the frequency of the incoming light (assumed monochromatic). Proceeding in
the same manner as in the case of thermionic emission, we obtain, instead of (8),

R=
4πmkT

h3

∞∫
εz=W−hν

dεz ln[1+ e(µ−εz)/kT ]. (21)

We cannot, in general, approximate this integral the way we did there; so the integrand
here stays as it is. It is advisable, however, to change over to a new variable x, defined by

x = (εz−W +hν)/kT , (22)

6In writing this condition, we have tacitly assumed that the momentum components px and py of the electron remain
unchanged on the absorption of a photon.
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whereby equation (21) becomes

R=
4πm(kT)2

h3

∞∫
0

dx ln
[

1+ exp
{

h(ν− ν0)

kT
− x

}]
, (23)

where

hν0 =W −µ'W − εF = φ. (24)

The quantity φ will be recognized as the (thermionic) work function of the metal; accord-
ingly, the characteristic frequency ν0(= φ/h) may be referred to as the threshold frequency
for (photoelectric) emission from the metal concerned.

The current density of photoelectric emission is thus given by

J =
4πmek2

h3
T 2

∞∫
0

dx ln(1+ eδ−x), (25)

where

δ = h(ν− ν0)/kT . (26)

Integrating by parts, we find that

∞∫
0

dx ln(1+ eδ−x)=

∞∫
0

xdx
ex−δ + 1

≡ f2(e
δ); (27)

see equation (8.1.6). Accordingly,

J =
4πmek2

h3
T 2f2(e

δ). (28)

For h(ν− ν0)� kT , eδ � 1 and the function f2(eδ)≈ δ2/2; see Sommerfeld’s lemma (E.17)
in Appendix E. Equation (28) then becomes

J ≈
2πme

h
(ν− ν0)

2, (29)

which is completely independent of T ; thus, when the energy of the light quantum is much
greater than the work function of the metal, the temperature of the electron gas becomes
a “dead” parameter of the problem. At the other extreme, when ν < ν0 and h|ν− ν0| � kT ,
then eδ � 1 and the function f2(eδ)≈ eδ . Equation (28) then becomes

J ≈
4πmek2

h3
T 2e(hν−φ)/kT , (30)
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which is just the thermionic current density (13), enhanced by the photon factor
exp(hν/kT); in other words, the situation now is very much the same as in the case of
thermionic emission, except for a diminished work function φ′(= φ−hν). At the threshold
frequency (ν = ν0), δ = 0 and the function f2(eδ)= f2(1)= π2/12; see equation (E.16), with
j = 1. Equation (28) then gives

J0 =
π3mek2

3h3
T 2. (31)

Figure 8.8 shows a plot of the experimental results for photoelectric emission from
palladium (φ = 4.97eV). The agreement with theory is excellent. It will be noted that the
plot includes some observations with ν < ν0. The fact that we obtain a finite photocur-
rent even for frequencies less than the so-called threshold frequency is fully consistent
with the model considered here. The reason for this lies in the fact that, at any finite tem-
perature T , there exists in the system a reasonable fraction of electrons whose energy ε
exceeds the Fermi energy εF by amounts O(kT). Therefore, if the light quantum hν gets
absorbed by one of these electrons, then condition (20) for photoemission can be satisfied
even if hν < (W − εF )= hν0. Of course, the energy difference h(ν0− ν) must not be much
more than a few times kT , for otherwise the availability of the right kind of electrons will be
extremely low. We, therefore, do expect a finite photocurrent for radiation with frequencies
less than the threshold frequency ν0, provided that h(ν0− ν)=O(kT).

The plot shown in Figure 8.8, namely ln( J/T 2) versus δ, is generally known as the
“Fowler plot.” Fitting the observed photoelectric data to this plot, one can obtain the
characteristic frequency ν0 and hence the work function φ of the given metal. We have
previously seen that the work function of a metal can be derived from thermionic data as
well. It is gratifying to note that there is complete agreement between the two sets of results
obtained for the work function of the various metals.
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FIGURE 8.8 Photoelectric current from palladium as a function of the quantity h(ν− ν0)/kT . The plot includes
data taken at several temperatures T for different frequencies ν.
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8.4 Ultracold atomic Fermi gases
After the demonstration of Bose–Einstein condensation in ultracold atomic gases in 1995
(Section 7.2), researchers began using laser cooling and magnetic traps to cool gases of
fermions to create degenerate Fermi gases of atoms. DeMarco and Jin (1999) created the
first degenerate atomic Fermi gas by cooling a dilute vapor of 40K in an atomic trap into
the nanokelvin temperature range. The density of states in a harmonic trap is a quadratic
function of the energy:

a(ε)=
ε2

2(~ω0)
3

, (1)

where ω0 = (ω1ω2ω3)
1/3 is the geometric mean of the trap frequencies in the cartesian

directions; see equation (7.2.3). The chemical potential and the number of fermions in
the trap are related by

N(µ,T)=
1

2(~ω0)
3

∞∫
0

ε2dε

eβ(ε−µ)+ 1
, (2)

which gives for the Fermi energy

εF = ~ω0(6N)1/3 , (3)

a Fermi temperature TF = εF/k = 870nK for 106 atoms in a 100Hz trap, and a ground-state
energy U0 =

3
4 NεF . The internal energy of the trapped gas can be obtained by time-of-

flight measurements as described in Section 7.2 and can be directly compared with the
theoretical result

U
U0
= 4

(
T

TF

)4 ∞∫
0

x3dx
exe−βµ+ 1

, (4)

where the temperature and the chemical potential are related by

3
(

T
TF

)3 ∞∫
0

x2dx
exe−βµ+ 1

= 1; (5)

see Figures 8.9 and 8.10. At low enough temperatures, attractive interactions lead to BEC-
BCS condensation, as discussed in Section 11.9.
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FIGURE 8.9 Scaled internal energy (U/U0) versus scaled temperature (T/TF ) for an ideal Fermi gas in a harmonic
trap from equations (4) and (5). The dotted line is the corresponding classical result U(T)= 3NkT .
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scaled temperature (T/TF ) for ultracold 40K atoms in a harmonic trap compared to the theoretical Fermi gas value
from equations (4) and (5). This shows the development of the Fermi degeneracy of the gas at low temperatures;
from Jin (2002). Figure courtesy of the IOP. Reprinted with permission; copyright ©2002, American Institute of
Physics.

8.5 Statistical equilibrium of white dwarf stars
Historically, the first application of Fermi statistics appeared in the field of astrophysics
(Fowler, 1926). It related to the study of thermodynamic equilibrium of white dwarf stars —
the small-sized stars that are abnormally faint for their (white) color. The general pattern
of color–brightness relationship among stars is such that, by and large, a star with red color
is expected to be a “dull” star, while one with white color is expected to be a “brilliant” star.
However, white dwarf stars constitute an exception to this rule. The reason for this lies in
the fact that these stars are relatively old whose hydrogen content is more or less used up,
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with the result that the thermonuclear reactions in them are now proceeding at a rather
low pace, thus making these stars a lot less bright than one would expect on the basis of
their color. The material content of white dwarf stars, at the present stage of their career, is
mostly helium. And whatever little brightness they presently have derives mostly from the
gravitational energy released as a result of a slow contraction of these stars — a mechanism
first proposed by Kelvin, in 1861, as a “possible” source of energy for all stars!

A typical, though somewhat idealized, model of a white dwarf star consists of a mass
M(∼ 1033g) of helium, packed into a ball of mass density ρ(∼ 107gcm−3), at a central
temperature T(∼ 107K). Now, a temperature of the order of 107K corresponds to a mean
thermal energy per particle of the order of 103 eV, which is much greater than the energy
required for ionizing a helium atom. Thus, practically the whole of the helium in the star
exists in a state of complete ionization. The microscopic constituents of the star may,
therefore, be taken as N electrons (each of mass m) and 1

2 N helium nuclei (each of mass
' 4mp). The mass of the star is then given by

M 'N(m+ 2mp)' 2Nmp (1)

and, hence, the electron density by

n=
N
V
'

M/2mp

M/ρ
=

ρ

2mp
. (2)

A typical value of the electron density in white dwarf stars would, therefore, be O(1030)

electrons per cm3. We thus obtain for the Fermi momentum of the electron gas [see
equation (8.1.23), with g = 2]

pF =

(
3n
8π

)1/3

h=O(10−17)gcmsec−1, (3)

which is rather comparable with the characteristic momentum mc of an electron. The
Fermi energy εF of the electron gas will, therefore, be comparable with the rest energy mc2

of an electron, that is, εF =O(106)eV and hence the Fermi temperature TF =O(1010)K. In
view of these estimates, we conclude that (i) the dynamics of the electrons in this problem
is relativistic, and (ii) the electron gas, though at a temperature large in comparison with
terrestrial standards, is, statistically speaking, in a state of (almost) complete degeneracy :
(T/TF )=O(10−3). The second point was fully appreciated, and duly taken into account,
by Fowler himself; the first one was taken care of later, by Anderson (1928) and by Stoner
(1929, 1930). The problem, in full generality, was attacked by Chandrasekhar (1931–1935)
to whom the final picture of the theory of white dwarf stars is chiefly due; for details, see
Chandrasekhar (1939), where a complete bibliography of the subject is given.

Now, the helium nuclei do not contribute as significantly to the dynamics of the prob-
lem as do the electrons; in the first approximation, therefore, we may neglect the presence
of the nuclei in the system. For a similar reason, we may neglect the effect of the radia-
tion as well. We may thus consider the electron gas alone. Further, for simplicity, we may
assume that the electron gas is uniformly distributed over the body of the star; we are thus
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ignoring the spatial variation of the various parameters of the problem — a variation that
is physically essential for the very stability of the star! The contention here is that, in spite
of neglecting the spatial variation of the parameters involved, we expect that the results
obtained here will be correct, at least in a qualitative sense.

We study the ground-state properties of a degenerate Fermi gas composed of N
relativistic electrons (g = 2). First of all, we have

N =
8πV

h3

pF∫
0

p2dp=
8πV

3h3
p3

F , (4)

which gives

pF =

(
3n
8π

)1/3

h. (5)

The energy–momentum relation for a relativistic particle is

ε =mc2[{1+ (p/mc)2}1/2
− 1], (6)

the speed of the particle being

u≡
dε
dp
=

(p/m)

{1+ (p/mc)2}1/2
; (7)

here, m denotes the rest mass of the electron. The pressure P0 of the gas is then given by,
see equation (6.4.3),

P0 =
1
3

N
V
〈pu〉0 =

8π

3h3

pF∫
0

(p2/m)

{1+ (p/mc)2}1/2
p2dp. (8)

We now introduce a dimensionless variable θ , defined by

p=mc sinhθ , (9)

which makes

u= c tanhθ . (10)

Equations (4) and (8) then become

N =
8πVm3c3

3h3
sinh3 θF =

8πVm3c3

3h3
x3 (11)

and

P0 =
8πm4c5

3h3

θF∫
0

sinh4 θdθ =
πm4c5

3h3
A(x), (12)
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where

A(x)= x(x2
+ 1)1/2(2x2

− 3)+ 3sinh−1 x, (13)

with

x = sinhθF = pF/mc = (3n/8π)1/3(h/mc). (14)

The function A(x) can be computed for any desired value of x. However, asymptotic results
for x� 1 and x� 1 are often useful; these are given by (see Kothari and Singh, 1942)

A(x)= 8
5 x5
−

4
7 x7
+

1
3 x9
−

5
22 x11

+ ·· · for x� 1

= 2x4
− 2x2

+ 3(ln2x− 7
12 )+

5
4 x−2

+ ·· · for x� 1

 . (15)

We shall now consider, somewhat crudely, the equilibrium configuration of this model.
In the absence of gravitation, it would be necessary to have “external walls” for keeping the
electron gas at a given density n. The gas will exert a pressure P0(n) on the walls and any
compression or expansion (of the gas) will involve an expenditure of work. Assuming the
configuration to be spherical, an adiabatic change in V will cause a change in the energy
of the gas, as given by

dE0 =−P0(n)dV =−P0(R) · 4πR2dR. (16)

In the presence of gravitation, no external walls are needed, but the change in the kinetic
energy of the gas, as a result of a change in the size of the sphere, will still be given by for-
mula (16); of course, the expression for P0, as a function of the “mean” density n, must
now take into account the nonuniformity of the system — a fact being disregarded in the
present simple-minded treatment. However, equation (16) alone no longer gives us the net
change in the energy of the system; if that were the case, the system would expand indefi-
nitely till both n and P0(n)→ 0. Actually, we have now a change in the potential energy as
well; this is given by

dEg =

(
dEg

dR

)
dR= α

GM2

R2
dR, (17)

where M is the total mass of the gas, G the constant of gravitation, while α is a number (of
the order of unity) whose exact value depends on the nature of the spatial variation of n
inside the sphere. If the system is in equilibrium, then the net change in its total energy
(E0+Eg), for an infinitesimal change in its size, should be zero; thus, for equilibrium,

P0(R)=
α

4π
GM2

R4 . (18)
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For P0(R), we may substitute from equation (12), where the parameter x is now given by

x =
(

3n
8π

)1/3 h
mc
=

(
9N

32π2

)1/3 h/mc
R

or, in view of (1), by

x =
(

9M

64π2mp

)1/3 h/mc
R
=

(
9πM
8mp

)1/3 ~/mc
R

. (19)

Equation (18) then takes the form

A

({
9πM
8mp

}1/3 ~/mc
R

)
=

3αh3

4π2m4c5

GM2

R4

= 6πα
(

~/mc
R

)3 GM2/R

mc2
; (20)

the function A(x) is given by equations (13) and (15).
Equation (20) establishes a one-to-one correspondence between the masses M and

the radii R of white dwarf stars; it is, therefore, known as the mass–radius relationship for
these stars. It is rather interesting to see the combinations of parameters that appear in
this relationship; we have here (i) the mass of the star in terms of the proton mass, (ii) the
radius of the star in terms of the Compton wavelength of the electron, and (iii) the grav-
itational energy of the star in terms of the rest energy of the electron. This relationship,
therefore, exhibits a remarkable blending of quantum mechanics, special relativity, and
gravitation.

In view of the implicit character of relationship (20), we cannot express the radius of the
star as an explicit function of its mass, except in two extreme cases. For this, we note that,
since M ∼ 1033g, mp ∼ 10−24g, and ~/mc ∼ 10−11 cm, the argument of the function A(x)
will be of the order of unity when R∼ 108 cm. We may, therefore, define the two extreme
cases as follows:

(i) R� 108 cm, which makes x� 1 and hence A(x)≈ 8
5 x5, with the result

R≈
3(9π)2/3

40α
~2M−1/3

Gmm5/3
p

∝M−1/3. (21)

(ii) R� 108 cm, which makes x� 1 and hence A(x)≈ 2x4
− 2x2, with the result

R≈
(9π)1/3

2
~

mc

(
M
mp

)1/3
{

1−
(

M
M0

)2/3
}1/2

, (22)
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where

M0 =
9

64

(
3π

α3

)1/2
(~c/G)3/2

m2
p

. (23)

We thus find that the greater the mass of the white dwarf star, the smaller its size. Not
only that, there exists a limiting mass M0, given by expression (23), that corresponds to a
vanishing size of the star. Obviously, for M >M0, our mass–radius relationship does not
possess any real solution. We, therefore, conclude that all white dwarf stars in equilibrium
must have a mass less than M0 — a conclusion fully upheld by observation.

The correct limiting mass of a white dwarf star is generally referred to as the
Chandrasekhar limit. The physical reason for the existence of this limit is that for a mass
exceeding this limit the ground-state pressure of the electron gas (that arises from the fact
that the electrons obey the Pauli exclusion principle) would not be sufficient to support
the star against its “tendency toward a gravitational collapse.” The numerical value of the
limiting mass, as given by expression (23), turns out to be∼ 1033g. Detailed investigations
by Chandrasekhar led to the result:

M0 =
5.75

µ2
e
�, (24)

where � denotes the mass of the sun, which is about 2× 1033g, while µe is a number
that represents the degree of ionization of helium in the gas. By definition, µe =M/NmH ;
compare to equation (1). Thus, in most cases, µe ' 2; accordingly M0 ' 1.44�.

Figure 8.11 shows a plot of the theoretical relationship between the masses and the radii
of white dwarf stars. One can see that the behavior in the two extreme regions, namely for
R� l and R� l, is described quite well by formulae (21) and (22) of the treatment given
here. The Chandrasekhar limit (24) is the mechanism responsible for stellar collapse into
neutron stars and black holes. In particular, white dwarf stars whose mass exceeds the
Chandrasekhar limit due to influx of matter from a companion binary star are thought to
be the primary mechanism for type Ia supernovae; see Hillebrandt and Niemeyer (2000).
Such events happen in a typical galaxy on the order of once per hundred years. For a few
days after the collapse and subsequent explosion, these supernovae can be comparable in
brightness to the remainder of the stars in the galaxy combined. Their well-calibrated light
curves provide a bright “standard candle” for determining the distance to remote galaxies
used to measure the expansion rate of the universe; see Chapter 9.

8.6 Statistical model of the atom
Another application of the Fermi statistics was made by Thomas (1927) and Fermi (1928)
for calculating the charge distribution and the electric field in the extra-nuclear space of
a heavy atom. Their approach was based on the observation that the electrons in this sys-
tem could be regarded as a completely degenerate Fermi gas of nonuniform density n(r).
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FIGURE 8.11 The mass–radius relationship for white dwarfs (after Chandrasekhar, 1939). The masses are
expressed in terms of the limiting mass M0 and the radii in terms of a characteristic length l, which is given
by 7.71µ−1

e × 108cm' 3.86× 108 cm.

By considering the equilibrium state of the configuration, one arrives at a differential equa-
tion whose solution gives directly the electric potential φ(r) and the electron density n(r)
at point r. By the very nature of the model, which is generally referred to as the Thomas–
Fermi model of the atom, the resulting function n(r) is a smoothly varying function of r,
devoid of the “peaks” that would remind one of the electron orbits of the Bohr theory.
Nevertheless, the model has proved quite useful in deriving composite properties such
as the binding energy of the atom. And, after suitable modifications, it has been success-
fully applied to molecules, solids, and nuclei as well. Here, we propose to outline only the
simplest treatment of the model, as applied to an atomic system; for further details and
other applications, see Gombás (1949, 1952) and March (1957), where references to other
contributions to the subject can also be found.

According to the statistics of a completely degenerate Fermi gas, we have exactly two
electrons (with opposite spins) in each elementary cell of the phase space, with p≤ pF ; the
Fermi momentum pF of the electron gas is determined by the electron density n, according
to the formula

pF = (3π
2n)1/3~. (1)

In the system under study, the electron density varies from point to point; so would the
value of pF . We must, therefore, speak of the limiting momentum pF as a function of r,
which is clearly a “quasiclassical” description of the situation. Such a description is jus-
tifiable if the de Broglie wavelength of the electrons in a given region of space is much
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smaller than the distance over which the functions pF (r), n(r), and φ(r) undergo a signifi-
cant variation; later on, it will be seen that this requirement is satisfied reasonably well by
the heavier atoms.

Now, the total energy ε of an electron at the top of the Fermi sea at the point r is given
by

ε(r)=
1

2m
p2

F (r)− eφ(r), (2)

where e denotes the magnitude of the electronic charge. When the system is in a stationary
state, the value of ε(r) should be the same throughout, so that electrons anywhere in the
system do not have an overall tendency to “flow away” toward other parts of the system.
Now, at the boundary of the system, pF must be zero; by a suitable choice of the zero of
energy, we can also have φ = 0 there. Thus, the value of ε at the boundary of the system is
zero; so must, then, be the value of ε throughout the system. We thus have, for all r,

1
2m

p2
F (r)− eφ(r)= 0. (3)

Substituting from (1) and making use of the Poisson equation,

∇
2φ(r)=−4πρ(r)= 4πen(r), (4)

we obtain

∇
2φ(r)=

4e(2me)3/2

3π~3
{φ(r)}3/2. (5)

Assuming spherical symmetry, equation (5) takes the form

1

r2

d
dr

{
r2 d

dr
φ(r)

}
=

4e(2me)3/2

3π~3
{φ(r)}3/2, (6)

which is known as the Thomas–Fermi equation of the system. Introducing dimensionless
variables x and8, defined by

x = 2
(

4
3π

)2/3

Z1/3 me2

~2
r =

Z1/3

0.88534aB
r (7)

and

8(x)=
φ(r)
Ze/r

, (8)

where Z is the atomic number of the system and aB the first Bohr radius of the hydrogen
atom, equation (6) reduces to

d28

dx2
=
83/2

x1/2
. (9)
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Equation (9) is the dimensionless Thomas–Fermi equation of the system. The boundary
conditions on the solution to this equation can be obtained as follows. As we approach the
nucleus of the system (r→ 0), the potential φ(r) approaches the unscreened value Ze/r;
accordingly, we must have: 8(x→ 0)= 1. On the other hand, as we approach the bound-
ary of the system (r→ r0), φ(r) in the case of a neutral atom must tend to zero; accordingly,
we must have:8(x→ x0)= 0. In principle, these two conditions are sufficient to determine
the function 8(x) completely. However, it would be helpful if one knew the initial slope of
the function as well, which in turn would depend on the precise location of the boundary.
Choosing the boundary to be at infinity (r0 =∞), the appropriate initial slope of the func-
tion 8(x) turns out to be very nearly −1.5886; in fact, the nature of the solution near the
origin is

8(x)= 1− 1.5886x+
4
3

x3/2
+ ·· · (10)

For x > 10, the approximate solution has been determined by Sommerfeld (1932):

8(x)≈

1+

(
x3

144

)λ
−1/λ

, (11)

where

λ=

√
(73)− 7

6
' 0.257. (12)

As x→∞, the solution tends to the simple form: 8(x)≈ 144/x3. The complete solution,
which is a monotonically decreasing function of x, has been tabulated by Bush and Cald-
well (1931). As a check on the numerical results, we note that the solution must satisfy the
integral condition

∞∫
0

83/2x1/2dx = 1, (13)

which expresses the fact that the integral of the electron density n(r) over the whole of the
space available to the system must be equal to Z , the total number of electrons present.

From the function8(x), one readily obtains the electric potential φ(r) and the electron
density n(r):

φ(r)=
Ze
r
8

(
rZ1/3

0.88534aB

)
∝ Z4/3 (14)

and

n(r)=
(2me)3/2

3π2~3
{φ(r)}3/2

∝ Z2. (15)



268 Chapter 8 . Ideal Fermi Systems

140

120

100

80

60

40

20

0.2 0.4 0.6 0.8

r /a

D
(r

)

FIGURE 8.12 The electron distribution function D(r) for an atom of mercury. The distance r is expressed in terms
of the atomic unit of length a (= ~2/me2).

A Thomas–Fermi plot of the electron distribution function D(r){= n(r) · 4πr2
} for an atom

of mercury is shown in Figure 8.12; the actual “peaked” distribution, which conveys unmis-
takably the preference of the electrons to be in the vicinity of their semiclassical orbits, is
also shown in the figure.

To calculate the binding energy of the atom, we should determine the total energy of the
electron cloud. Now, the mean kinetic energy of an electron at the point r would be 3

5εF (r);
by equation (3), this is equal to 3

5 eφ(r). The total kinetic energy of the electron cloud is,
therefore, given by

3
5

e

∞∫
0

φ(r)n(r) · 4πr2dr. (16)

For the potential energy of the cloud, we note that a part of the potential φ(r) at the point
r is due to the nucleus of the atom while the rest of it is due to the electron cloud itself;
the former is clearly (Ze/r), so the latter must be {φ(r)−Ze/r}. The total potential energy
of the cloud is, therefore, given by

−e

∞∫
0

[
Ze
r
+

1
2

{
φ(r)−

Ze
r

}]
n(r) · 4πr2dr. (17)

We thus obtain for the total energy of the cloud

E0 =

∞∫
0

{
1

10
eφ(r)−

1
2

Ze2

r

}
n(r) · 4πr2dr; (18)
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of course, the electron density n(r), in terms of the potential function φ(r), is given by
equation (15).

Now, Milne (1927) has shown that the integrals

∞∫
0

{φ(r)}5/2r2dr and

∞∫
0

{φ(r)}3/2rdr, (19)

which appear in the expression for E0, can be expressed directly in terms of the initial slope
of the function8(x), that is, in terms of the number−1.5886 of equation (10). After a little
calculus, one finds that

E0 =
1.5886

0.88534

(
e2

2aB

)
Z7/3

(
1
7
− 1

)
, (20)

from which one obtains for the (Thomas–Fermi) binding energy of the atom:

EB =−E0 = 1.538Z7/3χ , (21)

where χ(= e2/2aB ' 13.6eV) is the (actual) binding energy of the hydrogen atom.
It is clear that our statistical result (21) cannot give us anything more than just the first

term of an “asymptotic expansion” of the binding energy EB in powers of the parameter
Z−1/3. For practical values of Z , other terms of the expansion are also important; however,
they cannot be obtained from the simple-minded treatment given here. The interested
reader may refer to the review article by March (1957).

In the end we observe that, since the total energy of the electron cloud is proportional to
Z7/3, the mean energy per electron would be proportional to Z4/3; accordingly, the mean
de Broglie wavelength of the electrons in the cloud would be proportional to Z−2/3. At
the same time, the overall linear dimensions of the cloud are proportional to Z−1/3; see
equation (7). We thus find that the quasiclassical description adopted in the Thomas–
Fermi model is more appropriate for heavier atoms (so that Z−2/3

� Z−1/3). Otherwise,
too, the statistical nature of the approach demands that the number of particles in the
system be large.

Problems
8.1 Let the Fermi distribution at low temperatures be represented by a broken line, as shown in

Figure 8.13, the line being tangential to the actual curve at ε = µ. Show that this approximate
representation yields a “correct” result for the low-temperature specific heat of the Fermi gas,
except that the numerical factor turns out to be smaller by a factor of 4/π2. Discuss, in a qualitative
manner, the origin of this numerical discrepancy.

8.2 For a Fermi–Dirac gas, we may define a temperature T0 at which the chemical potential of the gas is
zero (z = 1). Express T0 in terms of the Fermi temperature TF of the gas.
[Hint: Use equation (E.16).]



270 Chapter 8 . Ideal Fermi Systems

1.0

0.5

0
0

�24 �22 �12 �14�

x

(e
x2

�
1

1)
2

1
FIGURE 8.13 An approximate representation of the Fermi distribution at low temperatures: here,
x = ε/kT and ξ = µ/kT .

8.3 Show that for an ideal Fermi gas

1
z

(
∂z
∂T

)
P
=−

5
2T

f5/2(z)

f3/2(z)
;

compare with equation (8.1.9). Hence show that

γ ≡
CP

CV
=
(∂z/∂T)P
(∂z/∂T)v

=
5
3

f5/2(z)f1/2(z)

{ f3/2(z)}2
.

Check that at low temperatures

γ ' 1+
π2

3

(
kT
εF

)2

.

8.4 (a) Show that the isothermal compressibility κT and the adiabatic compressibility κS of an ideal
Fermi gas are given by

κT =
1

nkT

f1/2(z)

f3/2(z)
, κS =

3
5nkT

f3/2(z)

f5/2(z)
,

where n(=N/V ) is the particle density in the gas. Check that at low temperatures

κT '
3

2nεF

[
1−

π2

12

(
kT
εF

)2
]

, κS '
3

2nεF

[
1−

5π2

12

(
kT
εF

)2
]

.

(b) Making use of the thermodynamic relation

CP −CV = T
(
∂P
∂T

)
V

(
∂V
∂T

)
P
= TV κT

(
∂P
∂T

)2

V
,

show that

CP −CV

CV
=

4
9

CV

Nk

f1/2(z)

f3/2(z)

'
π2

3

(
kT
εF

)2

(kT � εF ).
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(c) Finally, making use of the thermodynamic relation γ = κT/κS, verify the results of
Problem 8.3.

8.5 Evaluate (∂2P/∂T 2)v, (∂2µ/∂T 2)v, and (∂2µ/∂T 2)P of an ideal Fermi gas and check that your results
satisfy the thermodynamic relations

CV = VT

(
∂2P
∂T 2

)
v

−NT

(
∂2µ

∂T 2

)
v

and

CP =−NT

(
∂2µ

∂T 2

)
P

.

Examine the low-temperature behavior of these quantities.
8.6 Show that the velocity of sound w in an ideal Fermi gas is given by

w2
=

5kT
3m

f5/2(z)

f3/2(z)
=

5
9
〈u2
〉,

where 〈u2
〉 is the mean square speed of the particles in the gas. Evaluate w in the limit z→∞ and

compare it with the Fermi velocity uF .
8.7 Show that for an ideal Fermi gas

〈u〉
〈

1
u

〉
=

4
π

f1(z)f2(z)
{ f3/2(z)}2

,

u being the speed of a particle. Further show that at low temperatures

〈u〉
〈

1
u

〉
'

9
8

[
1+

π2

12

(
kT
εF

)2
]

;

compare with Problem 6.6.
8.8 Obtain numerical estimates of the Fermi energy (in eV) and the Fermi temperature (in K) for the

following systems:
(a) conduction electrons in silver, lead, and aluminum;
(b) nucleons in a heavy nucleus, such as 80Hg200, and
(c) He3 atoms in liquid helium-3 (atomic volume: 63 Å3 per atom).

8.9 Making use of another term of the Sommerfeld lemma (E.17), show that in the second
approximation the chemical potential of a Fermi gas at low temperatures is given by

µ' εF

[
1−

π2

12

(
kT
εF

)2

−
π4

80

(
kT
εF

)4
]

, (8.1.35a)

and the mean energy per particle by

U
N
'

3
5
εF

[
1+

5π2

12

(
kT
εF

)2

−
π4

16

(
kT
εF

)4
]

. (8.1.37a)

Hence determine the T 3-correction to the customary T 1-result for the specific heat of an electron
gas. Compare the magnitude of the T 3-term, in a typical metal such as copper, with the low-
temperature specific heat arising from the Debye modes of the lattice. For further terms of these
expansions, see Kiess (1987).
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8.10 Consider an ideal Fermi gas, with energy spectrum ε ∝ ps, contained in a box of “volume” V in a
space of n dimensions. Show that, for this system,

(a) PV =
s
n

U ;

(b)
CV

Nk
=

n
s

(n
s
+ 1

) f(n/s)+1(z)

fn/s(z)
−

(n
s

)2 fn/s(z)
f(n/s)−1(z)

;

(c)
CP −CV

Nk
=

(
sCV

nNk

)2 f(n/s)−1(z)

f(n/s)(z)
;

(d) the equation of an adiabat is PV 1+(s/n)
= const., and

(e) the index (1+ (s/n)) in the foregoing equation agrees with the ratio (CP/CV ) of the gas only
when T � TF . On the other hand, when T � TF , the ratio (CP/CV )' 1+ (π2/3)(kT/εF )

2,
irrespective of the values of s and n.

8.11 Examine results (b) and (c) of the preceding problem in the high-temperature limit (T � TF ) as well
as in the low-temperature limit (T � TF ), and compare the resulting expressions with the ones
pertaining to a nonrelativistic gas and an extreme relativistic gas in three dimensions.

8.12 Show that, in two dimensions, the specific heat CV (N ,T) of an ideal Fermi gas is identical to the
specific heat of an ideal Bose gas, for all N and T .
[Hint: It will suffice to show that, for given N and T , the thermal energies of the two systems differ
at most by a constant. For this, first show that the fugacities, zF and zB, of the two systems are
mutually related:

(1+ zF )(1− zB)= 1, i.e., zB = zF/(1+ zF ).

Next, show that the functions f2(zF ) and g2(zB) are also related:

f2(zF )=

zF∫
0

ln(1+ z)
z

dz

= g2

(
zF

1+ zF

)
+

1
2

ln2
(1+ zF ).

It is now straightforward to show that

EF (N ,T)= EB(N ,T)+ const.,

the constant being EF (N ,0).]
8.13 Show that, quite generally, the low-temperature behavior of the chemical potential, the specific

heat, and the entropy of an ideal Fermi gas is given by

µ' εF

[
1−

π2

6

(
∂ lna(ε)
∂ lnε

)
ε=εF

(
kT
εF

)2
]

,

and

CV ' S'
π2

3
k2T a(εF ),

where a(ε) is the density of (the single-particle) states in the system. Examine these results for a gas
with energy spectrum ε ∝ ps, confined to a space of n dimensions, and discuss the special cases:
s= 1 and 2, with n= 2 and 3.
[Hint: Use equation (E.18) from Appendix E.]

8.14 Investigate the Pauli paramagnetism of an ideal gas of fermions with intrinsic magnetic moment µ∗

and spin J~( J = 1
2 , 3

2 , . . .), and derive expressions for the low-temperature and high-temperature
susceptibilities of the gas.
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8.15 Show that expression (8.2.20) for the paramagnetic susceptibility of an ideal Fermi gas can be
written in the form

χ =
nµ∗2

kT

f1/2(z)

f3/2(z)
.

Using this result, verify equations (8.2.24) and (8.2.27).
8.16 The observed value of γ , see equation (8.3.6), for sodium is 4.3× 10−4 cal mole−1K−2. Evaluate

the Fermi energy εF and the number density n of the conduction electrons in the sodium
metal. Compare the latter result with the number density of atoms (given that, for sodium,
ρ = 0.954gcm−3 and M = 23).

8.17 Calculate the fraction of the conduction electrons in tungsten (εF = 9.0eV) at 3000 K whose kinetic
energy ε (= 1

2 mu2) is greater than W (= 13.5eV). Also calculate the fraction of the electrons whose
kinetic energy associated with the z-component of their motion, namely ( 1

2 mu2
z), is greater than

13.5eV.
8.18 Show that the ground-state energy E0 of a relativistic gas of electrons is given by

E0 =
πVm4c5

3h3 B(x),

where

B(x)= 8x3
{(x2
+ 1)1/2

− 1}−A(x),

A(x) and x being given by equations (8.5.13) and (8.5.14). Check that the foregoing result for E0 and
equation (8.5.12) for P0 satisfy the thermodynamic relations

E0+P0V =Nµ0 and P0 =−(∂E0/∂V )N .

8.19 Show that the low-temperature specific heat of the relativisitic Fermi gas, studied in Section 8.5, is
given by

CV

Nk
= π2 (x

2
+ 1)1/2

x2

kT
mc2

(
x =

pF

mc

)
.

Check that this formula gives correct results for the nonrelativistic case as well as for the extreme
relativistic one.

8.20 Express the integrals (8.6.19) in terms of the initial slope of the function8(x), and verify
equation (8.6.20).

8.21 The total energy E of the electron cloud in an atom can be written as

E = K +Vne +Vee,

where K is the kinetic energy of the electrons, Vne the interaction energy between the electrons and
the nucleus, and Vee the mutual interaction energy of the electrons. Show that, according to the
Thomas–Fermi model of a neutral atom,

K =−E, Vne =+
7
3

E, and Vee =−
1
3

E,

so that total V = Vne +Vee = 2E. Note that these results are consistent with the virial theorem; see
Problem 3.20, with n=−1.

8.22 Derive equations (8.4.3) through (8.4.5) for a Fermi gas in a harmonic trap. Evaluate equations
(8.3.4) and (8.3.5) numerically to reproduce the theoretical curves shown in Figures 8.9 and 8.10.
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Thermodynamics of

the Early Universe

Over the course of the twentieth century, astronomers and astrophysicists gathered a vast
body of evidence that indicates the universe began abruptly 13.75± 0.11 billion years ago
in what became known as the “Big Bang.”1,2 The intense study of the origin and evolution
of the universe has led to a convergence of physics and astrophysics. Thermodynamics
and statistical mechanics play a crucial role in our understanding of the sequence of transi-
tions that the universe went though shortly after the Big Bang. These transitions left behind
mileposts that astrophysicists have exploited to look back into the earliest moments of the
universe. The early universe provides particularly good examples for utilizing the proper-
ties of ideal classical, Bose, and Fermi gases developed in Chapters 6, 7, and 8, and the
theory of chemical equilibrium developed in Section 6.6.

9.1 Observational evidence of the Big Bang
Observational evidence of the Big Bang has grown steadily since Edwin Hubble’s discovery
in the late 1920s that the universe was expanding. Since that time a coherent standard
model for the beginning of the universe has emerged. The following three items describe
the key bodies of evidence.

1. Nearly every galaxy in the universe is moving away from every other galaxy and the
recessional velocities display an almost linear dependence on the distance between
galaxies; see Figure 9.1. Hubble was the first to observe this by measuring both the
distances to nearby galaxies and their velocities relative to our own galaxy. The former
is based on standard candles, in Hubble’s case Cepheid variable stars with known
absolute mean luminosity. The latter is based on measurements of the Doppler red
shift of spectral lines. Type Ia supernovae are used as the standard candle in the most
distant observations made using the Hubble Space Telescope. The data are

1For excellent overviews and history of the study of the Big Bang, see The First Three Minutes: A Modern View of the
Origin of the Universe by Weinberg (1993) and The Big Bang by Singh (2005). Cosmology by Weinberg (2008) provides
an excellent technical survey. The organization of this chapter is based on Weinberg (1993). The 2010 decadal survey
of astrophysics New Worlds, New Horizons in Astronomy and Astrophysics by the National Academies Press provides an
overview of the current state of the field; see www.nap.edu.

2Steady state cosmology advocate Fred Hoyle coined the term “Big Bang” derisively in a BBC radio broadcast in 1950.
To his eternal dismay, the name quickly became popular.

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00009-8
© 2011 Elsevier Ltd. All rights reserved.
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FIGURE 9.1 Hubble diagram of the spectral red-shift velocity of relatively nearby galaxies versus their distance
using several astronomical standard candles. The velocity is in km/s and the distance is measured in megaparsecs,
where 1 Mpc= 3.26× 106 light-years. The best fit to the data gives a value of the Hubble parameter as H0 =

72± 8kms−1Mpc−1. The Hubble parameter has been recently updated by Riess et al. (2009) to give H0 =

74.2± 3.6kms−1 Mpc−1. The figure is from Freedman et al. (2001) and is reproduced by permission of the AAS.

encapsulated in the Hubble–Friedmann relation (Friedmann, 1922, 1924),

v =
da
dt
=Ha=

√
8πGu

3c2
a. (1)

Here a represents the distance between any two points in space that grows with time
as the universe expands, v is the recessional velocity, G is the universal constant of
gravitation, c is the speed of light, and u is the energy density of the universe.3 The
Hubble parameter, H , is the characteristic expansion rate and is of the order of the
inverse of the age of the universe. The particular form of equation (1) assumes, as
appears to be the case, that the energy density u is equal to the critical value so that the

3Cosmological and general relativistic calculations are usually expressed in terms of the equivalent mass density
ρ = u/c2

= T 00 where T is the energy-momentum tensor. Astrophysicists usually describe the length scale parameter a
in terms of the Doppler shift factor z = (λ/λlab− 1), where λlab is the laboratory wavelength of a spectral line and λ is the
red-shifted value. This gives z = (T/T0− 1) where T0 is the current cosmic microwave background temperature and T is
the photon temperature of that era. For example, the Doppler shift from the era of last scattering is

z =
3000K
2.725K

− 1' 1100,

so the universe has expanded by a factor of 1100 since that time.
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space-time is flat. This means that the universe is balanced on a knife edge between
expanding forever and recollapsing due to gravity. For excellent technical surveys, see
Börner (2003) and Weinberg (2008). The measured value of the Hubble parameter is

H0 = 74.2± 3.6kms−1 Mpc−1, (2)

where Mpc is a megaparsec, about 3.26× 106 light-years; see Freedman et al. (2001)
and Riess et al. (2009).

2. Penzias and Wilson (1965) observed a nearly uniform and isotropically distributed
microwave radiation noise coming from deep space with a blackbody temperature of
about 3K. This cosmic microwave background (CMB) was quickly identified as the
remnant blackbody radiation from the era following the Big Bang. Later, balloon
experiments and space-based measurements by the Cosmic Background Explorer
(COBE) NASA mission showed that the CMB is extremely uniform and isotropic with
an average temperature of TCMB = 2.725± 0.002K; see Mather et al. (1994, 1999),
Wright et al. (1994), Fixsen et al. (1996), and Figure 9.2. The NASA Wilkinson
Microwave Anisotropy Probe (WMAP) mission mapped the angular variation of the
CMB temperature. Figure 9.3 shows the±200µK CMB temperature variations mapped
onto galactic coordinates.

The CMB represents the photons that were in thermal equilibrium with the
high-temperature plasma that existed from the very first moments of the universe
until it cooled down to approximately 3000K about 380,000 years after the Big Bang.
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FIGURE 9.2 Cosmic microwave background spectrum from COBE fit numerically to the Planck distribution with an
average temperature T = 2.725 ± 0.002K; see equations (7.3.8) and (7.3.9), and Figure 7.13. The error bars at the 43
equally spaced frequencies from the Far Infrared Absolute Spectrophotometer (FIRAS) data are too small to be seen
on this scale. Figure courtesy of NASA.
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FIGURE 9.3 Measurement of temperature variations in the CMB using 7 years of data from WMAP. This shows the
distribution of the CMB blackbody temperature mapped onto galactic coordinates. The variations represent
temperature fluctuations of ±200µK. Figure courtesy of NASA and the WMAP Science Team.

As the temperature fell below 3000K, the electrons and protons in the plasma
combined for the first time into neutral hydrogen atoms, a period that is known rather
oxymoronically as the era of recombination. After this era of “last scattering” of
photons by free electrons, the quantum structure of the atoms prevented them from
absorbing radiation except at their narrow spectral frequencies, so the universe
became transparent and the blackbody radiation quickly fell out of equilibrium with
the neutral atoms. As the universe continued to expand, the wavelengths of the
blackbody radiation grew linearly with the expansion scale of the universe a. The
photon number density fell as a−3 and the energy density as a−4, so the Planck
distribution, equations (7.3.8) and (7.3.9), was preserved with a blackbody
temperature that scaled as

T(t)a(t)= const. (3)

Measurements of the Hubble parameter and the COBE and WMAP measurements
of the temperature and temperature fluctuations of the CMB allow a determination of
the current total energy density of the universe and its composition. The current
energy density of the universe is

u=
3c2H2

0

8πG
= 8.36× 10−10 Jm−3, (4)
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and is comprised of approximately 72.8 percent dark energy, 22.7 percent dark matter,
and 4.56 percent baryonic matter (protons and neutrons).4 This gives a baryon
number density nB of 0.26m−3. The number density of photons in a blackbody
enclosure as a function of temperature is given by equation (7.3.23):

nγ (T)=
2ζ(3)

π2

(
kT
~c

)3

. (5)

At the current temperature of 2.725K, this gives a CMB photon number density of
nγ = 4.10× 108 m−3, so the current baryon-to-photon ratio is

η =
nB

nγ
≈ 6× 10−10. (6)

The ratio η has remained constant as the universe has expanded since both these
quantities scale as a−3(t). As we will see later, the numerical value of η played a very
important role in the thermal evolution of the early universe.5

3. The relative abundances of the light elements 1H, 2H, 3He, 4He, 7Li, and so on
created during the first few minutes of the universe are sensitive functions of the
baryon-to-photon ratio η; see Figure 9.4. This connection was first explored by George
Gamow, Ralph Alpher, and Robert Herman in the late 1940s and early 1950s; see
Alpher, Bethe, and Gamow (1948), and Alpher and Herman (1948, 1950).6

4The energy content of the universe is parameterized in terms of the fraction of the critical density contained in the
various constituents. The current values are dark energy:�3 = 0.728± 0.016; baryonic matter:�b = 0.0456± 0.0016; and
cold dark matter: �c = 0.227± 0.014. The current age of the universe, or lookback time, is t0 = 13.75± 0.11× 109 years.
The relative contribution from blackbody radiation is about 6× 10−5. These concordance values of the parameters are
based on WMAP 7-year data and are tabulated in Komatsu et al. (2010). The dark energy is responsible for the accelerating
expansion of the universe. The energy density proportions were vastly different in the early universe because they scale
differently with the expansion parameter a. At the time of recombination, the proportions were: dark matter 63 percent,
baryonic matter 12 percent, relativistic radiation (photons and neutrinos) 25 percent. During the first few moments,
relativistic particles provided the dominant contribution to the energy. Using the photon:neutrino:electron ratios of 2 :
21/4 : 7/2 from Table 9.2, the energy content was photons 18.6 percent, neutrinos and antineutrinos 48.8 percent, and
electrons and positrons 32.5 percent. While dark energy is currently the dominant contribution to the energy density
of the universe, it played only a small role in the early evolution of the universe. Cold dark matter was crucial for the
development of the first stars and galaxies at the end of the “dark ages” 100 to 200 million years after the last scattering.

5The proper measure here is the ratio of the baryon number density to photon entropy density but, since the CMB
photon entropy density and number density both scale as T 3, the ratio is usually quoted in terms of the ratio of the
number densities.

6George Gamow and Ralph Alpher in 1948, and Alpher and Robert Herman in 1950, proposed a model for nucleo-
synthesis in a hot, expanding primordial soup of protons, neutrons, and electrons. Alpher and Gamow called this
material “ylem.” To account for the present abundance of 4He in the universe, Alpher and Herman (1950) proposed
a baryon-to-photon ratio of roughly 10−9 and predicted a current cosmic microwave background temperature of about
5K. Gamow added his friend Hans Bethe’s name as second author to Alpher, Bethe, and Gamow (1948) as a pun on
the Greek alphabet. The paper was published, perhaps not coincidentally, on April 1; see Alpher and Herman (2001),
Weinberg (1993), and Singh (2005).
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FIGURE 9.4 Calculated primordial abundances of light elements (4He, D=2H, 3He, and 7Li) as functions of the
baryon-to-photon ratio. The baryon-to-photon ratio is given by η = 2.7× 10−8�bh2, where h is the Hubble
parameter in units of 100(km/s)/Mpc and �b = 0.046 is the current baryonic fraction of the mass-energy density of
the universe; see Copi, Schramm, and Turner (1997), Schramm and Turner (1998), and Steigman (2006). The
experimentally allowed range is in the grey vertical bands. Figure from Schramm and Turner (1998). Reprinted with
permission; copyright © 1998, American Physical Society.

9.2 Evolution of the temperature of the universe
As the universe expanded and cooled, the cooling rate was proportional to the Hubble
parameter, that is, of the order of the inverse of the age of the universe at that point in
its expansion. This led to a sequence of important events when different particles and
interactions fell out of equilibrium with the gas of blackbody photons. The neutrinos and
neutron-proton conversion reactions fell out of equilibrium at t ≈ 1second. Nuclear reac-
tions that formed light nuclei fell out of equilibrium at t ≈ 3minutes. Neutral atoms fell
out of equilibrium at t ≈ 380,000years. All these degrees of freedom froze out when the
reaction rates that had kept them in equilibrium with the blackbody photons fell far below
the cooling rate of the expanding universe. Each component that fell out of equilibrium
left behind a marker of the properties of the universe characteristic of that era. It is these
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markers that provide evidence of the properties and behavior of the universe during its
earliest moments.

From the first moments of the universe up until the recombination era 380,000 years
later, the cosmic plasma was in thermal equilibrium with the blackbody radiation through
Thomson scattering. Due to the high density of charged particles, the photon scattering
mean free time was much shorter than the time scale for temperature changes of the uni-
verse as it expanded and cooled, which kept the plasma in thermal equilibrium with the
photons. For the first few hundred thousand years of its expansion, the energy density of
the universe was dominated by photons and other relativistic particles. This is because the
energy density of the blackbody radiation scales as a−4 whereas the energy density of non-
relativistic matter scales as a−3. The temperature of the blackbody photons as a function
of the age of the universe is shown in Figure 9.5 and Table 9.1.

During the first one-hundredth of a second, the universe expanded and cooled from its
singular beginning to a temperature of about 1011 K. The physics from this time onward
was controlled by the weak and electromagnetic interactions. The strong interactions
could be ignored since the baryon-to-photon ratio was so small and the temperature was

1010

108

T
 (

K
) 106

104

102

100

100 105

t (seconds)

1010 1015

FIGURE 9.5 Sketch of the photon temperature versus the age of the universe. At early times, radiation dominated
the energy density, so T ∼ t−1/2. At later times (t > 1013 s) nonrelativistic matter dominated the energy density, so
T ∼ t−2/3. In the current dark energy dominated stage, the universe is beginning to expand exponentially with
time, so the photon temperature is beginning to fall exponentially.
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Table 9.1 Temperature
vs. Age of the Universe

Time (s) Temperature (K)

0.01 1× 1011

0.1 3× 1010

1.0 1× 1010

12.7 3× 109

168 1× 109

1980 3× 108

1.78× 104 108

1.20× 1013 3000
4.34× 1017 2.725

Source: Weinberg (2008).

too low to create additional hadrons.7,8 We will follow the thermodynamic behavior of the
universe from t = 0.01 second when the temperature was 1011 K to t = 380,000 years when
the temperature fell below 3000K. At that point neutral atoms formed, photon scattering
ended, and the universe became transparent to radiation. After recombination and last
scattering there were no new sources of radiation in the universe since the baryonic mat-
ter consisted entirely of neutral atoms. This state of affairs lasted until atoms were first
reionized by the gravitational clumping that formed the first stars and galaxies 100 to 200
million years after the Big Bang. This reionization epoch ended the so-called cosmic dark
ages.

9.3 Relativistic electrons, positrons, and neutrinos
During the earliest moments of the universe, the temperature was high enough to cre-
ate several kinds of relativistic particles and antiparticles. If kT �mc2, then particle-
antiparticle pairs each with mass m can be created from photon-photon interactions.
At these temperatures, almost all of the particles that are created will have an energy-
momentum relation described by the relativistic limit, namely

εk ≈ ~ck, (1)

7Before time t = 0.01s, the analysis is more difficult due to the production of strongly interacting particles and
antiparticles. At even earlier times, when the temperature was above kT ≈ 300MeV (T = 4× 1012 K), hadrons would
have broken apart into a strongly interacting relativistic quark-gluon plasma. The Relativistic Heavy Ion Collider at
Brookhaven National Laboratory has succeeded in creating a quark-gluon plasma with the highest temperature matter
ever created in the laboratory, T = 4× 1012 K; see Adare et al. (2010).

8The exact mechanism for baryogenesis (i.e., nonzero baryon-to-photon ratio η) is unsettled. It requires, as shown by
Sakharov (1967), three things: baryon number nonconservation, C and CP violation, and deviation from equilibrium. All
these conditions were satisfied in the earliest moments of the universe (far earlier than the time scales we examine here)
but a consensus theory that allows for a baryon asymmetry nearly as large as the observed value of η = 6× 10−10 has not
yet emerged.
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where ~k is the magnitude of the momentum. This relation applies to photons, neutrinos,
antineutrinos, electrons, and positrons. The threshold for electron-positron pair forma-
tion is mec2/k = 5.9× 109 K. Neutrinos are very light, so we can safely assume that they
are relativistic.9 The relativistic dispersion relation 1 gives essentially the same density of
states for all species of relativistic particles:

a(ε)=
gs

(2π)3

∫
δ(ε− εk)dk =

4πgs

(2π)3

∞∫
0

k2δ(ε−~ck)dk =
gsε

2

2π2(~c)3
, (2)

where gs is the spin degeneracy. Photons have a spin degeneracy gs = 2 (left and right cir-
cularly polarized). The other species are all spin- 1

2 fermions. Electrons and positrons have
spin degeneracy gs = 2 while neutrinos and antineutrinos have spin degeneracy gs = 1
since all neutrinos have left-handed helicity.

During this era, because of the charge neutrality of the universe and the small size of the
baryon-to-photon ratio η, the number densities of the electrons and positrons were nearly
equal, so their chemical potentials were both rather small. Assuming that the net lepton
number of the universe is also small, the same applies to the neutrinos and antineutrinos.
As explained in Section 7.3, the chemical potential for photons is exactly zero. The pres-
sure, number density, energy density, and entropy density of a relativistic gas of fermions
(+) or bosons (−) with zero chemical potential are are given by

P(T)=±kT
∫

a(ε) ln(1± e−βε)dε =
gs
(
kT
)4

2π2 (~c)3

∞∫
0

x2 ln
(
1± e−x)dx, (3a)

n(T)=
∫

a(ε)
1

eβε ± 1
dε =

gs

2π2

(
kT
~c

)3 ∞∫
0

x2

ex± 1
dx , (3b)

u(T)=
∫

a(ε)
ε

eβε ± 1
dε =

gs
(
kT
)4

2π2 (~c)3

∞∫
0

x3

ex± 1
dx, (3c)

s(T)=
(
∂P
∂T

)
µ

=
2gsk

π2

(
kT
~c

)3 ∞∫
0

x2 ln
(
1± e−x)dx. (3d)

9All three neutrino families are known to have small (but nonzero) mass from neutrino oscillation observations.
The electron neutrino is probably the lightest with the experimental limit of mνe c2 < 2.2eV. The distribution of angular
fluctuations of the CMB measured by WMAP puts a limit on the sum of the masses of the neutrinos,

∑
mνc2 < 0.58eV,

so we can safely assume that all neutrino species are far lighter than the value of kT during the early universe.
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Using the values of the Bose integrals from Appendix D, we arrive at the following
expressions for the blackbody photons:

Pγ (T)=
π2

45
(kT)4

(~c)3
, (4a)

nγ (T)=
2ζ(3)

π2

(
kT
~c

)3

, (4b)

uγ (T)=
π2

15
(kT)4

(~c)3
, (4c)

sγ (T)=
4π2k

45

(
kT
~c

)3

. (4d)

All relativistic species with µ= 0 have the same power law temperature dependences for
the pressure, energy density, and so on, as the photons, while the Fermi and Bose integrals
are the same except for a constant prefactor:

∞∫
0

xn−1

ex+ 1
dx =

(
1−

1

2n−1

) ∞∫
0

xn−1

ex− 1
dx; (5)

see Appendices D and E. The contributions to the pressure, energy density, and entropy
density result from counting the spin degeneracies, the number of particles and antiparti-
cles, and accounting for the different Fermi/Bose factors (1 for bosons, 7/8 for fermions).
The photons, three generations of neutrinos (electron, muon, and tau neutrinos and their
antiparticles), and the electrons and positrons contribute to the total pressure, number
density, energy density, and entropy density in the proportions shown in Table 9.2. The
counting is presented here, as is usually done in the literature, relative to the contribu-
tion per spin state of the photons. The contributions to the number densities are the same
except that the Fermi/Bose factor is now 3/4.

Table 9.2 Relativistic Contributions to Pressure, Energy
Density, and Entropy Density

Particles Fermi/Bose Factor Spin Degeneracy Number of Species 2 Ptotal/Pγ

γ 1 2 1 2
νe,νµ,ντ 7

8 1 3 21
8

ν̄e,ν̄µ,ν̄τ 7
8 1 3 21

8

e− 7
8 2 1 7

4

e+ 7
8 2 1 7

4
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The totals then are

Ptotal(T)=
(

2+
21
4
+

7
2

)
Pγ (T)

2
=

(
43
8

)
Pγ (T), (6a)

utotal(T)=
(

2+
21
4
+

7
2

)
uγ (T)

2
=

(
43
8

)
uγ (T), (6b)

stotal(T)=
(

2+
21
4
+

7
2

)
sγ (T)

2
=

(
43
8

)
sγ (T), (6c)

ntotal(T)=
(

2+
9
2
+ 3

)
nγ (T)

2
=

(
19
4

)
nγ (T). (6d)

The density of the universe was high enough in this era, so the weak and electromagnetic
interaction rates kept all these species in thermal equilibrium with one other. Therefore,
as the universe expanded adiabatically, the entropy in a comoving volume of linear size a
remained constant as the volume expanded from some initial value a3

0 to a final volume a3
1:

stotal(T0)a
3
0 = stotal(T1)a

3
1. (7)

Since the entropy density is proportional to T 3, the temperature and length scale at time t
are related by

T(t)a(t)= const. (8)

This is the same relation that applies for a freely expanding photon gas, see equa-
tion (9.1.3), but here it arises from an adiabatic equilibrium process. From equations (9.1.1)
and (8), the temperature of the universe as a function of the age of the universe t during
this era is

T(t)= 1010 K

√
0.992s

t
; (9)

see Problem 9.1.

9.4 Neutron fraction
During the first second of the universe, when T > 1010 K, and before protons and neu-
trons combined into nuclei, the weak interaction kept the free neutrons and protons in
thermal “beta-equilibrium” with each other and with the photons, neutrinos, electrons,
and positrons through the processes

n+ νe � p+ e−+ γ , (1a)

n+ e+� p+ ν̄+ γ , (1b)

n � p+ e−+ ν̄+ γ . (1c)
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We can treat this as a chemical equilibrium process, as described in Section 6.6. Since the
chemical potentials of the photons, electrons, positrons, neutrinos, and antineutrinos are
all zero, the neutron and proton chemical potentials must be equal at equilibrium:

µn = µp. (2)

At these temperatures (≈ 1011 K) and densities (≈ 1032 m−3), the protons and neutrons can
be treated as a classical nonrelativistic ideal gas. Following equation (6.6.5), the spin- 1

2
proton and neutron chemical potentials are

µp =mpc2
+ kT ln

(
npλ

3
p

)
− kT ln2, (3a)

µn =mnc2
+ kT ln

(
nnλ

3
n

)
− kT ln2. (3b)

where λ(= h/
√

2πmkT) is the thermal deBroglie wavelength. The rest energy of the
neutron is greater than the rest energy of the proton by

mnc2
−mpc2

=1ε = 1.293MeV. (4)

Ignoring the small mass difference in the thermal deBroglie wavelength in equations (3a)
and (3b) gives

nn = npe−β1ε. (5)

The baryon number density is the sum of the neutron and proton number densities

nB = nn+np, (6)

so the equilibrium neutron fraction is given by

q=
nn

nB
=

1
eβ1ε + 1

. (7)

The mass difference gives a crossover temperature Tnp =1ε/k ≈ 1.50× 1010 K, so the
neutron fraction drops from 46 percent when T = 1011 K to 16 percent when T = 9× 109 K
at t1 ≈ 1 second. As the temperature fell below 1010 K (kT = 0.86MeV), the weak interaction
rate began to fall far below the cooling rate of the universe, so the baryons quickly fell out of
equilibrium with the neutrinos. From that time onward the neutrons began to beta-decay
with their natural radioactive decay lifetime of τn = 886 seconds, so the neutron fraction
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fell exponentially:

q≈ 0.16exp
(
−(t− t1)

τn

)
for t > t1 = 1s. (8)

By the time of nucleosynthesis, about 3.7 minutes later, the neutron fraction had dropped
to q≈ 0.12. At that point, the remaining neutrons bound with protons to form deuterons
and other light nuclei. For a discussion of nucleosynthesis, see Section 9.7.

9.5 Annihilation of the positrons and electrons
About one second after the Big Bang, the temperature approached the crossover tempera-
ture Te for creating electron-positron pairs:

kTe =mec2
= 0.511MeV, (1)

with Te = 5.93× 109 K. As the temperature fell below Te, the rate of creating e+e− pairs
began to fall below the rate at which pairs annihilated. The full relativistic dispersion
relation for electrons is

εk =

√
(~ck)2+ (mec2)2 , (2)

which gives for density of states

ae(ε)=
8π

(2π)3

∞∫
0

k2δ(ε− εk)dk =
ε
√
ε2− (mec2)2

π2(~c)3
for ε ≥mec2. (3)

Since the electrons and positrons were in equilibrium with the blackbody photons via the
reaction

e++ e−� γ + γ , (4)

the equilibrium equation (6.6.3) implied that the chemical potentials of the species were
related by

µ−+µ+ = 2µγ = 0. (5)

The ratio of the number density of the electrons to that of the photons then was

n−
nγ
=

1
2ζ(3)

∞∫
βmec2

x
√

x2− (βmec2)2

exe−βµ− + 1
dx, (6)
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while the positron density ratio was

n+
nγ
=

1
2ζ(3)

∞∫
βmec2

x
√

x2− (βmec2)2

exeβµ− + 1
dx; (7)

see equation (9.1.5). The electron and positron densities became unbalanced as the
universe cooled.

Eventually all the positrons got annihilated leaving behind the electrons that currently
remain. Charge neutrality of the universe required the difference between the number
density of electrons and the number density of positrons to be equal to the number density
of protons, (1−q)nB, where q is defined in Section 9.4; hence

(n−−n+)
nγ

=
sinh(βµ−)

2ζ(3)

∞∫
βmec2

x
√

x2− (βmec2)2

cosh(x)+ cosh(βµ−)
dx = (1−q)η. (8)

We can use equation (8) to determine the electron chemical potential as a function of tem-
perature numerically and then use that value in equations (6) and (7) to determine the
electron and positron densities; see Figure 9.6.

Initially, the electron and positron densities both decreased proportional to
exp(−βmec2) as the temperature fell below the electron-positron pair threshold, but they
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FIGURE 9.6 The ratio of the electron and positron densities to the photon density as a function of βmec2 during the
e+e− annihilation for η = 6× 10−10. This era began around temperature 1010 K (βmec2

= 1.7) at time t = 1 second
and ended when the temperature was about 3× 108 K (βmec2

= 20) at time t = 33 minutes when the electron
number density leveled off at the proton number density.
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remained nearly equal to each other until T ≈mec2/k ln
[
1/(1−q)η

]
≈ 3× 108 K. At that

temperature, the electron density began to level off at the proton density while the positron
density continued to fall.

Using the baryon-to-photon ratio η = 6× 10−10, we infer that during the first second
of the universe that for every 1.7 billion positrons there must have been one extra elec-
tron. It is these few extra electrons that will combine with nuclei during the recombination
era composing all the atoms now present in the universe. All baryonic matter currently
in the universe is the result of this initial asymmetry between matter and antimatter;
see footnote 8.

9.6 Neutrino temperature
For temperatures above T = 1010 K, the rates for the weak interaction reactions (9.4.1) kept
the neutrinos in “beta-equilibrium” with the electrons, positrons, and photons. Starting at
time t ≈ 1s, when T = 1010 K, the weak interaction rates began to fall far below the expan-
sion rate of the universe so the neutrinos quickly fell out of equilibrium. Following the
decoupling, the neutrinos expanded freely so the neutrino temperature scaled with the
expansion length scale following equation (9.1.3).

The system of electrons, positrons, and photons remained in thermal equilibrium with
each other and expanded adiabatically during the electron-positron annihilation era from
temperature T0 = 1010 K when the annihilations began, until temperature T1 = 3× 108 K
when nearly all of the positrons had been annihilated. Since this was an adiabatic expan-
sion, we can determine the temperature evolution using entropy conservation. Consider
a comoving cubical volume that expanded from an initial linear size a0 to a final size a1

during the same time period. The total entropy in the comoving volume at temperature T0

was due to the photons, electrons, and positrons (refer to Table 9.2):

S(T0)=
11
4

sγ (T0)a
3
0, (1)

while the entropy at temperature T1 was due solely to the photons since, by then, nearly
all of the electrons and positrons had been annihilated:

S(T1)= sγ (T1)a
3
1. (2)

Entropy conservation during the adiabatic expansion relates the initial and final tem-
peratures as (

11
4

)1/3

T0a0 = T1a1. (3)

In essence, the entropy of the annihilating electrons and positrons was transferred to the
photons. Since the neutrino and photon temperatures were equal before the electron-
positron annihilation and the neutrinos expanded freely during the annihilation, the
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neutrino temperature decreased more than the photon temperature during the annihi-
lation era:

Tν1 = (4/11)1/3 T1. (4)

After the e+e− annihilation, both the neutrino and the photon temperatures evolved
according to equation (9.1.3) and (9.3.8), so the current temperature of the relic Big Bang
neutrinos should be

Tν = (4/11)1/3 TCMB ' 1.945K. (5)

A measurement of the cosmic neutrino background would provide an excellent additional
test of the standard model of the Big Bang but we do not currently have a viable means to
measure these very low-energy neutrinos.10

9.7 Primordial nucleosynthesis
Light nuclei other than hydrogen first formed between 3 and 4 minutes after the Big Bang
when the temperature had cooled to about 109 K. Prior to that time, the high-temperature
blackbody radiation rapidly photodissociated any deuterium nuclei that happened to
form. The first step for the formation of light nuclei from the protons and neutrons is the
formation of deuterium because all of the rates for forming nuclei at these densities are
dominated by two-body collisions. Once deuterons formed, most of these nuclei would
have been quickly converted to helium and other more stable light nuclei in a series of
two-body collisions with the remaining protons, neutrons, and with each other. As dis-
cussed in Section 9.4, the proton/neutron mixture at this time was about q= 12 percent
neutrons and 1−q= 88 percent protons. By t ≈ 3minutes the temperature had fallen to
T ≈ 109 K so protons and neutrons could begin to bind themselves into deuterons via the
process

p+n � d+ γ . (1)

The chemical equilibrium relation for this reaction, see equation (6.6.3), is

µp+µn = µd, (2)

since the chemical potential of the blackbody photons is zero. At these temperatures and
densities the protons, neutrons, and deuterons can be treated as classical ideal gases.

10The neutrino elastic scattering cross-section scales like the fourth power of the energy, so the collisions are both
very rare and involve very small energy and momentum transfers. This makes direct laboratory detection of the cosmic
neutrino background (CνB) infeasible at present; see Gelmini (2005).
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The proton and neutron are spin- 1
2 particles so they have two spin states each while the

deuteron is spin-1 and has three spin states:

µp =mpc2
+ kT ln

(
npλ

3
p

)
− kT ln2, (3a)

µn =mnc2
+ kT ln

(
nnλ

3
n

)
− kT ln2, (3b)

µd =mdc2
+ kT ln

(
ndλ

3
d

)
− kT ln3. (3c)

The binding energy of the deuteron is εb =mpc2
+mnc2

−mdc2
= 2.20MeV. Since the

deuteron is approximately twice as massive as protons or neutrons, the deuteron number
density is given by

nd =
3
4

npnn
λ3

pλ
3
n

λ3
d

eβεb ≈
3
√

2
npnnλ

3
peβεb . (4)

The total number density of baryons is determined by the baryon-to-photon ratio: η:
nB = ηnγ = np+nn+ 2nd. The neutron number density is qnB = nn+nd, so the deuteron
fraction is given by

fd =
nd

nB
= (1−q− fd)(q− fd)s, (5)

where the parameter s is

s=
12ζ(3)
√
π

(
kT

mpc2

)3/2

ηeβεb ; (6)

see also equation (9.1.5). Equation (5) is similar to the Saha equation for the ionization of
hydrogen atoms that will be discussed in Section 9.8 and has solution

fd =
1+ s−

√
(1+ s)2− 4s2q(1−q)

2s
. (7)

For high temperatures, s is small and fd ≈ q(1−q)s while for low temperatures, s is large
and fd ≈ q, that is, all the neutrons are bound into deuterons. The deuterium fraction as a
function of temperature is shown in Figure 9.7. The small values of the baryon-to-photon
ratio η and εb/mpc2 delayed the nucleosynthesis until the temperature had fallen to

kTn ≈
εb

ln

(
1
η

(
mpc2

εb

)3/2
) , (8)

providing the time for the neutron fraction to have decayed to q= 0.12.
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FIGURE 9.7 Plot of the equilibrium deuterium fraction fd versus temperature T for neutron fraction q= 0.12
and baryon-to-photon ratio η = 6× 10−10. As T falls below about 6× 108 K the neutrons are nearly all bound into
deuterons. Further two-body reactions convert most of the deuterium into heavier nuclei, primarily 4He.

The simple equilibrium calculation presented here assumes that no further reactions
take place. Including the fast nonequilibrium two-body reactions, namely

d+d→3H+p+ γ , (9a)

d+d→3He+n+ γ , (9b)

d+ 3H→4He+n+ γ , (9c)

d+ 3He→4He+p+ γ , (9d)

results in almost all of the deuterons being cooked into the very stable isotope 4He and
small amounts of other light nuclei. Since each 4He nucleus is composed of two protons
and two neutrons, this gives a helium mass fraction of 2q= 24 percent and proton mass
fraction of 1− 2q= 76 percent. The complete calculation involves nonequilibrium effects
modeled with rate equations for each of the nuclear interactions, including those for heav-
ier isotopes, but that only changes the predicted concentration for 4He slightly;11 see
Weinberg (2008). The largest theoretical uncertainty is, remarkably, the uncertainty in the
radioactive decay time of the neutron in equation (9.4.8); see Copi, Schramm, and Turner
(1997). Calculations of this type were first performed by Gamow, Alpher, and Herman in the
late 1940s and early 1950s. Based on current amounts of helium and other light elements

11Nuclear reactions continued slowly at a rate that had fallen out of equilibrium and shifted the isotopic ratios until
about t ≈ 10 minutes.
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in the universe, Alpher and Herman predicted a 5K cosmic microwave background over a
decade before Penzias and Wilson’s discovery; see footnote 6.

9.8 Recombination
After the nucleosynthesis took place in the first few minutes, the universe continued to
cool, with the nuclei and electrons remaining as an ordinary plasma in thermal equilib-
rium with the photons. It took several hundred thousand years for the temperature to drop
below the atomic ionization energies of a few electron volts needed for nuclei to capture
electrons and form atoms. Hydrogen was the last neutral species to form since it has the
smallest ionization energy of a Rydberg (1Ry=mee4/8ε2

0 h2
= 13.6057eV). At first glance,

one would think that atoms form when the temperature falls below Ry/k = 158,000K
but, as we will see, the huge number of photons per proton delayed recombination until
T ≈ 3000K. Once all the electrons and protons formed into neutral hydrogen atoms, the
universe became transparent due to the last scattering of radiation from free electrons.
These CMB blackbody photons were suddenly free to propagate and hence have been
traveling unscattered since that time.

The recombination reaction (that is, the inverse of the hydrogen photoionization
reaction) is

p+ e � H+ γ , (1)

so the chemical equilibrium relation from Section 6.6 gives

µp+µe = µH (2)

since, again, the chemical potential of the blackbody photons is zero.12 At the temperatures
and densities prevailing during this era (a few thousand degrees Kelvin and only about 109

atoms per cubic meter), the electrons, protons, and hydrogen atoms can all be treated as
classical ideal gases, with the result

µp =mpc2
+ kT ln(npλ

3
p)− kT ln2, (3a)

µe =mec2
+ kT ln(neλ

3
e )− kT ln2, (3b)

µH =mHc2
+ kT ln(nHλ

3
H)− kT ln4. (3c)

The binding energy of hydrogen is mpc2
+mec2

−mHc2
= 1Ry. The equilibrium condition

(6.6.3) and the ideal gas chemical potential (6.6.5) then give a simple relation between the
number densities of the three species:

nH = npneλ
3
e eβRy, (4)

12The same reaction occured for the deuterons that remained after nucleosynthesis at t ≈ 3minutes but the density
of the deuterons was 3× 10−5 times the proton density; refer to Figure 9.4.
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where

λe =
h√

2πmekT
(5)

is the electron thermal deBroglie wavelength. The number densities of free electrons and
protons are the same due to charge neutrality:

ne = np. (6)

The protons remaining after nucleosynthesis are either free or combined into hydrogen
atoms, so

np+nH = (1− 2q)nB = (1− 2q)ηnγ . (7)

Putting equations (3), (4), (6), and (7) together and making use of (9.1.5) gives the Saha
equation for the neutral hydrogen fraction:

fH =
nH

np+nH
= (1− fH)

2s, (8)

where the parameter s is

s= 4ζ(3)

√
2
π
(1− 2q)η

(
kT

mec2

)3/2

eβRy. (9)

The solution to equation (8), namely

fH =
1+ 2s−

√
1+ 4s

2s
, (10)

is shown in Figure 9.8. At temperatures above the recombination temperature, s is small so
fH is small, making the plasma fully ionized. At low temperatures s is large so fH approaches
unity, leaving just neutral atoms. The small values of the baryon-to-photon ratio η and
Ry/mec2 make the onset of recombination at temperature

kTr ≈
Ry

ln
(

1
η

(
mec2

Ry

)3/2
) , (11)

which delays the last scattering until T ≈ 3000K; see Figure 9.8.
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FIGURE 9.8 The equilibrium neutral hydrogen fraction as a function of temperature for baryon-to-phonon ratio
η = 6× 10−10 and proton fraction 1− 2q= 0.76. By the time temperature T = 3000K, 99.5 percent of the free
protons and electrons had combined into neutral hydrogen resulting in “last scattering” and the universe became
transparent. The age of the universe at that time was about 380,000 years.

9.9 Epilogue
The formation of neutral atoms about 380,000 years after the Big Bang effectively
ended the scattering of photons from free charges. The universe became transparent and
entered the “dark ages” before the first star formation. The CMB photons were no longer
in equilibrium but maintained their Planck distribution as the universe expanded. Small
density fluctuations that were present in the electron–proton plasma just before recom-
bination were imprinted on the CMB as temperature fluctuations. The CMB shown in
Figure 9.3 earlier displays temperature fluctuations of the order of ±200µK that represent
the density fluctuations in the plasma at the time of recombination. These small mass
density fluctuations led to gravitational clumping that resulted in the formation of the first
stars and galaxies 100 to 200 million years after the Big Bang. The large fraction of nonbary-
onic cold dark matter was crucial in this process. Early stars that exploded as supernovae
spewed their heavy elements (carbon, oxygen, silicon, iron, gold, uranium, etc.) into the
cosmos. Our own solar system formed from a gas and dust cloud that included heavy
elements that had been created in an earlier supernova event. Indeed, “we are stardust.”13

13Joni Mitchell, Woodstock; copyright © Siquomb Publishing Company:
“We are stardust
Billion year old carbon
We are golden
Caught in the devil’s bargain
And we’ve got to get ourselves
back to the garden”
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Problems
9.1. Use the Hubble expansion relation (9.1.1), the temperature scaling relation (9.1.3), and the energy

density relation before the electron-positron annihilation (9.3.6b) to show that the temperature as a

function of time during the first second of the universe was T(t)≈ 1010 K
√

0.992s
t .

9.2. Determine the average energy per particle and average entropy per particle for the photons,
electrons, positrons and neutrinos during the first second of the universe.

9.3. While the electromagnetic interaction between the photons and the charged electrons and
positrons kept them in equilibrium with each other during the early universe, show that the direct
electromagnetic Coulomb interaction energy between the electrons and positrons was small
compared to the relativistic kinetic energy of those species. Show that the ratio between the
Coulomb and kinetic energies is of the order of the fine structure constant:

ucoulomb

ue
≈ α =

e2

4πε0~c
=

1
137.036

.

9.4. Show that during the early part of the electron-positron annihilation era, the ratio of the electron
number density to the photon number density scaled with temperature as

n−
nγ
≈

n+
nγ
∼

(
kT

mec2

)3/2

exp
(
−βmec2

)
.

9.5. Show that after nearly all of the positrons were annihilated and the electron number density had
nearly leveled off at the proton density, the ratio of the positron number density to the photon
number density scaled with temperature as

n+
nγ
∼

(
kT

mec2

)3/2

exp
(
−2βmec2

)
.

9.6. After the positrons were annihilated, the energy density of the universe was dominated by the
photons and the neutrinos. Show that the energy density in that era was: utotal = (1+ (4/11)4/3)uγ .
Next, use the Hubble expansion relation (9.1.1), the temperature scaling relation (9.1.3), and the
energy density after the electron-positron annihilation to show that the photon temperature as a

function of time was T(t)≈ 1010 K
√

1.788s
t . This relation held from t ≈ 100s until t ≈ 200,000 years

when the energy density due to baryonic and cold dark matter began to dominate.
9.7. How would the primordial helium content of the universe have been affected if the present cosmic

background radiation temperature was 27K instead of 2.7K? What about 0.27K?
9.8. Gold-on-gold nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven

National Laboratory create a quark-gluon plasma with an energy density of about 4GeV/fm3; see
Adare et al. (2010). Treat nuclear matter as composed of a noninteracting relativistic gas of quarks
and gluons. Include the low-mass up and down quarks and their antiparticles (all spin- 1

2 ), and
spin-1 massless gluons. Like photons, the gluons are bosons, have two spin states each, and are their
own antiparticle. There are eight varieties of gluons that change the three color states of the quarks.
Only the strongly interacting particles need to be considered due to the tiny size of the plasmas.
What is the temperature of the quark-gluon plasma?

9.9. Calculate the energy density versus temperature very early in the universe when the tempera-
tures were above kT = 300MeV. At those temperatures, quarks and gluons were released from
individual nuclei. Treat the quark-gluon plasma as a noninteracting relativistic gas. At those
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temperatures, the species that are in equilibrium with one other are: photons, the three neutrino
species, electrons and positrons, muons and antimuons, up and down quarks and their antiparticles
(all spin- 1

2 ), and spin-1 massless gluons. Like photons, the gluons are bosons, have two spin states
each, and are their own antiparticle. There are eight varieties of gluons that change the three color
states of the quarks. The strange, charm, top, and bottom quarks and tau leptons are heavier than
300MeV, so they do not contribute substantially at this temperature. Use your result and equation
(9.1.1) to determine the temperature evolution as a function of the age of the universe during this
era and its age when kT ≈ 300MeV.



10
Statistical Mechanics of Interacting

Systems: The Method of
Cluster Expansions

All the systems considered in the previous chapters were composed of, or could be
regarded as composed of, noninteracting entities. Consequently, the results obtained,
though of considerable intrinsic importance, may have limitations when applied to sys-
tems that actually exist in nature. For a real contact between the theory and experiment,
one must take into account the interparticle interactions operating in the system. This
can be done with the help of the formalism developed in Chapters 3 through 5 which,
in principle, can be applied to an unlimited variety of physical systems and problems;
in practice, however, one encounters in most cases serious difficulties of analysis. These
difficulties are less stringent in the case of systems such as low-density gases, for which
a corresponding noninteracting system can serve as an approximation. The mathema-
tical expressions for the various physical quantities pertaining to such a system can be
written in the form of series expansions, whose main terms describe the correspond-
ing ideal-system results while the subsequent terms provide corrections arising from the
interparticle interactions in the system. A systematic method of carrying out such expan-
sions, in the case of real gases obeying classical statistics, was developed by Mayer and his
collaborators (1937 onward) and is known as the method of cluster expansions. Its gener-
alization, which equally well applies to gases obeying quantum statistics, was initiated by
Kahn and Uhlenbeck (1938) and was perfected by Lee and Yang (1959a,b; 1960a,b,c).

10.1 Cluster expansion for a classical gas
We start with a relatively simple physical system, namely a single-component, classical,
monatomic gas whose potential energy is given by a sum of two-particle interactions uij.
The Hamiltonian of the system is then given by

H =
∑

i

(
1

2m
p2

i

)
+

∑
i<j

uij (i, j = 1,2, . . . ,N); (1)

the summation in the second part goes over all the N(N − 1)/2 pairs of particles in the
system. In general, the potential uij is a function of the relative position vector rij(= rj− ri);

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00010-4
© 2011 Elsevier Ltd. All rights reserved.
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however, if the two-body force is a central one, then the function uij depends only on the
interparticle distance rij.

With the preceding Hamiltonian, the partition function of the system is given by, see
equation (3.5.5),

QN (V ,T)=
1

N !h3N

∫
exp

−β∑
i

(
1

2m
p2

i

)
−β

∑
i<j

uij

d3N pd3N r. (2)

Integration over the momenta of the particles can be carried out straightforwardly, with
the result

QN (V ,T)=
1

N !λ3N

∫
exp

[
−β

∑
i<j

uij

]
d3N r =

1

N !λ3N
ZN (V ,T), (3)

where λ{= h/(2πmkT)1/2
} is the mean thermal wavelength of the particles, while the

function ZN (V ,T) stands for the integral over the space coordinates r1, r2, . . . , rN :

ZN (V ,T)=
∫

exp
[
−β

∑
i<j

uij

]
d3N r =

∫ ∏
i<j

(e−βuij )d3N r. (4)

The function ZN (V ,T) is generally referred to as the configuration integral of the system.
For a gas of noninteracting particles, the integrand in (4) is unity; we then have

Z(0)N (V ,T)= V N and Q(0)
N (V ,T)=

V N

N !λ3N
, (5)

in agreement with our earlier result (3.5.9).
To treat the nonideal case we introduce, after Mayer, the two-particle function fij,

defined by the relationship

fij = e−βuij − 1. (6)

In the absence of interactions, the function fij is identically zero; in the presence of interac-
tions, it is nonzero but at sufficiently high temperatures it is quite small in comparison with
unity. We, therefore, expect that the functions fij would be quite appropriate for carrying
out a high-temperature expansion of the integrand in (4).

A typical plot of the functions uij and fij is shown in Figure 10.1; we note that (i) the
function fij is everywhere bounded and (ii) it becomes negligibly small as the interparticle
distance rij becomes large in comparison with the “effective” range, r0, of the potential.
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FIGURE 10.1 A typical plot of the two-body potential function uij and the corresponding Mayer function fij.

Now, to evaluate the configuration integral (4), we expand its integrand in ascending
powers of the functions fij:

ZN (V ,T)=
∫ ∏

i<j

(1+ fij)d3r1 · · ·d
3rN

=

∫ [
1+

∑
fij +

∑
fijfkl + ·· ·

]
d3r1 · · ·d

3rN . (7)

A convenient way of enumerating the various terms in (7) is to associate each term with a
corresponding N-particle graph. For instance, if N were 8, the terms

tA =

∫
f34 f68d3r1 · · ·d

3r8 and tB =

∫
f12 f14 f67d3r1 · · ·d

3r8 (8)

in the expansion of the configuration integral Z8 could be associated with the 8-particle
graphs

1

2

3

4

5

6

7
and

8

1

2

3

4

5

6

7

8
, (9)

respectively. A closer look at the terms tA and tB (and at the corresponding graphs) suggests
that we better regard these terms as suitably factorized (and the graphs correspondingly
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decomposed), that is,

tA =

∫
d3r1

∫
d3r2

∫
d3r5

∫
d3r7

∫
f34d3r3d3r4

∫
f68d3r6d3r8

≡ .[      ]1 [      ]2 [      ]5 [      ]7 [       3         ]4. . . . [        6         ]8 (10)

and similarly

tB =

∫
d3r3

∫
d3r5

∫
d3r8

∫
f12f14d3r1d3r2d3r4

∫
f67d3r6d3r7

≡

2 4

1

[      ]3 [      ]5 [      ]8 [       6        ]7. . . . .][ (11)

We may then say that the term tA in the expansion of the integral Z8 represents a
“configuration” in which there are four “clusters” of one particle each and two “clusters” of
two particles each, while the term tB represents a “configuration” in which there are three
“clusters” of one particle each, one “cluster” of two particles and one “cluster” of three
particles.

In view of this, we may introduce the notion of an N-particle graph which, by definition,
is a “collection of N distinct circles, numbered 1,2, . . . ,N , with a number of lines linking
some (or all) of the circles”; if the distinct pairs (of circles), which are linked through these
lines, are denoted by the symbols α,β, . . . ,λ (each of these symbols denoting a distinct pair
of indices out of the set 1,2, . . . ,N), then the graph represents the term

∫
( fαfβ · · · fλ)d3r1 · · ·d

3rN (12)

of expansion (7). A graph having the same number of linked pairs as this one but with the
set (α′,β ′, . . . ,λ′) distinct from the set (α,β, . . . ,λ) will be counted as a distinct graph, for it
represents a different term in the expansion; of course, these terms will belong to one and
the same group in the expansion. Now, in view of the one-to-one correspondence between
the various terms in the expansion (7) and the various N-particle graphs, we have

ZN (V ,T)= sum of all distinct N-particle graphs. (13)

Further, in view of the possible factorization of the various terms (or the possible decom-
position of the various graphs), we may introduce the notion of an l-cluster which, by
definition, is an “l-particle graph in which each of the l circles, numbered 1,2, . . . , l, is
directly or indirectly linked with every other circle.” As an example, we write here a
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5-particle graph, which is also a 5-cluster:

1 2

3 4 5

≡

∫
f12 f14 f15 f25 f34 d3 r1 · · ·d

3 r5. (14)

It is obvious that a cluster as such cannot be decomposed into simpler graphs inasmuch
as the corresponding term cannot be factorized into simpler terms. Furthermore, a group
of l particles (except when l = 1 or 2) can lead to a variety of l-clusters, some of which may
be equal in value; for instance, a group of three particles leads to four different 3-clusters,
namely

and2 3

1

2 3

1

2 3

1

2 3

1

,
(15)

of which the first three are equal in value. In view of the variety of ways in which an l-cluster
can appear, we may introduce the notion of a cluster integral bl, defined by

bl(V ,T)=
1

l!λ3(l−1)V
× (the sum of all possible l-clusters). (16)

So defined, the cluster integral bl(V ,T) is dimensionless and, in the limit V →∞,
approaches a finite value, bl(T), which is independent of the size and the shape of the
container (unless the latter is unduly abnormal). The first property is quite obvious. The
second one follows by noting that if we hold one of the l particles fixed, at the point r1

say, and carry out integration over the coordinates of the remaining (l− 1) particles, then,
because of the fact that the functions fij extend only over a small finite range of distances,
this integration would extend only over a limited region of the space available — a region
whose linear dimensions are of the order of the range of the functions fij;1 the result of
this integration will be practically independent of the volume of the container.2 Finally, we
integrate over the coordinates r1 of the particle that was held fixed and obtain a straight
factor of V ; this cancels out the V in the denominator of the defining formula (16). Thus,
the dependence of the cluster integral bl(V ,T) on the size of the container is no more
than a mere “surface effect” — an effect that disappears as V →∞, and we end up with
a volume-independent number bl(T).

1Hence the name “cluster.”
2Of course, some dependence on the geometry of the container will indeed arise if the fixed particle happened to be

close to the walls of the container. This is, however, unimportant when V →∞.



304 Chapter 10 . Statistical Mechanics of Interacting Systems

Some of the simpler cluster integrals are

b1 =
1
V

[
1

]
=

1
V

∫
d3r1 ≡ 1,

b2 =
1

2λ3V

[
1 2

]
=

1

2λ3V

∫∫
f12d3r1 d3r2

≈
1

2λ3

∫
f12d3r12 =

2π

λ3

∞∫
0

f (r)r2 dr (17)

=
2π

λ3

∞∫
0

(e−u(r)/kT
− 1)r2dr, (18)

b3 =
1

6λ6V
× [sum of the clusters (15)]

=
1

6λ6V

∫
( f12f13+ f12f23+ f13f23︸ ︷︷ ︸+ f12f13f23)d

3r1d3r2d3r3

≈
1

6λ6V

[
3V

∫∫
f12f13d3r12d3r13+V

∫∫
f12f13f23d3r12d3r13

]

= 2b2
2+

1

6λ6

∫∫
f12f13f23d3r12d3r13, (19)

and so on.
We now proceed to evaluate the crucial expression in (13). Obviously, an N-particle

graph will consist of a number of clusters of which, say, m1 are l-clusters, m2 are 2-clusters,
m3 are 3-clusters, and so on; the numbers {ml}must satisfy the restrictive condition

N∑
l=1

lml =N , ml = 0,1,2, . . . ,N . (20)

However, a given set of numbers {ml} does not specify a unique, single graph; it represents
a “collection of graphs” the sum total of which may be denoted by the symbol S{ml}. We
may then write

ZN (V ,T)=
∑′

{ml}
S{ml}, (21)

where the primed summation
∑
′ goes over all sets {ml} that conform to the restrictive

condition (20). Equation (21) represents a systematic regrouping of the graphs, as opposed
to the simple-minded grouping that first appeared in equation (7).
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Our next task consists of evaluating the sum S{ml}. To do this, we observe that the
“family of graphs” under the distribution set {ml} arises essentially from the following two
causes:

(i) there are, in general, many different ways of assigning the N particles of the system to
the

∑
l ml clusters, and

(ii) for any given assignment, there are, in general, many different ways of forming the
various clusters, for even with a given group of l particles an l-cluster (if l > 2) can be
formed in a number of different ways; see, for example, the four different ways of
forming a 3-cluster with a given group of three particles, as listed in (15).

For cause (i), we obtain a straightforward factor of

N !
(1!)m1(2!)m2 · · ·

=
N !∏

l
(l!)ml

. (22)

Now, if cause (ii) were not there, that is, if all l-clusters were unique in their formation,
then the sum S{ml} would be given by the product of the combinatorial factor (22) with
the value of any one graph in the setup, namely

∏
l

(the value of an l-cluster)ml , (23)

further corrected for the fact that any two arrangements that differ merely in the exchange
of all the particles in one cluster with all the particles in another cluster of the same size,
must not be counted as distinct, the corresponding correction factor being

∏
l

(1/ml !). (24)

A little reflection now shows that cause (ii) is completely and correctly taken care of if we
replace the product of the expressions (23) and (24) by the expression3

∏
l

[
(the sum of the values of all possible l-clusters)ml/ml !

]
(25)

which, with the help of equation (16), may be written as

∏
l

[
(bll!λ

3(l−1)V )ml/ml !
]

. (26)

3To appreciate the logic behind this replacement, consider expression [ ] in (25) as a multinomial expansion and
interpret the various terms of this expansion in terms of the variety of the l-clusters.
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The sum S{ml} is now given by the product of factor (22) and expression (26). Substituting
this result into (21), we obtain for the configuration integral

ZN (V ,T)=N !λ3N
∑′

{ml}

∏
l

{(
bl

V

λ3

)ml 1
ml !

}. (27)

Here, use has been made of the fact that∏
l

(λ3l)ml = λ36l lml = λ3N ; (28)

see the restrictive condition (20). The partition function of the system now follows from
equations (3) and (27), with the result

QN (V ,T)=
∑′

{ml}

 N∏
l=1

{(
bl

V

λ3

)ml 1
ml !

}. (29)

The evaluation of the primed sum in (29) is complicated by the restrictive condi-
tion (20), which must be obeyed by every set {ml}. We, therefore, move over to the grand
partition function of the system:

Q(z,V ,T)=
∞∑

N=0

zN QN (V ,T). (30)

Writing

zN
= z6l lml =

∏
l

(zl)ml , (31)

substituting for QN (V ,T) from (29), and noting that a restricted summation over sets {ml},
subject to the condition

∑
l lml =N , followed by a summation over all values of N ( from

N = 0 to N =∞) is equivalent to an unrestricted summation over all possible sets {ml}, we
obtain

Q(z,V ,T)=
∞∑

m1,m2,...=0

 ∞∏
l=1

{(
blz

l V

λ3

)ml 1
ml !

}
=

∞∏
l=1

 ∞∑
ml=0

{(
blz

l V

λ3

)ml 1
ml !

}
=

∞∏
l=1

[
exp

(
blz

l V

λ3

)]
= exp

 ∞∑
l=1

blz
l V

λ3

 (32)
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and, hence,

1
V

lnQ =
1

λ3

∞∑
l=1

blz
l. (33)

In the limit V →∞,

P
kT
≡ Lim

V→∞

(
1
V

lnQ

)
=

1

λ3

∞∑
l=1

blz
l, (34)

and

N
V
≡ Lim

V→∞

(
z
V
∂ lnQ

∂z

)
=

1

λ3

∞∑
l=1

l blz
l. (35)

Equations (34) and (35) constitute the famous cluster expansions of the Mayer–Ursell for-
malism. Eliminating the fugacity z among these equations, we obtain the equation of state
of the system.

10.2 Virial expansion of the equation of state
The approach developed in the preceding section leads to exact results only if we apply it to
the gaseous phase alone. If we attempt to include in our study the phenomena of conden-
sation, the critical point, and the liquid phase, we encounter serious difficulties relating
to (i) the limiting procedure involved in equations (10.1.34) and (10.1.35), (ii) the conver-
gence of the summations over l, and (iii) the volume dependence of the cluster integrals
bl. We, therefore, restrict our study to the gaseous phase alone. The equation of state may
then be written in the form

Pv
kT
=

∞∑
l=1

al(T)

(
λ3

v

)l−1

, (1)

where v (= V /N) denotes the volume per particle in the system. Expansion (1), which
is supposed to have been obtained by eliminating z between equations (10.1.34) and
(10.1.35), is called the virial expansion of the system and the numbers al(T) the virial coef-
ficients.4 To determine the relationship between the coefficients al and the cluster integrals
bl, we invert equation (10.1.35) to obtain z as a power series in (λ3/v) and substitute this

4For various manipulations of the virial equation of state, see Kilpatrick and Ford (1969).
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into (10.1.34). This leads to equation (1), with

a1 = b1 ≡ 1, (2)

a2 =−b2 =−
2π

λ3

∞∫
0

(
e−u(r)/kT

− 1
)

r2dr, (3)

a3 = 4b2
2− 2b3 =−

1

3λ6

∞∫
0

∞∫
0

f12f13f23d3r12d3r13, (4)

a4 =−20b3
2+ 18b2 b3− 3b4 = ·· · , (5)

and so on; here, use has also been made of formulae (10.1.17) to (10.1.19). We note that
the coefficient al is completely determined by the quantities b1, b2, . . . , bl, that is, by the
sequence of configuration integrals Z1,Z2, . . . ,Zl; see also equations (10.4.5) to (10.4.8).

From equation (4) we observe that the third virial coefficient of the gas is determined

solely by the 3-cluster
1

32
. This suggests that the higher-order virial coefficients may

also be determined solely by a special “subgroup” of the various l-clusters. This is indeed
true, and the relevant result is that, in the limit of infinite volume,5

al =−
l− 1

l
βl−1 (l ≥ 2), (6)

where βl−1 is the so-called irreducible cluster integral, defined as

βl−1 =
1

(l− 1)!λ3(l−1)V
× (the sum of all irreducible l-clusters); (7)

by an irreducible l-cluster we mean an “l-particle graph that is multiply-connected (in the
sense that there are at least two entirely independent, nonintersecting paths linking each
pair of circles in the graph).” For instance, of the four possible 3-clusters, see (10.1.15),
only the last one is irreducible. Indeed, if we express equation (4) in terms of this particular
cluster and make use of definition (7) for β2, we do obtain for the third virial coefficient

a3 =−
2
3
β2, (8)

in agreement with the general result (6).6

The quantities βl−1, like bl, are dimensionless and, in the limit V →∞, approach
finite values that are independent of the size and the shape of the container (unless the

5For a proof of this result, see Hill (1956, Sections 24 and 25); see also Section 10.4 of the present text.
6It may be mentioned here that a 2-cluster is also regarded as an irreducible cluster. Accordingly, β1 = 2b2; see

equations (10.1.16) and (10.2.7). Equation (3) then gives: a2 =−b2 =−
1
2β1, again in agreement with the general result (6).
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latter is unduly abnormal). Moreover, the two sets of quantities are mutually related; see
equations (10.4.27) and (10.4.29).

10.3 Evaluation of the virial coefficients
If a given system does not depart much from the ideal-gas behavior, its equation of state
is given adequately by the first few virial coefficients. Now, since a1 ≡ 1, the lowest-order
virial coefficient that we need to consider here is a2, which is given by equation (10.2.3):

a2 =−b2 =
2π

λ3

∞∫
0

(
1− e−u(r)/kT

)
r2 dr, (1)

u(r) being the potential energy of interparticle interaction. A typical plot of the function
u(r) was shown earlier in Figure 10.1; a typical semi-empirical formula (Lennard-Jones,
1924) is given by

u(r)= 4ε
[(σ

r

)12
−

(σ
r

)6
]

. (2)

The most significant features of an actual interparticle potential are well-simulated by the
Lennard-Jones formula (2). For instance, the function u(r) given by (2) exhibits a “mini-
mum,” of value−ε, at a distance r0(= 21/6σ) and rises to an infinitely large (positive) value
for r < σ and to a vanishingly small (negative) value for r� σ . The portion to the left of the
“minimum” is dominated by repulsive interaction that comes into play when two particles
come too close to one another, while the portion to the right is dominated by attractive
interaction that operates between particles when they are separated by a respectable dis-
tance. For most practical purposes, the precise form of the repulsive part of the potential
is not very important; it may as well be replaced by the crude approximation

u(r)=+∞ (for r < r0), (3)

which amounts to attributing an impenetrable core, of diameter r0, to each particle. The
precise form of the attractive part is, however, important; in view of the fact that there
exists good theoretical basis for the sixth-power attractive potential (see Problem 3.36),
this part may simply be written as

u(r)=−u0(r0/r)6 (r ≥ r0). (4)

The potential given by expressions (3) and (4) may, therefore, be used if one is only inter-
ested in a qualitative assessment of the situation and not in a quantitative comparison
between the theory and experiment.
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Substituting (3) and (4) into (1), we obtain for the second virial coefficient

a2 =
2π

λ3

 r0∫
0

r2dr +

∞∫
r0

[
1− exp

{
u0

kT

( r0

r

)6
}]

r2 dr

. (5)

The first integral is straightforward; the second one is considerably simplified if we
assume that (u0/kT)� 1, which makes the integrand very nearly equal to−(u0/kT)(r0/r)6.
Equation (5) then gives

a2 '
2πr3

0

3λ3

(
1−

u0

kT

)
. (6)

Substituting (6) into the expansion (10.2.1), we obtain a first-order improvement on the
ideal-gas law, namely

P '
kT
v

{
1+

2πr3
0

3v

(
1−

u0

kT

)}
(7a)

=
kT
v

{
1+

B2(T)
v

}
, say. (7b)

The coefficient B2, which is also sometimes referred to as the second virial coefficient of
the system, is given by

B2 ≡ a2λ
3
'

2πr3
0

3

(
1−

u0

kT

)
. (8)

In our derivation it was explicitly assumed that (i) the potential function u(r) is given
by the simplified expressions (3) and (4), and (ii) (u0/kT)� 1. We cannot, therefore, expect
formula (8) to be a faithful representation of the second virial coefficient of a real gas. Nev-
ertheless, it does correspond, almost exactly, to the van der Waals approximation to the
equation of state of a real gas. This can be seen by rewriting (7a) in the form

(
P+

2πr3
0 u0

3v2

)
'

kT
v

(
1+

2πr3
0

3v

)
'

kT
v

(
1−

2πr3
0

3v

)−1

,

which readily leads to the van der Waals equation of state(
P+

a

v2

)
(v−b)' kT , (9)

where

a=
2πr3

0 u0

3
and b=

2πr3
0

3
≡ 4v0. (10)
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FIGURE 10.2 A dimensionless plot showing the temperature dependence of the second virial coefficient of several
gases (after Hirschfelder et al., 1954).

We note that the parameter b in the van der Waals equation of state is exactly four times
the actual molecular volume v0, the latter being the “volume of a sphere of diameter r0”;
compare with Problem 1.4. We also note that in this derivation we have assumed that
b� v, which means that the gas is sufficiently dilute for the mean interparticle distance to
be much larger than the effective range of the interparticle interaction. Finally, we observe
that, according to this simple-minded calculation, the van der Waals parameters a and b
are temperature-independent, which in reality is not true.

A realistic study of the second virial coefficient requires the use of a realistic potential,
such as the one given by Lennard-Jones, for evaluating the integral in (1). This has indeed
been done and the results obtained are shown in Figure 10.2, where the reduced coefficient
B′2(= B2/r3

0) is plotted against the reduced temperature T ′(= kT/ε):

B′2(T
′)= 2π

∞∫
0

(
1− e−u′(r′)/T ′

)
r′2 dr′, (11)

with

u′(r′)=

{(
1
r′

)12

− 2
(

1
r′

)6
}

, (12)

r′ being equal to (r/r0); expressed in this form, the quantity B′2 is a universal function of
T ′. Included in the plot are experimental results for several gases. We note that in most
cases the agreement is reasonably good; this is especially satisfying in view of the fact
that in each case we had only two adjustable parameters, r0 and ε, against a much larger
number of experimental points available. In the first place, this agreement vindicates
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the adequacy of the Lennard-Jones potential for providing an analytical description of a
typical interparticle potential. Secondly, it enables one to derive empirical values of the
respective parameters of the potential; for instance, one obtains for argon: r0 = 3.82 Å
and ε/k = 120K.7 One cannot fail to observe that the lighter gases, hydrogen and helium,
constitute exceptions to the rather general rule of agreement between the theory and
experiment. The reason for this lies in the fact that in the case of these gases quantum-
mechanical effects assume considerable importance — more so at low temperatures. To
substantiate this point, we have included in Figure 10.2 theoretical curves for H2 and He
taking into account the quantum-mechanical effects as well; as a result, we find once again
a fairly good agreement between the theory and experiment.

As regards higher-order virial coefficients (l > 2), we confine our discussion to a gas of
hard spheres with diameter D. We then have

u(r)=

{
0 if r >D,

∞ if r ≤D,
(13)

and, hence,

f (r)=

{
0 if r >D,

−1 if r ≤D.
(14)

The second virial coefficient of the gas is then given by

a2 =
2πD3

3λ3
= 4

v0

λ3
; (15)

compare with equation (6). The third virial coefficient can be determined with the help of
equation (10.2.4), namely

a3 =−
1

3λ6

∞∫
0

∞∫
0

f12 f13 f23 d3r12 d3 r13. (16)

To evaluate this integral, we first fix the positions of particles 1 and 2 (such that r12 <D)
and let particle 3 take all possible positions so that we can effect an integration over the
variable r13; see Figure 10.3. Since our integrand is equal to−1 when each of the distances
r13 and r23 (like r12) is less than D and 0 otherwise, we have

a3 =
1

3λ6

D∫
r12=0

{∫
′

d3r13

}
d3r12, (17)

where the primed integration arises from particle 3 taking all possible positions of interest.
In view of the conditions r13 <D and r23 <D, this integral is precisely equal to the “volume

7Corresponding values for various other gases have been summarized in Hill (1960, p. 484).



10.3 Evaluation of the virial coefficients 313

2

1

3

r23

r13

r12

FIGURE 10.3

dy

1 2
D�r12 r12 D�r12

y

FIGURE 10.4

common to the spheres S1 and S2, each of radius D, centered at the fixed points 1 and
2”; see Figure 10.4. This in turn can be obtained by calculating the “volume swept by the
shaded area in the figure on going through a complete revolution about the line of centers.”
One gets:

∫
′

d3r13 =

√
[D2
−(r12/2)2]∫
0

{
2
(
D2
− y2)1/2

− r12

}
2πy dy. (18)

While the quantity within the curly brackets denotes the length of the strip shown in the
figure, the element of area 2πy dy arises from the revolution; the limits of integration for
y can be checked rather easily. The evaluation of the integral (18) is straightforward;
we get

∫
′

d3r13 =
4π
3

{
D3
−

3D2r12

4
+

r3
12

16

}
. (19)

Substituting (19) into (17) and carrying out integration over r12, we finally obtain

a3 =
5π2D6

18λ6
=

5
8

a2
2. (20)



314 Chapter 10 . Statistical Mechanics of Interacting Systems

The fourth virial coefficient of the hard-sphere gas has also been evaluated exactly. It is
given by (Boltzmann, 1899; Majumdar, 1929) 8

a4 =

{
1283
8960

+
3
2
·

73
√
(2)+ 1377{tan−1√(2)−π/4}

1120π

}
a3

2

= 0.28695a3
2. (21)

The fifth and sixth virial coefficients of this system have been computed numerically, with
the results (Ree and Hoover, 1964)

a5 = (0.1103± 0.003)a4
2, (22)

and

a6 = (0.0386± 0.004)a5
2. (23)

Ree and Hoover’s estimate of the seventh virial coefficient is 0.0127a6
2. Terms up through

10th order have been determined numerically; see Hansen and McDonald (1986) and
Malijevsky and Kolafa (2008). If the virial equation of state for hard spheres is written in
terms of the volume packing fraction η = πnD3/6, the first ten terms are

P
nkT

= 1+ 4η+ 10η2
+ 18.364768η3

+ 28.22445η4
+ 39.81545η5

+ 53.3418η6
+ 68.534η7

+ 85.805η8
+ 105.8η9

+ ·· · . (24)

Carnahan and Starling (1969) proposed a simple form for the equation of state that
closely approximates all of the known virial coefficients:

P
nkT

≈
1+ η+ η2

− η3

(1− η)3

= 1+ 4η+ 10η2
+ 18η3

+ 28η4
+ 40η5

+ 54η6
+ 70η7

+ 88η8
+ 108η9

+ 130η10
+ ·· · (25)

This gives an excellent fit to the hard sphere equation of state for the entire fluid phase
as determined in computer simulations. The fluid phase is the equilibrium phase for
0< η . 0.491. The high-density equilibrium phase of hard spheres is a face-centered cubic
solid; see Chapter 16. Many other approximate analytical forms have also been proposed
to closely reproduce the virial series; see for instance Mulero et al. (2008).

8See also Katsura (1959).
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10.4 General remarks on cluster expansions
Shortly after the pioneering work of Mayer and his collaborators, Kahn and Uhlenbeck
(1938) initiated the development of a similar treatment for quantum-mechanical systems.
Of course, their treatment applied to the limiting case of classical systems as well but it
faced certain inherent difficulties of analysis, some of which were later removed by the
formal methods developed by Lee and Yang (1959a,b; 1960a,b,c). We propose to examine
these developments in the next three sections of this chapter. First, however, we would like
to make a few general observations on the problem of cluster expansions. These obser-
vations, due primarily to Ono (1951) and Kilpatrick (1953), are of considerable interest
insofar as they hold for a very large class of physical systems. For instance, the system
may be quantum-mechanical or classical, it may be a multicomponent one or single-
component, its molecules may be polyatomic or monatomic, and so on. All we have to
assume is that (i) the system is gaseous in state and (ii) its partition functions QN (V ,T),
for some low values of N , can somehow be obtained. We can then calculate the “cluster
integrals” bl, and the virial coefficients al, of the system in the following straightforward
manner.

Quite generally, the grand partition function of the system can be written as

Q(z,V ,T)≡
∞∑

N=0

QN (V ,T)zN
=

∞∑
N=0

ZN (V ,T)
N !

( z

λ3

)N
, (1)

where we have introduced the “configuration integrals” ZN (V ,T), defined in analogy with
equation (10.1.3) of the classical treatment:

ZN (V ,T)≡N !λ3N QN (V ,T). (2)

Dimensionally, the quantity ZN is like (a volume)N ; moreover, the quantity Z0 (like Q0) is
supposed to be identically equal to 1, while Z1(≡ λ

3Q1) is identically equal to V . We then
have, in the limit V →∞,

P
kT
≡

1
V

lnQ =
1
V

ln
{

1+
Z1

1!

( z

λ3

)1
+

Z2

2!

( z

λ3

)2
+ ·· ·

}
(3)

=
1

λ3

∞∑
l=1

blz
l, say. (4)

Again, the last expression has been written in analogy with the classical expansion
(10.1.34); the coefficients bl may, therefore, be looked upon as the cluster integrals of the
given system. Expanding (3) as a power series in z and equating respective coefficients with
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the bl of (4), we obtain

b1 =
1
V

Z1 ≡ 1, (5)

b2 =
1

2!λ3V
(Z2−Z2

1 ), (6)

b3 =
1

3!λ6V
(Z3− 3Z2Z1+ 2Z3

1 ), (7)

b4 =
1

4!λ9V
(Z4− 4Z3Z1− 3Z2

2 + 12Z2Z2
1 − 6Z4

1 ), (8)

and so on. We note that, for all l > 1, the sum of the coefficients appearing within the
parentheses is identically equal to zero. Consequently, in the case of an ideal classical gas,
for which Zi ≡ V i, see equation (10.1.4), all cluster integrals with l > 1 vanish. This, in turn,
implies the vanishing of all the virial coefficients of the gas (except, of course, a1, which is
identically equal to unity).

Comparing equations (6) through (8) with equation (10.1.16), we find that the expres-
sions involving the products of the various Zi that appear within the parentheses play the
same role here as “the sum of all possible l-clusters” does in the classical case. We there-
fore expect that, in the limit V →∞, the bl here would also be independent of the size and
the shape of the container (unless the latter is unduly abnormal). This, in turn, requires
that the various combinations of the Zi appearing within the parentheses here must all be
proportional to the first power of V . This observation leads to the very interesting result,
first noticed by Rushbrooke, namely

bl =
1

l!λ3(l−1)
× (the coefficient of V l in the volume expansion of Zl). (9)

At this stage, it seems worthwhile to point out that the expressions appearing within
the parentheses of equations (6) through (8) are well-known in mathematical statistics as
the semi-invariants of Thiele. The general formula for these expressions is

(. . .)l ≡ bl
{

l!λ3(l−1)V
}

= l!
∑′

{mi}
(−1)6imi−1

[(∑
i

mi− 1

)
!
∏

i

{
(Zi/i!)mi

mi!

}]
, (10)

where the primed summation goes over all sets {mi} that conform to the condition

l∑
i=1

imi = l; mi = 0,1,2, . . . . (11)
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Relations inverse to (10) can be written down by referring to equation (10.1.29) of the
classical treatment; thus

ZM ≡M !λ3M QM =M !λ3M
∑′

{ml}

M∏
l=1

 (V bl/λ
3)ml

ml !

 , (12)

where the primed summation goes over all sets {ml} that conform to the condition

M∑
l=1

lml =M ; ml = 0,1,2 . . . . (13)

The calculation of the virial coefficients al now consists of a straightforward step that
involves a use of formulae (5) through (8) in conjunction with formulae (10.2.2) through
(10.2.5). It appears, however, of interest to demonstrate here the manner in which the gen-
eral relationship (10.2.6) between the virial coefficients al and the “irreducible cluster inte-
grals” βl−1 arises mathematically. As a bonus, we will acquire yet another interpretation of
the βk.

Now, in view of the relations

P
kT
≡ Lim

V→∞

(
1
V

lnQ

)
=

1

λ3

∞∑
l=1

blz
l (14)

and

1
v
≡ Lim

V→∞

(
z
V
∂ lnQ

∂z

)
=

1

λ3

∞∑
l=1

l blz
l, (15)

we can write

P(z)
kT
=

z∫
0

1
v(z)

dz
z

. (16)

We introduce a new variable x, defined by

x = nλ3
= λ3/v. (17)

In terms of this variable, equation (15) becomes

x(z)=
∞∑

l=1

l blz
l, (18)

the inverse of which may be written (see Mayer and Harrison, 1938; Harrison and Mayer,
1938; also Kahn, 1938) as

z(x)= x exp{−φ(x)}. (19)
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In view of the fact that, for z� 1, the variables z and x are practically the same, the function
φ(x)must tend to zero as x→ 0; it may, therefore, be expressed as a power series in x:

φ(x)=
∞∑

k=1

βkxk. (20)

It may be mentioned beforehand that the coefficients βk of this expansion are ulti-
mately going to be identified with the “irreducible cluster integrals” βl−1. Substituting from
equations (17), (19), and (20) into equation (16), we get

P(x)
kT
=

x∫
0

x

λ3

{
1
x
−φ′(x)

}
dx =

1

λ3

x−

x∫
0


∞∑

k=1

kβkxk

dx


=

x

λ3

1−
∞∑

k=1

(
k

k+ 1
βkxk

). (21)

Combining (17) and (21), we obtain

Pv
kT
= 1−

∞∑
k=1

(
k

k+ 1
βkxk

)
. (22)

Comparing this result with the virial expansion (10.2.1), we arrive at the desired relation-
ship:

al =−
l− 1

l
βl−1 (l > 1). (23)

For obvious reasons, the βk appearing here may be regarded as a generalization of the
irreducible cluster integrals of Mayer.

Finally, we would like to derive a relationship between the βk and the bl. For this, we
make use of a theorem due to Lagrange which, for the present purpose, states that “the
solution x(z) to the equation

z(x)= x/f (x) (24)

is given by the series

x(z)=
∞∑

j=1

zj

j!

[
dj−1

dξ j−1
{f (ξ)}j

]
”

ξ=0

; (25)

it is obvious that the expression within the square brackets is ( j− 1)! times “the coefficient
of ξ j−1 in the Taylor expansion of the function { f (ξ)}j about the point ξ = 0.” Applying this
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theorem to the function

f (x)= exp{φ(x)} = exp


∞∑

k=1

βkxk

=
∞∏

k=1

exp(βkxk), (26)

we obtain

x(z)=
∞∑

j=1

zj

j!
( j− 1)!×

the coefficient ofξ j−1 in the Taylor expansion

of
∞∏

k=1

exp( jβkξ
k) about ξ = 0

 .

Comparing this with equation (18), we get

bj =
1

j2
×

the coefficient of ξ j−1 in
∞∏

k=1

 ∑
mk≥0

( jβk)
mk

mk !
ξkmk


=

1

j2

∑′

{mk}

j−1∏
k=1

( jβk)
mk

mk !
, (27)

where the primed summation goes over all sets {mk} that conform to the condition

j−1∑
k=1

kmk = j− 1; mk = 0,1,2, . . . . (28)

Formula (27) was first obtained by Maria Goeppert-Mayer in 1937. Its inverse, however,
was established much later (Mayer et al., 1942; Kilpatrick, 1953):

βl−1 =

∑′

{mi}
(−1)6imi−1 (l− 2+6imi)!

(l− 1)!

∏
i

(i bi)
mi

mi!
, (29)

where the primed summation goes over all sets {mi} that conform to the condition

l∑
i=2

(i− 1)mi = l− 1; mi = 0,1,2, . . . . (30)

It is not difficult to see that the highest value of the index i in the set {mi} would be l
(the corresponding set having all its mi equal to 0, except ml which would be equal to 1);
accordingly, the highest order to which the quantities bi would appear in the expression

for βl−1 is that of bl. We thus see, once again, that the virial coefficient al is completely

determined by the quantities b1, b2, . . . , bl.
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10.5 Exact treatment of the second
virial coefficient

We now present a formulation, originally from Uhlenbeck and Beth (1936) and Beth and
Uhlenbeck (1937), that enables us to make an exact calculation of the second virial coeffi-
cient of a quantum-mechanical system from a knowledge of the two-body potential u(r).9

In view of equation (10.4.6),

b2 =−a2 =
1

2λ3V

(
Z2−Z2

1

)
. (1)

For the corresponding noninteracting system, one would have

b
(0)
2 =−a(0)2 =

1

2λ3V

(
Z(0)2 −Z(0)21

)
; (2)

the superscript (0) on the various symbols here implies that they pertain to the noninteract-
ing system. Combining (1) and (2), and remembering that Z1 = Z(0)1 = V , we obtain

b2− b
(0)
2 =

1

2λ3V

(
Z2−Z(0)2

)
(3)

which, by virtue of relation (10.4.2), becomes

b2− b
(0)
2 =

λ3

V

(
Q2−Q(0)

2

)
=
λ3

V
Tr
(

e−βĤ2 − e−βĤ(0)
2

)
. (4)

For evaluating the trace in (4), we need to know the eigenvalues of the two-body
Hamiltonian which, in turn, requires solving the Schrödinger equation10

Ĥ29α(r1, r2)= Eα9α(r1, r2), (5)

where

Ĥ2 =−
~2

2m

(
∇

2
1 +∇

2
2

)
+u(r12). (6)

Transforming to the center-of-mass coordinates R
{
=

1
2 (r1+ r2)

}
and the relative coordi-

nates r{= (r2− r1)}, we have

9α(R, r)= ψj(R)ψn(r)=
{

1

V 1/2
ei(Pj ·R)/~

}
ψn(r), (7)

with

Eα =
P2

j

2(2m)
+ εn. (8)

9For a discussion of the third virial coefficient, see Pais and Uhlenbeck (1959).
10For simplicity, we assume the particles to be “spinless.” For the influence of spin, see Problems 10.11 and 10.12.
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Here, P denotes the total momentum of the two particles and 2m their total mass, while ε
denotes the energy associated with the relative motion of the particles; the symbol α refers
to the set of quantum numbers j and n that determine the actual values of the variables P
and ε. The wave equation for the relative motion will be− ~2

2
(

1
2 m

)∇2
r +u(r)

ψn(r)= εnψn(r), (9)

1
2 m being the reduced mass of the particles; the normalization condition for the relative
wavefunction will be ∫

|ψn(r)|2d3r = 1. (10)

Equation (4) thus becomes

b2− b
(0)
2 =

λ3

V

∑
α

{
e−βEα − e−βE(0)α

}

=
λ3

V

∑
j

e
−βP2

j /4m∑
n

{
e−βεn − e−βε

(0)
n

}
. (11)

For the first sum, we obtain

∑
j

e
−βP2

j /4m
≈

4πV

h3

∞∫
0

e−βP2/4mP2dP =
81/2V

λ3
, (12)

so that equation (11) becomes

b2− b
(0)
2 = 81/2

∑
n

{
e−βεn − e−βε

(0)
n

}
. (13)

The next step consists of examining the energy spectra, εn and ε(0)n , of the two systems.
In the case of a noninteracting system, all we have is a “continuum”

ε
(0)
n =

p2

2
(

1
2 m

) = ~2k2

m
(k = p/~), (14)

with the standard density of states g(0)(k). In the case of an interacting system, we may
have a set of discrete eigenvalues εB (that correspond to “bound” states), along with a
“continuum”

εn =
~2k2

m
(k = p/~), (15)
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with a characteristic density of states g(k). Consequently, equation (13) can be written as

b2− b
(0)
2 = 81/2

∑
B

e−βεB + 81/2

∞∫
0

e−β~2k2/m
{g(k)− g(0)(k)}dk, (16)

where the summation in the first part goes over all bound states made possible by the
two-body interaction.

The next thing to consider here is the density of states g(k). For this, we note that, since
the two-body potential is assumed to be central, the wavefunction ψn(r) for the relative
motion may be written as a product of a radial function χ(r) and a spherical harmonic
Y (θ ,ϕ):

ψklm(r)= Aklm
χkl(r)

r
Yl,m(θ ,ϕ). (17)

Moreover, the requirement of symmetry, namely ψ(−r)= ψ(r) for bosons and ψ(−r)=
−ψ(r) for fermions, imposes the restriction that the quantum number l be even for bosons
and odd for fermions. The (outer) boundary condition on the wavefunction may be written
as

χkl(R0)= 0, (18)

where R0 is a fairly large value (of the variable r) that ultimately goes to infinity. Now, the
asymptotic form of the function χkl(r) is well-known:

χkl(r)∝ sin
{

kr−
lπ
2
+ ηl(k)

}
; (19)

accordingly, we must have

kR0−
lπ
2
+ ηl(k)= nπ , n= 0,1,2, . . . . (20)

The symbol ηl(k) here stands for the scattering phase shift due to the two-body potential
u(r) for the lth partial wave of wave number k.

Equation (20) determines the full spectrum of the partial waves. To obtain from it an
expression for the density of states gl(k), we observe that the wave number difference 1k
between two consecutive states n and n+ 1 is given by the formula{

R0+
dηl(k)

dk

}
1k = π , (21)

with the result that

gl(k)=
2l+ 1
1k

=
2l+ 1
π

{
R0+

∂ηl(k)
∂k

}
; (22)
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the factor (2l+ 1) has been included here to take account of the fact that each eigenvalue
k pertaining to an lth partial wave is (2l+ 1)-fold degenerate (because the magnetic quan-
tum number m can take any of the values l,(l− 1), . . . ,−l, without affecting the eigenvalue).
The total density of states, g(k), of all partial waves of wave numbers around the value k is
then given by

g(k)=
∑′

l
gl(k)=

1
π

∑′

l
(2l+ 1)

{
R0+

∂ηl(k)
∂k

}
; (23)

note that the primed summation
∑
′ goes over l = 0,2,4, . . . in the case of bosons and over

l = 1,3,5, . . . in the case of fermions. For the corresponding noninteracting case, we have
(since all ηl(k)= 0)

g(0)(k)=
R0

π

∑′

l
(2l+ 1). (24)

Combining (23) and (24), we obtain

g(k)− g(0)(k)=
1
π

∑′

l
(2l+ 1)

∂ηl(k)
∂k

. (25)

Substituting (25) into (16), we obtain the desired result

b2− b
(0)
2 = 81/2

∑
B

e−βεB +
81/2

π

∑′

l
(2l+ 1)

∞∫
0

e−β~2k2/m ∂ηl(k)
∂k

dk (26)

which, in principle, is calculable for any given potential u(r) through the respective phase
shifts ηl(k).

Equation (26) can be used for determining the quantity b2− b(0)2 . To determine b2 itself,

we must know the value of b(0)2 . This has already been obtained in Section 7.1 for bosons
and in Section 8.1 for fermions; see equations (7.1.13) and (8.1.17). Thus

b
(0)
2 =−a(0)2 =±

1

25/2
, (27)

where the upper sign holds for bosons and the lower sign for fermions. It is worthwhile to
note that the foregoing result can be obtained directly from the relationship

b
(0)
2 =

1

2λ3V

(
Z(0)2 −Z(0)21

)
=
λ3

V

(
Q(0)

2 −
1
2

Q(0)2
1

)
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by substituting for Q(0)
2 the exact expression (5.5.25):

b
(0)
2 =

λ3

V

[{
1
2

(
V

λ3

)2

±
1

25/2

(
V

λ3

)1
}
−

1
2

(
V

λ3

)2
]
=±

1

25/2
. (28)11

It is of interest to note that this result can also be obtained by using the classical for-
mula (10.1.18) and substituting for the two-body potential u(r) the “statistical potential”
(5.5.28); thus

b
(0)
2 =

2π

λ3

∞∫
0

(
e−us(r)/kT

− 1
)

r2dr

=±
2π

λ3

∞∫
0

e−2πr2/λ2
r2dr =±

1

25/2
. (29)

As an illustration of this method, we now calculate the second virial coefficient of a gas
of hard spheres. The two-body potential in this case may be written as

u(r)=

{
+∞ for r <D

0 for r >D.
(30)

The scattering phase shifts ηl(k) can now be determined by making use of the (inner)
boundary condition, namely χ(r)= 0 for all r <D and hence it vanishes as r→D from
the above. We thus obtain (see, for example, Schiff, 1968)

ηl(k)= tan−1 jl(kD)
nl(kD)

, (31)

where jl(x) and nl(x) are, respectively, the “spherical Bessel functions” and the “spherical
Neumann functions”:

j0(x)=
sinx

x
, j1(x)=

sinx− x cosx

x2
,

j2(x)=
(3− x2)sinx− 3x cosx

x3
, . . .

and

n0(x)=−
cosx

x
, n1(x)=−

cosx+ x sinx

x2
,

n2(x)=−
(3− x2)cosx+ 3x sinx

x3
, . . . .

11This calculation incidentally verifies the general formula (10.4.9) for the case l = 2. By that formula, the “cluster
integral” b2 of a given system would be equal to 1/(2λ3) times the coefficient of V 1 in the volume expansion of the
“configuration integral” Z2 of the system. In the case under study, this coefficient is±λ3/23/2; hence the result.
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Accordingly,

η0(k)= tan−1
{− tan(kD)} = −kD, (32)

η1(k)= tan−1
{
−

tan(kD)− kD
1+ kD tan(kD)

}
=−{kD− tan−1(kD)}

= −
(kD)3

3
+
(kD)5

5
− ·· · , (33)

η2(k)= tan−1

{
−

tan(kD)− 3(kD)/[3− (kD)2]

1+ 3(kD) tan(kD)/[3− (kD)2]

}

=−

{
kD− tan−1 3(kD)

3− (kD)2

}
=−

(kD)5

45
+ ·· · , (34)

and so on. We now have to substitute these results into formula (26). However, before doing
that we should point out that, in the case of hard-sphere interaction, (i) we cannot have
bound states at all and (ii) since, for all l,ηl(0)= 0, the integral in (26) can be simplified by
a prior integration by parts. Thus, we have

b2− b
(0)
2 =

81/2λ2

π2

∑′

l
(2l+ 1)

∞∫
0

e−β~2k2/mηl(k)k dk. (35)

Substituting for l = 0 and 2 in the case of bosons and for l = 1 in the case of fermions, we
obtain (to fifth power in D/λ)

b2− b
(0)
2 =−2

(
D
λ

)1

−
10π2

3

(
D
λ

)5

− ·· · (Bose) (36)

=−6π
(

D
λ

)3

+ 18π2
(

D
λ

)5

− ·· · (Fermi), (37)

which may be compared with the corresponding classical result−(2π/3)(D/λ)3.

10.6 Cluster expansion for a quantum-mechanical
system

When it comes to calculating bl for l > 2 we have no formula comparable in simplicity to

formula (10.5.26) for b2. This is due to the fact that we have no treatment of the l-body
problem (for l > 2) that is as neat as the phase-shift analysis of the two-body problem.
Nevertheless, a formal theory for the calculation of higher-order “cluster integrals” has
been developed by Kahn and Uhlenbeck (1938); an elaboration by Lee and Yang (1959a,b;
1960a,b,c) has made this theory almost as good for treating a quantum-mechanical sys-
tem as Mayer’s theory has been for a classical gas. The basic approach in this theory is to
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evolve a scheme for expressing the grand partition function of the given system in essen-
tially the same way as Mayer’s cluster expansion does for a classical gas. However, because
of the interplay of quantum-statistical effects and the effects arising from interparticle
interactions, the mathematical structure of this theory is considerably involved.

We consider here a quantum-mechanical system of N identical particles enclosed in a
box of volume V . The Hamiltonian of the system is assumed to be of the form

ĤN =−
~2

2m

N∑
i=1

∇
2
i +

∑
i<j

u(rij). (1)

Now, the partition function of the system is given by

QN (V ,T)≡ Tr(e−βĤN )=
∑
α

e−βEα

=

∑
α

∫
V

{9∗α(1, . . . ,N)e−βĤN9α(1, . . . ,N)}d3N r, (2)

where the functions 9α are supposed to form a complete set of (properly symmetrized)
orthonormal wavefunctions of the system, while the numbers 1, . . . ,N denote the posi-
tion coordinates r1, . . . , rN , respectively. We may as well introduce the probability density
operator ŴN of the system through the matrix elements

〈1′, . . . ,N ′|ŴN |1, . . . ,N〉 ≡N !λ3N
∑
α

{9α(1′, . . . ,N ′)e−βĤN9∗α(1, . . . ,N)}

=N !λ3N
∑
α

{9α(1′, . . . ,N ′)9∗α(1, . . . ,N)}e−βEα . (3)

We denote the diagonal elements of the operator ŴN by the symbols WN (1, . . . ,N); thus

WN (1, . . . ,N)=N !λ3N
∑
α

{9α(1, . . . ,N)9∗α(1, . . . ,N)}e−βEα , (4)

whereby equation (2) takes the form

QN (V ,T)=
1

N !λ3N

∫
V

WN (1, . . . ,N)d3N r =
1

N !λ3N
Tr (ŴN ). (5)

A comparison of equation (5) with equations (10.1.3) and (10.4.2) shows that the “trace of
the probability density operator ŴN ” is the analogue of the “configuration integral” ZN ,
and the quantity WN (1, . . . ,N)d3N r is a measure of the probability that the “configuration”
of the given system is found to be within the interval [(r1, . . . , rN ),(r1+dr1, . . . , rN +drN )].

Before we proceed further, let us acquaint ourselves with some of the basic properties
of the matrix elements (3):
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(i)
〈1′|Ŵ1|1〉 = λ

3
∑

p

{
1√
V

ei(p·r′1)/~
1√
V

e−i(p·r1)/~
}

e−βp2/2m

'
λ3

V

+∞∫∫∫
−∞

Vd3p

h3
e{ip·(r′1−r1)/~−βp2/2m}

= e−π |r
′
1−r1|

2/λ2
; (6)

compare with equation (5.3.14) for the density matrix of a single particle. The
foregoing result is a manifestation of the quantum-mechanical, not
quantum-statistical, correlation between the positions r and r′ of a given particle (or,
for that matter, any particle in the system). This correlation extends over distances
of the order of λwhich is, therefore, a measure of the linear dimensions of the wave
packet representing the particle. As T→∞, and hence λ→ 0, the matrix element (6)
tends to zero for all finite values of |r′1− r1|.

(ii) 〈1|Ŵ1|1〉 = 1; (7)

consequently, by equation (5),

Q1(V ,T)=
1

λ3

∫
V

1d3r =
V

λ3
. (8)

(iii) Whatever the symmetry character of the wavefunctions9, the diagonal elements
WN (1, . . . ,N) of the probability density operator ŴN are symmetric in respect of a
permutation among the arguments (1, . . . ,N).

(iv) The elements WN (1, . . . ,N) are invariant under a unitary transformation of the set
{9α}.

(v) Suppose that the coordinates r1, . . . , rN are such that they can be divided into two
groups, A and B, with the property that any two coordinates, say ri and rj, of which
one belongs to group A and the other to group B, satisfy the conditions that
(a) the separation rij is much larger than the mean thermal wavelength λ of the

particles, and
(b) it is also much larger than the effective range r0 of the two-body potential, then

WN (r1, . . . , rN )'WA(rA)WB(rB), (9)

where rA and rB denote collectively the coordinates in group A and group B,
respectively. It is not easy to furnish here a rigorous mathematical proof of this
property, though physically it is quite understandable. One can see this by noting
that, in view of conditions (a) and (b), there does not exist any spatial correlation
between the particles of group A on one hand and the particles of group B on the
other (either by virtue of statistics or by virtue of interparticle interactions). The two
groups, therefore, behave toward each other like two independent entities. It is then
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natural that, to a very good approximation, the probability density WN of the
composite configuration be equal to the product of the probability densities WA

and WB.

We now proceed with the formulation. First of all, to fix ideas about the approach to be
followed, we may consider the case with N = 2. In that case, as r12→∞, we expect, in view
of property (v), that

W2(1,2)→W1(1)W1(2)= 1. (10)

In general, however, W2(1,2) will be different from W1(1)W1(2). Now, if we denote the
difference between W2(1,2) and W1(1)W1(2) by the symbol U2(1,2), then, as r12→∞,

U2(1,2)→ 0. (11)

It is not difficult to see that the quantity U2(1,2) is the quantum-mechanical analogue of
the Mayer function fij. With this in mind, we introduce a sequence of cluster functions Ûl

defined by the hierarchy12

〈1′|Ŵ1|1〉 = 〈1
′
|Û1|1〉, (12)

〈1′,2′|Ŵ2|1,2〉 = 〈1′|Û1|1〉〈2
′
|Û1|2〉+ 〈1

′,2′|Û2|1,2〉, (13)

〈1′,2′,3′|Ŵ3|1,2,3〉 = 〈1′|Û1|1〉〈2
′
|Û1|2〉〈3

′
|Û1|3〉

+ 〈1′|Û1|1〉〈2
′,3′|Û2|2,3〉

+ 〈2′|Û1|2〉〈1
′,3′|Û2|1,3〉

+ 〈3′|Û1|3〉〈1
′,2′|Û2|1,2〉

+ 〈1′,2′,3′|Û3|1,2,3〉, (14)

and so on. A particular Ûl is thus defined with the help of the first l equations of the
hierarchy. The last equation in this hierarchy will be (writing only the diagonal elements)

WN (1, . . . ,N)=
∑′

{ml}

{∑
P

[U1() · · ·U1()
m1 factors

][U2() · · ·U2()
m2 factors

] · · ·

}
, (15)

where the primed summation goes over all sets {ml} that conform to the condition

N∑
l=1

lml =N ; ml = 0,1,2, . . . . (16)

12The functions Ul were first introduced by Ursell, in 1927, in order to simplify the classical configuration integral.
Their introduction into the quantum-mechanical treatment is due to Kahn and Uhlenbeck (1938).
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Moreover, in selecting the arguments of the various Ul appearing in (15), out of the num-
bers 1, . . . ,N , one has to remember that a permutation of the arguments within the same
bracket is not regarded as leading to anything distinctly different from what one had
before the permutation; the symbol

∑
P then denotes a summation over all distinct ways

of selecting the arguments under the set {ml}.
Relations inverse to the preceding ones are easy to obtain. One gets

〈1′|Û1|1〉 = 〈1
′
|Ŵ1|1〉, (17)

〈1′,2′|Û2|1,2〉 = 〈1′,2′|Ŵ2|1,2〉− 〈1′|Ŵ1|1〉〈2
′
|Ŵ1|2〉, (18)

〈1′,2′,3′|Û3|1,2,3〉 = 〈1′,2′,3′|Ŵ3|1,2,3〉

− 〈1′|Ŵ1|1〉〈2
′,3′|Ŵ2|2,3〉

− 〈2′|Ŵ1|2〉〈1
′,3′|Ŵ2|1,3〉

− 〈3′|Ŵ1|3〉〈1
′,2′|Ŵ2|1,2〉

+ 2〈1′|Ŵ1|1〉〈2
′
|Ŵ1|2〉〈3

′
|Ŵ1|3〉, (19)

and so on; compare the right sides of these equations with the expressions appear-
ing within the parentheses in equations (10.4.5) through (10.4.7). We note that (i) the
coefficient of a general term here is

(−1)

∑
l

ml−1(∑
l

ml − 1
)

! , (20)

where
∑

l ml is the number of the Wn in the term, and (ii) the sum of the coefficients of
all the terms on the right side of equations (18), (19), . . . is identically zero. Moreover, the
diagonal elements Ul(1, . . . , l), just like the diagonal elements of the operators Ŵn, are sym-
metric in respect of permutations among the arguments (1, . . . , l), and are determined by
the sequence of the diagonal elements W1,W2, . . . ,Wl. Finally, in view of property (v) of the
Wn, as embodied in formula (9), the Ul possess the following property:

Ul(1, . . . , l)' 0 if rij� λ,r0; (21)

here, rij is the separation between any two of the coordinates (1, . . . , l ).13

We now define the “cluster integral” bl by the formula

bl(V ,T)=
1

l!λ3(l−1)V

∫
Ul(1, . . . , l )d3lr; (22)

compare with equation (10.1.16). Clearly, the quantity bl(V ,T) is dimensionless and, by
virtue of property (21) of the diagonal elements Ul(1, . . . , l), is practically independent of V
(so long as V is large). In the limit V →∞, bl(V ,T) tends to a finite volume-independent

13This can be seen by examining the break-up of the structure on the right side of any equation in the hierarchy
(18, 19, . . .) when one or more of the l coordinates in the “cluster” get sufficiently separated from the rest.
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value, which may be denoted by bl(T). We then obtain for the partition function of the
system, see equations (5) and (15),

QN (V ,T)=
1

N !λ3N

∫
d3N r

{∑′

{ml}

[∑
P

[U1 · · ·U1][U2 · · ·U2] · · ·

]}
(23)

=
1

N !λ3N

∑′

{ml}

N !
(1!)m1(2!)m2 · · ·m1!m2! · · ·

×

∫
d3N r{[U1 · · ·U1][U2 · · ·U2] · · · }. (24)

In writing the last result we have made use of the fact that, since a permutation among
the arguments of the functions Ul does not affect the value of the integral concerned,
the summation over P may be replaced by any one term of the summation, multiplied
by the number of distinct permutations allowed by the set {ml}; compare with the corre-
sponding product of the numbers (10.1.22) and (10.1.24). Making use of the definition (22),
equation (24) can be written as

QN (V ,T)=
1

λ3N

∑′

{ml}

 N∏
l=1

{blλ
3(l−1)V )ml/ml ! }


=

∑′

{ml}

 N∏
l=1

{(
bl

V

λ3

)ml 1
ml !

} ; (25)

again, use has been made of the fact that

∏
l

(λ3l)ml = λ
3
∑
l

lml
= λ3N . (26)

Equation (25) is formally identical to equation (10.1.29) of Mayer’s theory. The subsequent
development of the formalism, leading to the equation of state of the system, is formally
identical to that theory. Thus, we finally obtain

P
kT
=

1

λ3

∞∑
l=1

blz
l and

1
v
=

1

λ3

∞∑
l=1

l blz
l. (27)

There are, however, important physical differences. We may recall that the calculation
of the cluster integrals bl in the classical case involved the evaluation of a number of finite,
3l-dimensional integrals. The corresponding calculation in the quantum-mechanical case
requires a knowledge of the functions Ul and hence of all Wn, with n≤ l; this in turn
requires solutions of the n-body Schrödinger equation for all n≤ l. The case l = 2 can
be handled neatly, as was done in Section 10.5. For l > 2, the mathematical procedure
is rather cumbersome. Nevertheless, Lee and Yang (1959a,b; 1960a,b,c) have evolved a
scheme that enables us to calculate the higher bl in successive approximations. According
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to that scheme, the functions Ul of a given system can be evaluated by “separating out”
the effects of statistics from those of interparticle interactions, that is, we first take care of
the statistical aspect of the problem and then tackle the dynamical aspect of it. Thus, the
whole feat is accomplished in two steps.

First, the U-functions pertaining to the given system are expressed in terms of U-
functions pertaining to a corresponding quantum-mechanical system obeying Boltzmann
statistics, that is, a (fictitious) system described by unsymmetrized wavefunctions. This
step takes care of the statistics of the given system, that is, of the symmetry properties
of the wavefunctions describing the system. Next, the U-functions of the (fictitious) Boltz-
mannian system are expanded, loosely speaking, in powers of a binary kernel B which is
obtainable from a solution of the two-body problem with the given interaction. A com-
mendable feature of this method is that it can be applied even if the given interaction
contains a singular, repulsive core, that is, even if the potential energy for certain configu-
rations of the system becomes infinitely large. Though the method is admirably systematic
and fairly straightforward in principle, its application to real systems is quite complicated.
We will, therefore, turn to a more practical method — the method of quantized fields (see
Chapter 11) — which has been extremely useful in the study of quantum-mechanical sys-
tems composed of interacting particles. For a detailed exposition of the (binary collision)
method of Lee and Yang, see Sections 9.7 and 9.8 of the first edition of this book.

In passing, we note yet another important difference between the quantum-
mechanical case and the classical one. In the latter case, if interparticle interactions are
absent, then all bl, with l ≥ 2, vanish. This is not true in the quantum-mechanical case;
here, see Sections 7.1 and 8.1,

b
(0)
l = (±1)l−1l−5/2, (28)

of which equation (10.5.27) was a special case.

10.7 Correlations and scattering
Correlations and scattering play an extremely important role in modern statistical
mechanics. Different phases most are easily distinguished by different spatial orderings
they display. Molecules in a low-density vapor are nearly uncorrelated whereas molecules
in a dense liquid can be strongly correlated and display short-range order due to their
strong steric repulsions but the correlations decay away rapidly at large distances. In crys-
talline solids, the location of every particle is highly correlated with the location of all the
others, and these correlations do not decay away to zero at large distances between the
particles; this is called long-range order. At a critical point, systems display order that lies
between short-range and long-range, with so-called quasi-long-range order characterized
by a power-law decay of correlations. Crystals and liquid-crystal phases display molecu-
lar orientational correlations that can be short-range, long-range, or quasi-long-range in
addition to the various spatial orderings of the molecules. Different phases of magnets
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are distinguished by the spatial orderings of the magnetic dipoles: short-range ordering in
paramagnets, long-range ordering in ferromagnets and antiferromagnets, and power-law
decay of correlations at magnetic critical points.

Spatial correlation functions are based on n-particle densities. The one-body number
density is defined by the average quantity

n1(r)=

〈∑
i

δ(r− ri)

〉
. (1)

This defines the local number density in which n1(r)dr is a measure of the probabil-
ity of finding a particle inside an infinitesimal volume dr located at position r. If the
system is translationally invariant, the one-body density is the usual number density
n1(r)= n= 〈N〉/V . The spatial integral of the one-body density over volume V gives the
average number of particles in that volume:

∫
n1(r)dr = 〈N〉 . (2)

The two-body number density is defined as

n2(r, r′)=

〈∑
i 6=j

δ(r− ri)δ(r
′
− rj)

〉
. (3)

The quantity n2(r, r ′)drdr ′ is a measure of the probability of finding one particle inside the
infinitesimal volume dr located at position r and another particle inside the infinitesimal
volume dr ′ located at position r ′. In a dilute classical gas, the particles interact only when
they are close to one another, so the probability of finding two different particles at two
different locations many atomic diameters apart is simply the product of finding either
particle individually, that is, n2(r, r ′)→ n1(r)n1(r ′) as |r− r′| →∞. It is the deviation from
this uncorrelated behavior that is both interesting and important. The integral of the two-
body density over volume V gives

∫
n2(r, r′)drdr ′ =

〈
N2
〉
−〈N〉 . (4)

If the system is translationally and rotationally invariant, the one-body number density is
independent of position and the two-body number density depends only on the magni-
tude of the distance between r and r ′. This allows us to define the pair correlation function
g(r):

n2(r, r ′)= n2g
(∣∣r− r ′

∣∣) . (5)
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FIGURE 10.5 An approximate pair correlation function for hard spheres with diameter D in three dimensions. The
volume fraction η = πnD3/6' 0.49 is the fraction of the volume occupied by the particles and is close to the liquid
side of the solid-liquid phase transition in the model. The correlation function is calculated using the exact solution
of the Percus–Yevick approximation; see Percus and Yevick (1958), Wertheim (1963), and Hansen and McDonald
(1986). The correlation length for this case is ξ ≈ 2D.

In three dimensions, 4πnr2 g(r)dr is the probability of finding a particle in a spherical
shell of radius r and thickness dr, given that another particle is simultaneously located
at the origin. The pair correlation function of a classical ideal gas is equal to unity; see the
footnote to Problem 10.17.

Figure 10.5 displays the pair correlation function g(r) for a system of hard spheres
interacting via pair potential

u(r)=

{
0 if r >D,

∞ if r ≤D.
(6)

Clearly, the pair correlation function vanishes for r <D since no two particles in the system
can be closer to each other than D due to the infinite repulsion. These steric repulsions
result in an oscillatory decay of g(r). The pair correlation function is greater than unity
at separations slightly greater than D since the local geometry of the fluid enhances the
probability of finding two particles a distance slightly more than D apart; for illustration,
see Figure 10.6. The pair correlation function is less than unity at slightly larger distances
due to the repulsion of the cluster of particles just outside the hard repulsion distance.
The oscillating correlations decay rapidly with distance, so that g(r) approaches unity at
large separations. This behavior of the pair correlation function is typical of all dense fluids
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FIGURE 10.6 An equilibrium configuration of hard disks that displays steric effects leading to oscillations in the pair
correlation function. The inner dashed circle with radius D is the closest approach distance to the central disk. In
this case, the centers of five disks are close to the distance D which contributes to the enhancement in g(r) near
r =D. The outer dashed circle shows the next shell of particles that contribute to the second peak in g(r).
In-between these distances, we have a reduced probability of finding the center of a particle, leading to g(r) < 1.

and is called short-range order since the correlations decay exponentially with distance:
g(r)− 1∼ exp(−r/ξ), where ξ is called the correlation length.

The pair correlation function can be used to directly calculate the pressure in a fluid.
For a classical fluid whose potential energy can be written as a sum of pair potentials,

UN (r1, r2, . . . , rN )=
∑
i<j

u(rij), (7)

the pressure is determined by the average of the quantity r(∂u/∂r) between pairs of par-
ticles, as discussed in Section 3.7. In the canonical ensemble, the pressure P is given by

P ≡−
(
∂A
∂V

)
T ,N
=

kT
ZN

(
∂ZN

∂V

)
T ,N

, (8)

where ZN is the configurational partition function

ZN =
1

N !

∫
dN r exp

−β∑
i<j

u(rij)

. (9)

The d-dimensional integrals over the volume V can be rewritten in terms of a set of scaled
variables {si} defined by ri = V 1/dsi, so the scaled integrals are over regions with unit
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volume:

ZN =
V N

N !

∫
dN s exp

−β∑
i<j

u(V 1/dsij)

. (10)

Equations (8) and (10) then give

P = nkT
(

1−
n

2dkT

∫
du
dr

rg(r)dr
)

. (11)

This is called the virial equation of state and is useful for determining pressure from
approximate expressions for the pair correlation function. Compare equation (11) with
the form of the virial equation of state in equation (3.7.15).

For the particular case of hard spheres, the discontinuous potential results in the pres-
sure being determined by the pair correlation function at contact. In one, two, and three
dimensions, the hard sphere pressure is given by

PHS

nkT
=


1+ ηg(D+) η = nD d = 1,

1+ 2ηg(D+) η = π
4 nD2 d = 2,

1+ 4ηg(D+) η = π
6 nD3 d = 3,

(12)

where g(D+) is the correlation function at contact and η is the volume fraction, that is, the
fraction of the d-dimensional volume of the sample occupied by the spheres; see Problem
10.14. Likewise, the internal energy of the fluid can be written as an integral over the pair
correlation function and the pair potential:

U(N ,V ,T)= 〈H〉 =
dNkT

2
+

nN
2

∫
u(r)g(r)dr. (13)

The pair correlation function itself contains all the statistical information needed to
construct the full thermodynamic behavior of the system. For example, equation (4) can
be used to show that the isothermal compressibility, which is proportional to the number
density fluctuations, is also proportional to an integral over the pair correlation function:

nkTκT =
κT

κ ideal
T

= 1+n
∫
(g(r)− 1)dr =

〈
N2〉
−〈N〉2

〈N〉
; (14)

this is known as the compressibility equation of state. Since κ−1
T = n

(
∂P
∂n

)
T

, one can use

equation (14) to determine the pressure and free energy of the system by performing
thermodynamic integrations with respect to the particle density.

10.7.A Static structure factor

The pair correlation function g(r) can be measured experimentally using quasielastic
scattering. If a sample is illuminated with a monochromatic beam of x-rays, neutrons, vis-
ible light, and so on, the scattered intensity as a function of the angle from the incident
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beam direction is proportional to the Fourier transform of g(r). The quasielastic scattering
amplitude from a single particle at location ri illuminated by a plane wave with amplitude
φ0 and wavevector k0 into a detector at location R is

81(k)= φ0f (k)
eik0·ri eik1·(R−ri)

|R− ri|
, (15)

where k = k1−k0 is the wavevector transfer and f (k) is the single-particle scattering
form factor; see Figure 10.7. The total scattering amplitude from the N particles in the
sample is

8N (k)≈
φ0f (k)
|R|

eik1·R
∑

i

e−ik·ri , (16)

where we have assumed that the detector is far from the sample. The scattered intensity
from the N-particle sample is

IN (k)=
∣∣8N (k)

∣∣2 ≈ ∣∣φ0f (k)
∣∣2

|R|2

〈∑
i,j

e−ik·(ri−rj)

〉
=NI1(k)S(k), (17)

k1

k0

�

FIGURE 10.7 Scattering from two particles. The incident wavevector is k0, the scattered wavevector toward the
detector is k1, and the wavevector transfer is k = k1−k0. Since |k1| = |k0| for quasielastic scattering, the magnitude
of the wavevector transfer is k = 2k0 sin(θ/2), where θ is the angle between k0 and k1.
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where I1(k) is the scattering intensity from a single particle and

S(k)=
1
N

〈∑
i,j

exp
(
−ik · (ri− rj)

)〉
(18)

is the static structure factor. It represents the actual scattering intensity divided by the
scattering intensity from an imaginary randomly distributed and, therefore, uncorrelated
sample of atoms at the same particle density n.

If the sample is translationally invariant and isotropic, as in a uniform fluid, the
static structure factor depends only on the magnitude of the wavevector transfer, that is
S(k)= S(k). For that case, S(k) can be written as the Fourier transform of the pair correla-
tion function:

S(k)= 1+
N
V

∫
(g(r)− 1)eik·r dr+

N

V 2

∣∣∣∣∫ eik·r dr
∣∣∣∣2 . (19)

The final term in equation (19) represents the forward shape scattering of the sample
volume. The shape scattering term is negligible for k� 1/L, so in the thermodynamic limit
it can be ignored for k 6= 0. The structure factor for isotropic fluids in one, two, and three
dimensions is then given by

S(k)= 1+ 2n

∞∫
0

(g(r)− 1)cos(kr)dr d = 1, (20a)

S(k)= 1+ 2πn

∞∫
0

r(g(r)− 1)J0(kr)dr d = 2, (20b)

S(k)= 1+
4πn

k

∞∫
0

r(g(r)− 1)sin(kr)dr d = 3. (20c)

The pair correlation function g(r) can be determined using the inverse Fourier trans-
form of the measured structure factor, as shown in Figure 10.8. For liquids and other
short-range ordered materials, the structure factor tends to unity as k→∞. The value of
S(k) as k→ 0 is a measure of the number density fluctuations in the sample:

lim
k→0

S(k)= 1+n
∫
(g(r)− 1)dr =

κT

κ ideal
T

=

〈
N2〉
−〈N〉2

〈N〉
. (21)

Equation (21) is called the fluctuation-compressibility relation and is the equilibrium limit
of the fluctuation-dissipation theorem we will discuss in Section 15.6.
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FIGURE 10.8 Experimentally measured pair correlation function g(r) and structure factor S(k) for liquid argon
at 85 K. The structure factor (b) is determined from neutron scattering and the pair correlation function (a) is
determined from the inverse Fourier transform of the structure factor. The small oscillations in g(r) near r = 0 are an
experimental artifact of the Fourier transformation of the scattering data. This figure displays the typical features
of correlations in fluids: nearly zero g(r) at short distances, large g(r) for particles separated by approximately a
molecular diameter, oscillatory decay of correlations to unity at large separations, small S(k) at small wavevector
due to the small compressibility of dense fluids, and S(k) approaching unity at large wavevectors. Figures from
Yarnell, Katz, Wenzel, and Koenig (1973). Reprinted with permission; copyright ©1973, American Physical Society.

10.7.B Scattering from crystalline solids

In an ideal crystalline solid, the atoms in the crystal are located at the sites of a periodic
structure. For a simple crystal, identical atoms are sited on a Bravais lattice {R}. For exam-
ple, a simple cubic lattice has lattice vectors R ∈ {(n1x̂+n2ŷ+n3ẑ)a}, where n1, n2, and
n3 are integers and a is the lattice constant. The reciprocal lattice {G} is defined by the
set of reciprocal lattice vectors G — such that G ·R = 2πm, where m is an integer for all
{G} and {R}. The reciprocal lattice of the simple cubic lattice is also a simple cubic lat-
tice: G ∈ {(m1x̂+m2ŷ+m3ẑ)2π

a }, where m1, m2, and m3, are integers. For a perfect Bravais
lattice, the structure factor S(k) is of the form

S(k)=
1
N

〈∑
R,R′

eik·(R−R′)

〉
=N

∑
G

δk,G, (22)

where δk,G is the Kronecker delta. The structure factor is enhanced by a factor of N on
each reciprocal lattice vector due to the coherent constructive interference of scattering
from the long-range ordered array of atoms. One can determine the crystal structure of the
solid from the experimental pattern of these sharp Bragg peaks; see Ashcroft and Mermin
(1976).

Thermal excitations cause atoms to deviate from their equilibrium positions. The dis-
placed position of an atom whose equilibrium position is R can be written R+u(R),
where u(R) denotes the displacement from equilibrium. As long as the atoms remain
close to their lattice sites, the sharp Bragg peaks in the structure factor will also remain
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but the intensity of each peak will be reduced by an amount dependent on the aver-
age of the squares of the deviations

〈
|u(R)|2

〉
. This turns out to be the case for normal

three-dimensional solids. The structure factor then takes the form

S(k)=
1
N

∑
R,R′

eik·(R−R′)
〈
eik·(u(R)−u(R′))

〉
. (23)

If the excitations about the equilibrium positions are Gaussian (i.e., the terms in the Hamil-
tonian higher than second order in u(R) can be ignored), then the average of the deviations
in the exponential can be simplified to give

〈
eik·(u(R)−u(R′))

〉
= e
−

1
2

〈
|k·(u(R)−u(R′)|2

〉
. (24)

If the displacements of the atoms far from each other on the lattice are uncorrelated, as
they are in three-dimensional crystals,

1
2

〈
|k · (u(R)−u(R′)|2

〉
≈

k2 〈u2〉
3

for |R−R′| →∞, (25)

then the structure factor takes the form

S(k)=N
∑

G

WGδk,G, (26)

where

WG = exp

(
−

G2 〈u2〉
3

)
(27)

is called the Debye–Waller factor. The random atomic deviations from lattice sites reduces
the intensity in the Bragg peaks but the sharp scattering indicative of long-range crystalline
order remains intact; see Ashcroft and Mermin (1976).

An interesting variant of this calculation occurs in two-dimensional solids. Peierls
(1935) and Landau (1937) showed that harmonic thermal fluctuations in two dimensions
destroy crystalline long-range order. This was generalized by Mermin (1968) to show that
long-range crystalline order was not possible for any two-dimensional system of parti-
cles with short-range interactions. Two-dimensional solids exhibit power-law decay of
translational correlations while maintaining long-range order in the lattice orientational
correlations. This leads to power-law singularities rather than delta-functions in the static
structure factor. It is possible for the solid to melt via two Kosterlitz–Thouless-like continu-
ous transitions rather than a single first-order transition. The intervening “hexatic” phase
exhibits short-range translational correlations and quasi-long-range orientational corre-
lations; see Section 13.7, Kosterlitz and Thouless (1972, 1973), Halperin and Nelson (1978),
and Young (1979).
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Problems
10.1. For imperfect-gas calculations, one sometimes employs the Sutherland potential

u(r)=
{
∞ for r <D
−ε(D/r)6 for r >D.

Using this potential, determine the second virial coefficient of a classical gas. Also determine
first-order corrections to the ideal-gas law and to the various thermodynamic properties of the
system.

10.2. According to Lennard-Jones, the physical behavior of most real gases can be well understood if
the intermolecular potential is assumed to be of the form

u(r)=
A

rm −
B
rn ,

where n is very nearly equal to 6 while m ranges between 11 and 13. Determine the second virial
coefficient of a Lennard-Jones gas and compare your result with that for a van der Waals gas; see
equation (10.3.8).

10.3. (a) Show that for a gas obeying van der Waals equation of state (10.3.9),

CP −CV =Nk
{

1−
2a

kTv3 (v−b)2
}−1

.

(b) Also show that, for a van der Waals gas with constant specific heat CV , an adiabatic process
conforms to the equation

(v−b)T CV /Nk
= const;

compare with equation (1.4.30).
(c) Further show that the temperature change resulting from an expansion of the gas (into

vacuum) from volume V1 to volume V2 is given by

T2−T1 =
N2a
CV

(
1

V2
−

1
V1

)
.

10.4. The coefficient of volume expansion α and the isothermal bulk modulus B of a gas are given by
the empirical expressions

α =
1
T

(
1+

3a′

vT 2

)
and B= P

(
1+

a′

vT 2

)−1

,

where a′ is a constant parameter. Show that these expressions are mutually compatible. Also
derive the equation of state of this gas.

10.5. Show that the first-order Joule–Thomson coefficient of a gas is given by the formula(
∂T
∂P

)
H
=

N
CP

(
T
∂(a2λ

3)

∂T
−a2λ

3

)
,

where a2(T) is the second virial coefficient of the gas and H its enthalpy; see equation (10.2.1).
Derive an explicit expression for the Joule–Thomson coefficient in the case of a gas with
interparticle interaction

u(r)=

+∞ for 0< r <D,
−u0 for D< r < r1,

0 for r1 < r <∞,

and discuss the temperature dependence of this coefficient.
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10.6. Assume that the molecules of the nitrogen gas interact through the potential of the previous
problem. Making use of the experimental data given next, determine the “best” empirical values
for the parameters D, r1, and u0/k:

T (in K) 100 200 300 400 500
a2λ

3 (in K per atm) −1.80 −4.26× 10−1
−5.49× 10−2

+1.12× 10−1
+2.05× 10−1.

10.7. Determine the lowest-order corrections to the ideal-gas values of the Helmholtz free energy, the
Gibbs free energy, the entropy, the internal energy, the enthalpy, and the (constant-volume and
constant-pressure) specific heats of a real gas. Discuss the temperature dependence of these
corrections in the case of a gas whose molecules interact through the potential of Problem 10.5.

10.8. The molecules of a solid attract one another with a force F(r)= α(l/r)5. Two semi-infinite solids
composed of n molecules per unit volume are separated by a distance d, that is, the solids fill the
whole of the space with x ≤ 0 and x ≥ d. Calculate the force of attraction, per unit area of the
surface, between the two solids.

10.9. Referring to equation (10.5.31) for the phase shifts ηl(k) of a hard-sphere gas, show that for kD� 1

ηl(k)'−
(kD)2l+1

(2l+ 1){1 · 3 · · ·(2l− 1)}2
.

10.10. Using the wavefunctions

up(r)=
1√
V

ei(p·r)~

to describe the motion of a free particle, write down the symmetrized wavefunctions for a pair of
noninteracting bosons/fermions, and show that

〈1′,2′|ÛS/A
2 |1,2〉 = ±〈2′|Ŵ1|1〉〈1′|Ŵ1|2〉.

10.11. Show that for a gas composed of particles with spin J

bS
2( J)= ( J + 1)(2J + 1)bS

2(0)+ J(2J + 1)bA
2 (0)

and

bA
2 ( J)= J(2J + 1)bS

2(0)+ ( J + 1)(2J + 1)bA
2 (0).

10.12. Show that the coefficient b2 for a quantum-mechanical Boltzmannian gas composed of
“spinless” particles satisfies the following relations:

b2 = Lim
J→∞

{
1

(2J + 1)2
bS

2( J)
}
= Lim

J→∞

{
1

(2J + 1)2
bA

2 ( J)
}

=
1
2
{bS

2(0)+ bA
2 (0)}.

Obtain the value of b2, to fifth order in (D/λ), by using the Beth–Uhlenbeck expressions in
equations (10.5.36) and (10.5.37), and compare your result with the classical value of b2,
namely−(2π/3)(D/λ)3.

10.13. Use a virial expansion approach to determine the first few nontrivial order contributions to the
pair correlation function g(r) in d dimensions. Show that the pair correlation function is of the
form g(r)= e−βu(r)y(r), where u(r) is the pair potential and y(r) is a smooth function of r. Show
that even for the case of hard sphere interaction, y(r) and its first few derivatives are continuous.

10.14. For the particular case of hard spheres, the pressure in the virial equation of state is determined
by evaluating the pair correlation function at contact. Write the pair correlation function as
g(r)= e−βu(r)y(r) and derive equations (10.7.12) for hard spheres in one, two, and three
dimensions.

[Hint: For hard spheres, the Boltzmann factor e−βu(r) is a Heaviside step function].
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10.15. Derive the probability distribution w(r) for the distance to the closest neighboring particle using
the pair correlation function g(r) and the number density n. Show that in three dimensions

w(r)= 4πnr2g(r)exp

− r∫
0

4πns2g(s)ds

 ,

and the average closest-neighbor distance for an ideal gas is

r1 =

∞∫
0

rw(r)dr = 0
(

4
3

)(
4πn

3

)−1/3

.

10.16. Consider a gas, of infinite extent, divided into regions A and B by an imaginary sheet running
through the system. The molecules of the gas interact through a potential energy function u(r).
Show that the average net force F experienced by all the molecules on the A-side of the sheet
caused by all the molecules on the B-side are perpendicular to the plane of the sheet, and that its
magnitude (per unit area) is given by

F
A
=−

2πn2

3

∞∫
0

(
du
dr

)
g(r)r3dr.

10.17. Show that for a gas of noninteracting bosons, or fermions, the pair correlation function g(r) is
given by the expression

g(r)= 1±
gs

n2h6

∣∣∣∣∣∣
∞∫
−∞

ei(p·r)/~ d3p

e(p2/2m−µ)/kT ∓ 1

∣∣∣∣∣∣
2

,

where gs (= 2s+ 1) is the spin multiplicity factor. Note that the upper sign here applies to bosons,
the lower one to fermions.14

[Hint: To solve this problem, one may use the method of second quantization, as developed in
Chapter 11. The particle density operator n̂ is then given by the sum,∑

α,β

a†
αaβu∗α(r)uβ (r),

whose diagonal terms are directly related to the mean particle density n in the system. The
nondiagonal terms give the density fluctuation operator (n̂−n), and so on; see equation (11.1.25).]

10.18. Show that, in the case of a degenerate gas of fermions (T � TF ), the correlation function g(r), for
r� ~/pF , reduces to the expression

g(r)− 1=−
3(mkT)2

4p3
F ~r2

{
sinh

(
πmkTr

pF ~

)}−2

.

Note that, as T→ 0, this expression tends to the limiting form

g(r)− 1=−
3~

4π2pF r4 ∝
1
r4 .

14Note that, in the classical limit (~→ 0), the infinitely rapid oscillations of the factor exp{i(p · r)/~}make the integral
vanish. Consequently, for an ideal classical gas, the function g(r) is identically equal to 1. Quantum-mechanical systems
of identical particles exhibit spatial correlations due to Bose and Fermi statistics even in the absence of interactions. It is
not difficult to see that, for nλ3

� 1 where λ= h/
√
(2πmkT),

g(r)' 1± 1
gs

exp(−2πr2/λ2);

compare with equation (5.5.27).
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10.19. (a) For a dilute gas, the pair correlation function g(r)may be approximated as

g(r)' exp{−u(r)/kT}.

Show that, under this approximation, the virial equation of state (10.7.11) takes the form

PV
NkT

' 1− 2πn

∞∫
0

f (r)r2dr,

where f (r) [= exp{−u(r)/kT}− 1] is the Mayer function, equation (10.1.6).
(b) What form will this result take for a gas of hard spheres? Compare your result with that of

Problem 1.4.
10.20. Show that the pressure and Helmholtz free energy of a fluid at temperature T can be determined

by performing a thermodynamic integration of the inverse of the isothermal compressibility from
the chosen density to the ideal gas reference state.

10.21. Show that, for a general Gaussian distribution of variables uj, the average of the exponential of a
linear combination of the variables obeys the relation〈

exp
(∑

j

ajuj

)〉
= exp

1
2

〈(∑
j

ajuj

)2〉 .

10.22. Calculate the isothermal compressibility and Helmholtz free energy for the Carnahan–Starling
equation of state (10.3.25) and show that the Helmholtz free energy is given by

βA
N
=
βAideal

N
+
η(4− 3η)
(1− η)2

,

where Aideal is the Helmholtz free energy of a classical monatomic ideal gas at the same density.
10.23. The virial expansion for a two-dimensional system of hard disks gives the following series when

expressed in terms of the two-dimensional packing fraction η = πnD2/4:

P
nkT

= 1+ 2η+ 3.128018η2
+ 4.257854η3

+ 5.33689664η4
+ 6.363026η5

+ 7.352080η6
+ 8.318668η7

+ 9.27236η8
+ 10.2161η9

+ ·· · ;

see Malijevsky and Kolafa (2008). Propose some simple analytical functions f (η) that closely
approximate this series.



11
Statistical Mechanics

of Interacting Systems: The
Method of Quantized Fields

In this chapter we present another method of dealing with systems composed of interact-
ing particles. This method is based on the concept of a quantized field that is characterized
by the field operators ψ(r), and their hermitian conjugates ψ†(r), which satisfy a set of
well-defined commutation rules. In terms of these operators, one defines a number oper-
ator N̂ and a Hamiltonian operator Ĥ that provide a suitable representation for a system
composed of any finite number of particles and possessing any finite amount of energy. In
view of its formal similarity with the Schrödinger formulation, the formulation in terms
of a quantized field is generally referred to as the second quantization of the system.
For convenience of calculation, the field operators ψ(r) and ψ†(r) are often expressed as
superpositions of a set of single-particle wavefunctions {uα(r)}, with coefficients aα and
a†
α ; the latter turn out to be the annihilation and creation operators, which again satisfy

a set of well-defined commutation rules. The operators N̂ and Ĥ then find a convenient
expression in terms of the operators aα and a†

α , and the final formulation is well-suited
for a treatment based on operator algebra; as a result, many calculations, which would
otherwise be tedious, can be carried out in a more or less straightforward manner.

11.1 The formalism of second quantization
To represent a system of particles by a quantized field, we invoke the field operators ψ(r)
and ψ†(r), which are defined for all values of the position coordinate r and which operate
on a Hilbert space; a vector in this space corresponds to a particular state of the quantized
field. The values of the quantities ψ and ψ†, at all r, represent the degrees of freedom of the
field; since r is a continuous variable, the number of these degrees of freedom is innumer-
ably infinite. Now, if the given system is composed of bosons, the field operators ψ(r) and
ψ†(r) satisfy the commutation rules

[ψ(r),ψ†(r′)]= δ(r− r′) (1a)

[ψ(r),ψ(r′)]= [ψ†(r),ψ†(r′)]= 0, (1b)

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00011-6
© 2011 Elsevier Ltd. All rights reserved.
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where the symbol [A,B] stands for the commutator (AB−BA) of the given operators A and
B. If, on the other hand, the given system is composed of fermions, then the field operators
satisfy the rules

{ψ(r),ψ†(r′)} = δ(r− r′) (2a)

{ψ(r),ψ(r′)} = {ψ†(r),ψ†(r′)} = 0, (2b)

where the symbol {A,B} stands for the anticommutator (AB+BA) of the given operators
A and B. In the case of fermions, the operators ψ(r) and ψ†(r) possess certain explicit
properties that follow directly from (2b), namely

ψ(r)ψ(r′)=−ψ(r′)ψ(r), ∴ ψ(r)ψ(r)= 0 for all r ; (2c)

similarly,

ψ†(r)ψ†(r′)=−ψ†(r′)ψ†(r), ∴ ψ†(r)ψ†(r)= 0 for all r. (2d)

Clearly, no such property holds for the field operators pertaining to bosons. In the sequel
we shall see that the mathematical difference between the commutation rules (1) for the
boson field operators and rules (2) for the fermion field operators is intimately related to
the fundamental difference in the symmetry properties of the respective wavefunctions in
the Schrödinger formulation. Of course, in their own place, both sets of rules, (1) and (2),
are essentially axiomatic.

We now introduce two hermitian operators, the particle-number operator N̂ and the
Hamiltonian operator Ĥ , through definitions that hold for bosons as well as fermions:

N̂ ≡
∫

d3rψ†(r)ψ(r) (3)

and

Ĥ ≡−
~2

2m

∫
d3rψ†(r)∇2ψ(r)

+
1
2

∫∫
d3r1d3r2ψ

†(r1)ψ
†(r2)u(r1, r2)ψ(r2)ψ(r1), (4)

where u(r1, r2) denotes the two-body interaction potential in the given system. It is quite
natural to interpret the product ψ†(r)ψ(r) as the number density operator of the field. The
similarity between the foregoing definitions and the expressions for the expectation values
of the corresponding physical quantities in the Schrödinger formulation is fairly obvious.
However, the similarity is only “formal” because, while there we are concerned with the
wavefunctions of the given system (which are c-numbers), here we are concerned with
the operators of the corresponding matter field. We can easily verify that, irrespective of
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the commutation rules obeyed by the operators ψ(r) and ψ†(r), the operators N̂ and Ĥ do
commute:

[N̂ ,Ĥ]= 0; (5)

accordingly, the operators N̂ and Ĥ can be diagonalized simultaneously.
We now choose a complete orthonormal basis of the Hilbert space, such that any vec-

tor |8n〉 among the basis is a simultaneous eigenstate of the operators N̂ and Ĥ . We
may, therefore, denote any particular member of the basis by the symbol |9NE〉, with the
properties

N̂ |9NE〉 =N |9NE〉, Ĥ|9NE〉 = E|9NE〉 (6)

and

〈9NE |9NE〉 = 1. (7)

The vector |900〉, which represents the vacuum state of the field and is generally denoted
by the symbol |0〉, is assumed to be unique; it possesses the obvious properties

N̂ |0〉 = Ĥ|0〉 = 0 and 〈0|0〉 = 1. (8)

Next we observe that, regardless of whether we employ the boson commutation rules
(1) or the fermion rules (2), the operator N̂ and the operators ψ(r) and ψ†(r) satisfy the
commutation properties

[ψ(r),N̂]= ψ(r) and [ψ†(r),N̂]=−ψ†(r), (9)

from which it follows that

N̂ψ(r)|9NE〉 =
(
ψ(r)N̂ −ψ(r)

)
|9NE〉 = (N − 1)ψ(r)|9NE〉 (10)

and

N̂ψ†(r)|9NE〉 =
(
ψ†(r)N̂ +ψ†(r)

)
|9NE〉 = (N + 1)ψ†(r)|9NE〉. (11)

Clearly, the state ψ(r)|9NE〉 is also an eigenstate of the operator N̂ , but with eigenvalue
(N − 1); thus, the application of the operator ψ(r) onto the state |9NE〉 of the field anni-
hilates one particle from the field. Similarly, the state ψ†(r)|9NE〉 is an eigenstate of the
operator N̂ , with eigenvalue (N + 1); thus, the application of the operator ψ†(r) onto the
state |9NE〉 of the field creates a particle in the field. In each case, the process (of annihi-
lation or creation) is tied down to the point r of the field; however, the energy associated
with the process, which also means the change in the energy of the field, remains undeter-
mined; see equations (18) and (19). By a repeated application of the operator ψ† onto the
vacuum state |0〉, we find that the eigenvalues of the operator N̂ are 0,1,2, . . ..
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On the other hand, the application of the operator ψ onto the vacuum state |0〉 gives
nothing but zero because, for obvious reasons, we cannot admit negative eigenvalues for
the operator N̂ . Of course, if we apply the operator ψ onto the state |9NE〉 repeatedly N
times, we end up with the vacuum state; we then have, by virtue of the orthonormality of
the basis chosen,

〈8n|ψ(r1)ψ(r2) . . .ψ(rN )|9NE〉 = 0 (12)

unless the state |8n〉 is itself the vacuum state, in which case we would obtain a nonzero
result instead. In terms of this latter result, we may define a function of the N coordinates
r1, r2, . . . , rN , namely

9NE(r1, . . . , rN )= (N !)−1/2
〈0|ψ(r1) . . .ψ(rN )|9NE〉. (13)

Obviously, the function 9NE(r1, . . . , rN ) has something to do with an assemblage of N par-
ticles located at the points r1, . . . , rN of the field because their annihilation from those very
points of the field has led us to the vacuum state of the field. To obtain the precise meaning
of this function, we first note that in the case of bosons (fermions) this function is sym-
metric (antisymmetric) with respect to an interchange of any two of the N coordinates;
see equations (1b) and (2b), respectively. Secondly, its norm is equal to unity, which can be
seen as follows.

By the very definition of9NE(r1, . . . , rN ),∫
d3N r9∗NE(r1, . . . , rN )9NE(r1, . . . , rN )

= (N !)−1
∫

d3N r〈9NE |ψ
†(rN ) . . .ψ

†(r1)|0〉〈0|ψ(r1) . . .ψ(rN )|9NE〉

= (N !)−1
∫

d3N r
∑

n

〈9NE |ψ
†(rN ) . . .ψ

†(r1)|8n〉〈8n|ψ(r1) . . .ψ(rN )|9NE〉

= (N !)−1
∫

d3N r〈9NE |ψ
†(rN ) . . .ψ

†(r2)ψ
†(r1)ψ(r1)ψ(r2) . . .ψ(rN )|9NE〉;

here, use has been made of equation (12), which holds for all |8n〉 except for the vacuum
state, and of the fact that the summation of |8n〉〈8n| over the complete orthonormal set
of the basis chosen is equivalent to a unit operator. We now carry out integration over r1,
yielding the factor ∫

d3r1ψ
†(r1)ψ(r1)= N̂ .

Next, we carry out integration over r2, yielding the factor∫
d3r2ψ

†(r2)N̂ψ(r2)=

∫
d3r2ψ

†(r2)ψ(r2)(N̂ − 1)= N̂(N̂ − 1);
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see equation (10). By iteration, we obtain

∫
d3N r9∗NE(r1, . . . , rN )9NE(r1, . . . , rN )

= (N !)−1
〈9NE |N̂(N̂ − 1)(N̂ − 2) . . . up to N factors|9NE〉

= (N !)−1N ! 〈9NE |9NE〉 = 1. (14)

Finally, we can show that, for bosons as well as fermions, the function 9NE(r1, . . . , rN )

satisfies the differential equation, see Problem 11.1,

− ~2

2m

N∑
i=1

∇
2
i +

∑
i<j

uij

9NE(r1, . . . , rN )= E9NE(r1, . . . , rN ), (15)

which is simply the Schrödinger equation of an N-particle system. The function
9NE(r1, . . . , rN ) is, therefore, the Schrödinger wavefunction of the system, with energy
eigenvalue E; accordingly, the product 9∗NE9NE is the probability density for the particles
of the system to be in the vicinity of the coordinates (r1, . . . , rN ), when the system hap-
pens to be in an eigenstate with energy E. This establishes the desired correspondence
between the quantized field formulation and the Schrödinger formulation. In passing, we
place on record the quantized-field expression for the function 9∗NE(r1, . . . , rN ), which is
the complex conjugate of the wavefunction9NE(r1, . . . , rN ), namely

9∗NE(r1, . . . , rN )= (N !)−1/2
〈9NE |ψ

†(rN ) . . .ψ
†(r1)|0〉. (16)

We now introduce a complete orthonormal set of single-particle wavefunctions uα(r),
where the suffix α provides a label for identifying the various single-particle states; it
could, for instance, be the energy eigenvalue of the state (or the momentum p, along
with the spin component σ pertaining to the state). In view of the orthonormality of these
wavefunctions, ∫

d3r u∗α(r)uβ(r)= δαβ . (17)

The field operators ψ(r) and ψ†(r)may now be expanded in terms of the functions uα(r):

ψ(r)=
∑
α

aαuα(r) (18)

and

ψ†(r)=
∑
α

a†
αu∗α(r). (19)
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Relations inverse to equation (18) and (19) are

aα =
∫

d3rψ(r)u∗α(r) (20)

and

a†
α =

∫
d3rψ†(r)uα(r). (21)

The coefficients aα and a†
α , like the field variables ψ(r) and ψ†(r), are operators that oper-

ate on the elements of the relevant Hilbert space. Indeed, the operators aα and a†
α now take

over the role of the degrees of freedom of the field.
Substituting (18) and (19) into the set of rules (1) or (2), and making use of the closure

property of the uα , namely ∑
α

uα(r)u∗α(r
′)= δ(r− r′), (22)

we obtain1 for the operators aα and a†
α the commutation relations

[aα ,a†
β ]= δαβ (23a)

[aα ,aβ ]= [a†
α ,a†

β ]= 0 (23b)

in the case of bosons, and

{aα ,a†
β} = δαβ (24a)

{aα ,aβ} = {a
†
α ,a†

β} = 0 (24b)

in the case of fermions. In the latter case, the operators aα and a†
α possess certain explicit

properties that follow directly from (24b), namely

aαaβ =−aβaα , ∴ aαaα = 0 for all α; (24c)

similarly

a†
αa†
β =−a†

βa†
α , ∴ a†

αa†
α = 0 for all α. (24d)

No such property holds for operators pertaining to bosons. We will see very shortly that
this vital difference between the commutation rules for the boson operators and those for
the fermion operators is closely linked with the fact that while fermions have to conform
to the restrictions imposed by the Pauli exclusion principle, there are no such restrictions
for bosons.

1Alternatively, one may employ equations (20) and (21), and make use of rules (1) or (2) along with equation (17).
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We now proceed to express operators N̂ and Ĥ in terms of aα and a†
α . Substituting (18)

and (19) into (3), we obtain

N̂ =
∫

d3r
∑
α,β

a†
αaβu∗α(r)uβ(r)=

∑
α,β

a†
αaβδαβ

=

∑
α

a†
αaα . (25)

It seems natural to speak of the operator a†
αaα as the particle-number operator pertaining

to the single-particle state α. We denote this operator by the symbol N̂α :

N̂α = a†
αaα . (26)

It is easy to verify that, for bosons as well as fermions, the operators N̂α commute with one
another; hence, they can be simultaneously diagonalized. Accordingly, we may choose a
complete orthonormal basis of the Hilbert space in such a way that any vector belonging
to the basis is a simultaneous eigenstate of all the operators N̂α .2 Let a particular member
of the basis be denoted by the vector |n0,n1, . . . ,nα , . . .〉, or by the shorter symbol |8n〉, with
the properties

N̂α |8n〉 = nα |8n〉 (27)

and

〈8n|8n〉 = 1; (28)

the number nα , being the eigenvalue of the operator N̂α in the state |8n〉 of the field,
denotes the number of particles in the single-particle state α of the given system. One par-
ticular member of the basis, for which nα = 0 for all α, will represent the vacuum state of
the field; denoting the vacuum state by the symbol |80〉, we have

N̂α |80〉 = 0 for all α, and 〈80|80〉 = 1. (29)

Next we observe that, regardless of whether we employ the boson commutation rules
(23) or the fermion rules (24), the operator N̂α and the operators aα and a†

α satisfy the
commutation properties

[aα ,N̂α]= aα and [a†
α ,N̂α]=−a†

α , (30)

from which it follows that

N̂αaα |8n〉 = (aαN̂α −aα)|8n〉 = (nα − 1)aα |8n〉 (31)

2This representation of the field is generally referred to as the particle-number representation.
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and

N̂αa†
α |8n〉 = (a

†
αN̂α +a†

α)|8n〉 = (nα + 1)a†
α |8n〉. (32)

Clearly, the state aα|8n〉 is also an eigenstate of the operator N̂α , but with eigenvalue
(nα − 1); thus, the application of the operator aα onto the state |8n〉 of the field annihi-
lates one particle from the field. Similarly, the state a†

α|8n〉 is an eigenstate of the operator
N̂α , with eigenvalue (nα + 1); thus, the application of the operator a†

α onto the state |8n〉

creates a particle in the field. The operators aα and a†
α are, therefore, referred to as the

annihilation and creation operators. Of course, in each case the process (of annihilation
or creation) is tied down to the single-particle state α; however, the precise location of the
event (in the coordinate space) remains undetermined; see equations (20) and (21). Now,
since the application of the operator aα or a†

α onto the state |8n〉 of the field does not affect
the eigenvalues of the particle-number operators other than N̂α , we may write

aα |n0,n1, . . . ,nα , . . .〉 = A(nα)|n0,n1, . . . ,nα − 1, . . .〉 (33)

and

a†
α |n0,n1, . . . ,nα , . . .〉 = B(nα)|n0,n1, . . . ,nα + 1, . . .〉, (34)

where the factors A(nα) and B(nα) can be determined with the help of the commutation
rules governing the operators aα and a†

α . For bosons,

A(nα)=
√

nα , B(nα)=
√
(nα + 1); (35)

consequently, if we regard the state |8n〉 to have arisen from the vacuum state |80〉 by a
repeated application of the creation operators, we can write

|8n〉 =
1

√
(n0!n1! . . .nα ! . . .)

(a†
0)

n0
(a†

1)
n1
· · ·(a†

α)
nα
· · · |80〉. (36)

In the case of fermions, the operators a†
α anticommute, with the result that a†

αa†
β =−a†

βa†
α ;

consequently, there would remain an uncertainty of a phase factor ±1 unless the order
in which the a†

α operate on the vacuum state is specified. To be definite, let us agree
that, as indicated in equation (36), the a†

α are arranged in the order of increasing sub-
scripts and the phase factor is then +1. Second, since the product a†

αa†
α now vanishes,

none of the nα in (36) can exceed unity; the eigenvalues of the fermion operators N̂α are,
therefore, restricted to 0 and 1, which is precisely the requirement of the Pauli exclusion
principle.3 Accordingly, the factor [5α(nα !)]−1/2 in (36) would be identically equal to unity.

3This can also be seen by noting that the fermion operators N̂α satisfy the identity

N̂2
α = a†

α aαa†
αaα = a†

α(1−a†
αaα)aα = a†

αaα = N̂α (since a†
αa†

αaαaα ≡ 0).

The same would be true of the eigenvalues nα . Hence, n2
α = nα , which means that nα = 0 or 1.
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In passing, we note that in the case of fermions, operation (33) has meaning only if nα = 1
and operation (34) has meaning only if nα = 0.

Finally, the substitution of expressions (18) and (19) into (4) gives for the Hamiltonian
operator of the field

Ĥ =−
~2

2m

∑
α,β

〈α|∇2
|β〉a†

αaβ +
1
2

∑
α,β,γ ,λ

〈αβ|u|γ λ〉a†
αa†
βaγ aλ, (37)

where

〈α|∇2
|β〉 =

∫
d3ru∗α(r)∇

2uβ(r) (38)

and

〈αβ|u|γ λ〉 =
∫∫

d3r1d3r2u∗α(r1)u
∗
β(r2)u12uγ (r2)uλ(r1). (39)

Now, if the single-particle wavefunctions are chosen to be

uα(r)=
1
√

V
eipα ·r/~, (40)

where pα denotes the momentum of the particle (assumed “spinless”), then the matrix
elements (38) and (39) become

〈α|∇2
|β〉 =

1
V

∫
d3re−ipα ·r/~

(
−

p2
β

~2

)
eipβ ·r/~ =−

p2
β

~2
δαβ (41)

and

〈αβ|u|γ λ〉 =
1

V 2

∫∫
d3r1d3r2e−i(pα−pλ)·r1/~u(r2− r1)e

−i(pβ−pγ )·r2/~. (42)

In view of the fact that the total momentum is conserved in each collision,

pα +pβ = pγ +pλ, (43)

the matrix element (42) takes the form

〈αβ|u|γ λ〉 =
1

V 2

∫∫
d3r1d3r2ei(pγ−pβ )·(r2−r1)/~u(r2− r1)

=
1
V

∫
d3reip·r/~u(r), (44)

where p denotes the momentum transfer during the collision:

p= (pγ −pβ)=−(pλ−pα). (45)
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Substituting (41) and (44) into (37), we finally obtain

Ĥ =
∑

p

p2

2m
a†

pap+
1
2

∑′

u
p′1,p′2
p1,p2

a†
p′1

a†
p′2

ap2 ap1, (46)

where u
p′1,p′2
p1,p2

denotes the matrix element (44), with

p= (p2−p′2)=−(p1−p′1); (47)

note that the primed summation in the second term of (46) goes only over those values of
p1, p2, p′1, and p′2 that conserve the total momentum of the particles: p′1+p′2 = p1+p2. It is

obvious that the main term in (46) represents the kinetic energy of the field (a†
pap being the

particle-number operator pertaining to the single-particle state p), while the second term
represents the potential energy.

In the case of spin-half fermions, the single-particle states have to be characterized not
only by the value p of the particle momentum but also by the value σ of the z-component of
its spin; accordingly, the creation and annihilation operators would carry double indices.
The operator Ĥ then takes the form

Ĥ =
∑
p,σ

p2

2m
a†

pσapσ +
1
2

∑′

u
p′1σ
′
1,p′2σ

′
2

p1σ1,p2σ2 a†
p′1σ
′
1

a†
p′2σ
′
2

ap2σ2 ap1σ1 ; (48)

the summation in the second term now goes only over those states (of the two particles)
that conform to the conditions of both momentum conservation and spin conservation.

In the following sections we shall apply the formalism of second quantization to inves-
tigate low-temperature properties of systems composed of interacting particles. In most
cases we shall study these systems under the approximating conditions a/λ� 1 and
na3
� 1, where a is the scattering length of the two-body interaction, λ the mean thermal

wavelength of the particles, and n the particle density in the system. Now, the effective
scattering cross-section for the collision of two particles, each of mass m, is primarily
determined by the “scattering amplitude” a(p), where

a(p)=
m

4π~2

∫
u(r)eip·r/~d3r, (49)

p being the momentum transfer during the collision; if the potential is central, equa-
tion (49) takes the form

a(p)=
m

4π~2

∞∫
0

u(r)
sin(kr)

kr
4πr2dr

(
k =

p
~

)
. (50)

For low-energy scattering (which implies “slow” collisions), we have the limiting result

a=
mu0

4π~2
, u0 =

∫
u(r)d3r, (51)
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the quantity a being the scattering length of the given potential.4 Alternatively, one may
employ the S-wave scattering phase shift η0(k), see Section 10.5, and write on one hand

tanη0(k)'−
mk

4π~2

∞∫
0

u(r)
sin2(kr)

(kr)2
4πr2dr (52)

and on the other

cotη0(k)=−
1

ka
+

1
2

kr∗+ ·· · , (53)

where a is the “scattering length” and r∗ the “effective range” of the potential. For low-
energy scattering, equations (52) and (53) once again lead to (51). In passing, we note that
a is positive or negative according as the potential in question is predominantly repulsive
or predominantly attractive; unless a statement is made to the contrary, we shall assume a
to be positive.

11.2 Low-temperature behavior of an imperfect
Bose gas

The Hamiltonian of the quantized field for spinless bosons is given by the expression

(11.1.46), where the matrix element u
p′1,p′2
p1,p2

is a function of the momentum p transferred
during the collision and is given by formula (11.1.44). At low temperatures the particle
momenta are small, so we may insert for the matrix elements u(p) their value at p= 0,
namely u0/V , where u0 is given by equation (11.1.51). At the same time, we may retain
only those terms in the sum

∑
′ that pertain to a vanishing momentum transfer. We then

have

Ĥ =
∑

p

p2

2m
a†

pap+
2πa~2

mV

∑
p

a†
pa†

papap

+

∑
p1 6=p2

(
a†

p1
a†

p2
ap2 ap1 +a†

p2
a†

p1
ap2 ap1

). (1)

Now

∑
p

a†
pa†

papap =
∑

p

a†
p(apa†

p− 1)ap =
∑

p

(n2
p−np)=

∑
p

n2
p−N , (2)

4This result is consistent with the pseudopotential approach of Huang and Yang (1957) in which u(r) is replaced by
the singular potential (4πa~2/m)δ(r), so the integral u0 becomes 4πa~2/m. For an exposition of the pseudopotential
approach, see Chapter 10 of the first edition of this book.
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whereas

∑
p1 6=p2

a†
p1

a†
p2

ap2 ap1 =
∑

p1 6=p2

np1 np2 =
∑
p1

np1(N −np1)=N2
−

∑
p

n2
p , (3)

the same being true of the sum over the exchange terms a†
p2

a†
p1

ap2
ap1

. Collecting these
results, the energy eigenvalues of the system turn out to be

E{np} =
∑

p

np
p2

2m
+

2πa~2

mV

2N2
−N −

∑
p

n2
p



'

∑
p

np
p2

2m
+

2πa~2

mV
(2N2

−n2
0). (4)5

We first examine the ground state of the given system, which corresponds to the dis-
tribution set

np '

{
N for p= 0

0 for p 6= 0,
(5)

with the result that

E0 '
2πa~2N2

mV
. (6)

The ground-state pressure is then given by

P0 =−

(
∂E0

∂V

)
N
=

2πa~2N2

mV 2
=

2πa~2n2

m
, (7)

where n(=N/V ) is the particle density in the system. This leads to the velocity of sound,
c0, given by

c2
0 =

1
m

dP0

dn
=

4πa~2n

m2
. (8)

Inserting numbers relevant to liquid He4, namely a' 2.2Å, n= 1/v where v ' 45Å
3

and
m' 6.65× 10−24 g, we obtain: c0 ' 125m/s. A comparison with the actual velocity of
sound in the liquid, which is about 240m/s, should not be too disheartening, for the theory

5In the last step we have replaced the sum
∑

p n2
p by the single term n2

0, thus neglecting the partial sum
∑

p 6=0 n2
p in

comparison with the number (2N2
−n2

0). Justification for this step lies in the fact that, by the theory of fluctuations, the
neglected part here will be O(N), and not O(N2).
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developed here was never intended to be applicable to a liquid. Finally, the chemical
potential of the system at T = 0 K turns out to be

µ0 =

(
∂E0

∂N

)
V
=

4πa~2N
mV

=
4πa~2n

m
. (9)

At finite but low temperatures, the physical behavior of the system may be studied through
its partition function

Q(N ,V ,T)=
∑
{np}

exp(−βE{np})

=

∑
{np}

exp

−β
∑

p

np
p2

2m
+

2πa~2N2

mV

(
2−

n2
0

N2

)
. (10)

In the lowest approximation, the quantity (n0/N) appearing here may be replaced by its
ideal-gas value, as given in Section 7.1, namely

n0

N
= 1−

λ3
c

λ3

[
λ=

h

(2πmkT)1/2
, λc = {vζ(3/2)}1/3

]
(11a)

= 1−
v
vc

[
v =

V
N

, vc =
λ3

ζ(3/2)

]
. (11b)

We thus obtain, to first order in a,

lnQ(N ,V ,T)' lnQid(N ,V ,T)−β
2πa~2N2

mV

(
1+

2v
vc
−

v2

v2
c

)
. (12)

The Helmholtz free energy, per particle, is then given by6

1
N

A(N ,V ,T)=−
kT
N

lnQ(N ,V ,T)'
1
N

Aid(N ,V ,T)+
2πa~2

m

(
1
v
+

2
vc
−

v

v2
c

)
. (13)

The pressure P and the chemical potential µ now follow straightforwardly:

P =−
(
∂A
∂V

)
N ,T
=−

(
∂(A/N)
∂v

)
T
= Pid +

2πa~2

m

(
1

v2
+

1

v2
c

)
, (14)

and

µ=
A
N
+Pv = µid +

4πa~2

m

(
1
v
+

1
vc

)
, (15)

which may be compared with the ground-state results (7) and (9) that pertain to vc =∞.

6This and the subsequent results were first derived by Lee and Yang (1958, 1960c) using the binary collision method
and by Huang (1959, 1960) using the pseudopotential method.
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At the transition point (where v = vc and λ= λc), the pressure Pc and the chemical
potential µc turn out to be

Pc = Pid +
4πa~2

mλ6
c

{
ζ

(
3
2

)}2

=
kTc

λ3
c

[
ζ

(
5
2

)
+ 2

{
ζ

(
3
2

)}2 a
λc

]
(16)

and

µc = µid +
8πa~2

mλ3
c
ζ

(
3
2

)
= 4ζ

(
3
2

)
kTc

a
λc

; (17)

the corresponding value of the fugacity, zc, is given by

zc = exp(µc/kTc)' 1+ 4ζ(3/2)(a/λc). (18)

For a slightly different approach to this result, see Problem 11.2.

11.2.A Effects of interactions on ultracold atomic
Bose–Einstein condensates

In Section 7.2 we discussed Bose–Einstein condensation of noninteracting bosons con-
fined in magnetic traps. The low-energy interactions between atoms are described by the
scattering length a, see equation (11.1.51), and the effect of the scattering length on the
Bose-condensed ground state of a uniform gas is described by equations (6) through (9).
We can include the effect of atomic interactions on the spatially nonuniform ground state
using the Gross–Pitaevskii equation; see Pitaevskii (1961), Gross (1961, 1963), Pitaevskii
and Stringari (2003), and Leggett (2006). The magnetic trap potential can be approximated
by an anisotropic harmonic oscillator potential

V (r)=
1
2

m(ω2
1x2
+ω2

2y2
+ω2

3z2), (19)

which leads to the unperturbed single-particle ground-state wavefunction

φ(r)=
1

π3/4√a1a2a3
exp

[
−

1
2

(
x2

a2
1

+
y2

a2
2

+
z2

a2
3

)]
, (20)

where aα =
√

~/mωα is the linear size of the unperturbed harmonic oscillator ground state
in Cartesian direction α.

For the noninteracting case at T = 0, all the N atoms in the trap occupy this same single-
particle state to form a macroscopic quantum state 9(r)=

√
Nφ(r). At low energies, the

interactions can be approximated by an effective contact potential u0δ(r− r′) with scat-
tering length a and coupling u0 = 4πa~2/m. This provides a fairly accurate description
of interactions in ultracold gases since the kinetic energies and densities of the particles
are so small; see equation (11.1.51). If the scattering length a is positive, the interaction is
repulsive while if a is negative the interaction is attractive. For atoms, the scattering length
is normally of the order of a few Bohr radii but in some atomic isotopes the scattering
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length can be tuned over a large range, including a change of sign, with only small changes
in the magnetic field via a Feshbach resonance. When interactions are included, the mean
field energy can be written in terms of the macroscopic quantum-state wavefunction
9(r), where the macroscopic ground-state number density is given by n(r)= |9(r)|2. The
Gross–Pitevskii energy functional then is

E[9]=
∫

dr

[
~2

2m
|∇9(r)|2+V (r) |9(r)|2+

1
2

u0 |9(r)|4
]

; (21)

see Bahm and Pethick (1996), Pitaevskii and Stringari (2003), Leggett (2006), and Pethick
and Smith (2008). The energy E[9] can be minimized with respect to 9∗, with the
constraint

N =
∫

n(r)dr =
∫
|9(r)|2 dr, (22)

using a Lagrange multiplier µ. Setting δE−µδN = 0 gives the Gross–Pitaevskii equation

−
~2

2m
∇

29(r)+V (r)9(r)+u0 |9(r)|29(r)= µ9(r). (23)

Equations (21) and (23) are quite appropriate for describing the zero-temperature
nonuniform Bose gas when the scattering length a is much smaller than the average spac-
ing between the particles. Equation (23) is in the form of a single-particle Schrödinger
equation with the addition of a nonlinear term proportional to u0 |9(r)|2 that gives a
mean field coupling of one particle to all the remaining particles in the condensate. To
determine the mean field ground-state energy, one solves equation (23) for 9(r) and uses
that solution to evaluate (21). When a= 0, the solution is the noninteracting ground-
state wavefunction 9(r)=

√
Nφ(r). The dimensionless parameter that controls the size

of the interaction term is Na/aosc where aosc = (a1a2a3)
1/3, so the effects of interactions

are largest in systems with large numbers of atoms in the condensate.
Equation (23) can be analyzed analytically in several limiting cases; it can also be stud-

ied numerically. In particular, solving equations (21) and (23) for a uniform system with
V = 0 reproduces the results given in equations (6) through (9). For a> 0, the conden-
sate wavefunction expands in every direction relative to the noninteracting Bose–Einstein
condensate. For Na/aosc� 1, the kinetic energy term can be neglected in the style of a
Thomas-Fermi analysis, so the wavefunction becomes approximately

9(r)≈
√
(µ−V (r))/u0 , (24)

where the Thomas–Fermi wavefunction vanishes for V (r) > µ. The chemical potential µ
and the number of bosons N are related by

N =
8π
15

(
2µ

mω2
0

)3/2
µ

u0
, (25)
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where ω0 = (ω1ω2ω3)
1/3, so

µ=
1
2

(
15Na
aosc

)2/5

~ω0. (26)

The total energy of the condensate in this limit is

E =
5
7
µN . (27)

The linear extents of the condensate in the three directions of the trap are given by

Rα =

√
2µ

mω2
α

= aosc

(
15Na
aosc

)1/5
ω0

ωα
, (28)

so the repulsive interactions expand the size of the condensate, making the aniostropy of
the system larger than that of the noninteracting Bose–Einstein condensate; see Pitaevskii
and Stringari (2003); Leggett (2006), and Pethick and Smith (2008). In time-of-flight mea-
surements, the repulsive interactions result in higher velocities in the directions that were
most confined in the trap, so the time-of-flight distributions are also more anisotropic than
in the noninteracting case; see Holland and Cooper (1996) and Holland et al. (1997).

For attractive interactions with negative scattering lengths, the condensate is ultimately
unstable because of the formation of pairs, but a long-lived atomic condensate exists for
small negative Na/aosc. For the isotropic case, the atomic condensate is metastable in the
mean field theory for−0.575 . Na/aosc < 0. Even in the anisotropic case, the condensate is
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FIGURE 11.1 Ground-state energy of a Bose–Einstein condensate in an isotropic harmonic trap as a function of the
scattering length a. The energy is plotted in units of N~ω0, where ω0 is the trap frequency. The “nonlinear
constant” is proportional to Na/aosc, where N is the number of atoms and aosc =

√
~/mω0 is the width of the

harmonic oscillator ground state wavefunction. Figure from Ruprecht et al. (1995). Reprinted with permission;
copyright © 1995, American Physical Society.
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nearly spherical since the solution of equation (23) is dominated by the kinetic and inter-
action terms; see Ruprecht et al. (1995) and Figure 11.1. Roberts et al. (2001) have used
a Feshbach resonance to tune the scattering length of 85Rb to find that the condensate
becomes unstable at N |a|/aosc ' 0.46.

11.3 Low-lying states of an imperfect Bose gas
In the preceding section we examined first-order corrections to the low-temperature
behavior of an imperfect Bose gas arising from interparticle interactions in the system.
One important result emerging in that study was a nonzero velocity of sound, as given
by equation (11.2.8). This raises the possibility that phonons, the quanta of sound field,
might play an important role in determining the low-temperature behavior of this system
— a role not seen in Section 11.2. To look into this question, we explore the nature of the
low-lying states of an imperfect Bose gas, in the hope that we thus discover an energy-
momentum relation ε(p) obeyed by the elementary excitations of the system, of which
phonons may be an integral part. For this, we have to go a step beyond the approximation
adopted in Section 11.2 which, in turn, requires several significant improvements. To keep
matters simple, we confine ourselves to situations in which the fraction of particles occu-
pying the state with p= 0 is fairly close to 1 while the fraction of particles occupying states
with p 6= 0 is much less than 1.

Going back to equations (11.2.1) through (11.2.4), we first write

2N2
−n2

0 =N2
+ (N2

−n2
0)'N2

+ 2N(N −n0)=N2
+ 2N

∑
p 6=0

a†
pap. (1)

Next, we retain another set of terms from the sum
∑
′ in equation (11.1.46) — terms that

involve a nonzero momentum transfer, namely

∑
p 6=0

u(p)[a†
pa†
−pa0a0+a†

0a†
0apa−p]. (2)

Now, since a†
0a0 = n0 =O(N) and (a0a†

0−a†
0a0)= 1�N , it follows that a0a†

0 = (n0+ 1)'

a†
0a0. The operators a0 and a†

0 may, therefore, be treated as c-numbers, each equal to n1/2
0 '

N1/2. At the same time, the amplitude u(p) in the case of low-lying states may be replaced
by u0/V , as before. Expression (2) then becomes

u0N
V

∑
p 6=0

(a†
pa†
−p+apa−p). (3)
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In view of these results, the Hamiltonian of the system assumes the form

Ĥ =
∑

p

p2

2m
a†

pap+
u0

2V

N2
+N

∑
p 6=0

(2a†
pap+a†

pa†
−p+apa−p)

. (4)

Our next task consists of determining an improved relationship between the quantity
u0 and the scattering length a. While the (approximate) result stated in equation (11.1.51)
is good enough for evaluating the term involving N

∑
p 6=0, it is not so for evaluating the

term involving N2. For this, we note that “if the probability of a particular quantum tran-
sition in a given system under the influence of a constant perturbation V̂ is, in the first
approximation, determined by the matrix element V 0

0 , then in the second approximation
we have instead

V 0
0 +

∑
n6=0

V 0
n V n

0

E0−En
,

the summation going over the various states of the unperturbed system.”
In the present case, we are dealing with a collision process in the two-particle system

(with reduced mass 1
2 m), and the role of V 0

0 is played by the quantity

u00
00 =

1
V

∫
u(r)d3r =

u0

V
;

see equation (11.1.44) for the matrix element u
p′1,p′2
p1,p2

. Making use of the other matrix ele-
ments, we find that in going from the first to second approximation, we have to replace
u0/V by

u0

V
+

1

V 2

∑
p 6=0

|
∫

d3reip·r/~u(r)|2

−p2/m
'

u0

V
−

u2
0m

V 2

∑
p 6=0

1

p2
. (5)

Equating (5) with the standard expression 4πa~2/mV , we obtain, instead of (11.1.51),

u0 '
4πa~2

m

1+
4πa~2

V

∑
p 6=0

1

p2

. (6)

Substituting (6) into (4), we get

Ĥ =
2πa~2

m
N2

V

1+
4πa~2

V

∑
p 6=0

1

p2


+

2πa~2

m
N
V

∑
p 6=0

(2a†
pap+a†

pa†
−p+apa−p)+

∑
p 6=0

p2

2m
a†

pap. (7)
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To evaluate the energy levels of the system one would have to diagonalize the Hamilton-
ian (7), which can be done with the help of a linear transformation of the operators ap and

a†
p, first employed by Bogoliubov (1947):

bp =
ap+αpa†

−p
√
(1−α2

p)
, b†

p =
a†

p+αpa−p
√
(1−α2

p)
, (8)

where

αp =
mV

4πa~2N

{
4πa~2N

mV
+

p2

2m
− ε(p)

}
, (9)

with

ε(p)=

4πa~2N
mV

p2

m
+

(
p2

2m

)2


1/2

; (10)

clearly, each αp < 1. Relations inverse to (8) are

ap =
bp−αpb†

−p
√
(1−α2

p)
, a†

p =
b†

p−αpb−p
√
(1−α2

p)
. (11)

It is straightforward to check that the new operators bp and b†
p satisfy the same commuta-

tion rules as the old operators ap and a†
p did, namely

[bp,b†
p′ ]= δpp′ (12a)

[bp,bp′ ]= [b†
p,b†

p′ ]= 0. (12b)

Substituting (11) into (7), we obtain our Hamiltonian in the diagonalized form:

Ĥ = E0+
∑
p 6=0

ε(p)b†
pbp, (13)

where

E0 =
2πa~2N2

mV
+

1
2

∑
p 6=0

ε(p)− p2

2m
−

4πa~2N
mV

+

(
4πa~2N

mV

)2
m

p2

. (14)

In view of the commutation rules (12) and expression (13) for the Hamiltonian oper-
ator Ĥ , it seems natural to infer that the operators bp and b†

p are the annihilation and
creation operators of certain “quasiparticles” — which represent elementary excitations of
the system — with the energy–momentum relation given by (10); it is also clear that these
quasiparticles obey Bose–Einstein statistics. The quantity b†

pbp is then the particle-number
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operator for the quasiparticles (or elementary excitations) of momentum p, whereby the
second part of the Hamiltonian (13) becomes the energy operator corresponding to the
elementary excitations present in the system. The first part of the Hamiltonian, given
explicitly by equation (14), is therefore the ground-state energy of the system. Replacing
the summation over p by integration and introducing a dimensionless variable x, defined
by

x = p
(

V

8πa~2N

)1/2

,

we obtain for the ground-state energy of the system

E0 =
2πa~2N2

mV

1+

(
128Na3

πV

)1/2

×

∞∫
0

dx
[

x2
(

x
√
(x2
+ 2)− x2

− 1+
1

2x2

)] . (15)

The value of the integral turns out to be (128)1/2/15, with the result

E0

N
=

2πa~2n
m

[
1+

128

15π1/2
(na3)1/2

]
, (16)

where n denotes the particle density in the system. Equation (16) represents the first
two terms of the expansion of the quantity E0/N in terms of the low-density parameter
(na3)1/2; the first term was already obtained in Section 11.2.7

The foregoing result was first derived by Lee and Yang (1957) using the binary collision
method; the details of this calculation, however, appeared somewhat later (see Lee and
Yang, 1960a; see also Problem 11.6). Using the pseudopotential method, this result was
rederived by Lee, Huang, and Yang (1957).

The ground-state pressure of the system is now given by

P0 =−

(
∂E0

∂V

)
N
= n2 ∂(E0/N)

∂n

=
2πa~2n2

m

[
1+

64

5π1/2
(na3)1/2

]
, (17)

7The evaluation of higher-order terms of this expansion necessitates consideration of three-body collisions as well;
hence, in general, they cannot be expressed in terms of the scattering length alone. The exceptional case of a hard-sphere
gas has been studied by Wu (1959), who obtained (using the pseudopotential method)

E0

N
=

2πa~2n
m

[
1+

128
15π1/2 (na3)1/2

+ 8
(

4π
3
−
√

3
)
(na3) ln(12πna3)+O(na3)

]
,

which shows that the expansion does not proceed in simple powers of (na3)1/2.
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from which one obtains for the velocity of sound

c2
0 =

1
m

dP0

dn
=

4πa~2n

m2

[
1 +

16

π1/2
(na3)1/2

]
. (18)

Equations (17) and (18) are an improved version of the results obtained in Section 11.2.
The ground state of the system is characterized by a total absence of excitations;

accordingly, the eigenvalue of the (number) operator b†
pbp of the quasiparticles must be

zero for all p 6= 0. As for the real particles, there must be some that possess nonzero ener-
gies even at absolute zero, for otherwise the system cannot have a finite amount of energy
in the ground state. The momentum distribution of the real particles can be determined
by evaluating the ground-state expectation values of the number operators a†

pap. Now, in
the ground state of the system,

ap|90〉 =
1

√
(1−α2

p)
(bp−αpb†

−p)|90〉 =
−αp

√
(1−α2

p)
b†
−p|90〉 (19)

because bp|90〉 ≡ 0. Constructing the hermitian conjugate of (19) and remembering that
αp is real, we have

〈90|a
†
p =

−αp
√
(1−α2

p)
〈90|b−p. (20)

The scalar product of expressions (19) and (20) gives

〈90|a
†
pap|90〉 =

α2
p

1−α2
p
〈90|b−pb†

−p|90〉 =
α2

p

1−α2
p

; (21)

here, use has been made of the facts that (i) bpb†
p−b†

pbp = 1 and (ii) in the ground state,

for all p 6= 0,b†
pbp = 0 (and hence bpb†

p = 1). Thus, for p 6= 0,

np =
α2

p

1−α2
p
=

x2
+ 1

2x
√
(x2+ 2)

−
1
2

, (22)

where x = p(8πa~2n)−1/2. The total number of “excited” particles in the ground state of
the system is, therefore, given by

∑
p 6=0

np =
∑
p 6=0

α2
p

1−α2
p
=

∑
x>0

1
2

(
x2
+ 1

x
√
(x2+ 2)

− 1

)

'N
{

32
π
(na3)

}1/2 ∞∫
0

dx

[
x2

(
x2
+ 1

x
√
(x2+ 2)

− 1

)]
. (23)
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The value of the integral turns out to be (2)1/2/3, with the result

∑
p 6=0

np 'N
8

3π1/2
(na3)1/2. (24)

Accordingly,

n0 =N −
∑
p 6=0

np 'N
[

1−
8

3π1/2
(na3)1/2

]
. (25)

The foregoing result was first obtained by Lee, Huang, and Yang (1957), using the pseu-
dopotential method. It may be noted here that the importance of the real-particle occupa-
tion numbers np in the study of the ground state of an interacting Bose system had been
emphasized earlier by Penrose and Onsager (1956).

11.4 Energy spectrum of a Bose liquid
In this section we propose to study the most essential features of the energy spectrum of a
Bose liquid and to examine the relevance of this study to the problem of liquid He4. In this
context we have seen that the low-lying states of a low-density gaseous system composed
of weakly interacting bosons are characterized by the presence of the so-called elementary
excitations (or “quasiparticles”), which are themselves bosons and whose energy spectrum
is given by

ε(p)= {p2u2
+ (p2/2m)2}1/2, (1)

where

u= (4πan)1/2(~/m); (2)

see equations (11.3.10), (11.3.12), and (11.3.13).8 For p�mu, that is, p� ~(an)1/2, the
spectrum is essentially linear: ε ' pu. The initial slope of the (ε,p)-curve is, therefore, given
by the parameter u, which is identical to the limiting value of the velocity of sound in the
system; compare (2) with (11.3.18). It is then natural that these low-momentum excita-
tions be identified as phonons — the quanta of the sound field. For p�mu, the spectrum
approaches essentially the classical limit: ε ' p2/2m+1∗, where 1∗ =mu2

= 4πan~2/m.
It is important to note that, all along, this energy–momentum relationship is strictly mono-
tonic and does not display any “dip” of the kind propounded by Landau (1941, 1947) (for

8Spectrum (1) was first obtained by Bogoliubov (1947) by the method outlined in the preceding sections. Using the
pseudopotential method, it was rederived by Lee, Huang, and Yang (1957).
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liquid He4) and observed experimentally by Yarnell et al. (1959), and by Henshaw and
Woods (1961); see Section 7.6. Thus, the spectrum provided by the theory of the preceding
sections simulates the Landau spectrum only to the extent of phonons; it does not account
for rotons. This should not be surprising, for the theory in question was intended only for
a low-density Bose gas (na3

� 1) and not for liquid He4(na3
' 0.2).

The problem of elementary excitations in liquid He4 was tackled successfully by
Feynman who, in 1953 to 1954, developed an atomic theory of a Bose liquid at low tem-
peratures. In a series of three fundamental papers starting from first principles, Feynman
established the following important results.9

(i) In spite of the presence of interatomic forces, a Bose liquid undergoes a phase
transition analogous to the momentum-space condensation occurring in the ideal
Bose gas; in other words, the original suggestion of London (1938a,b) regarding
liquid He4, see Section 7.1, is essentially correct.

(ii) At sufficiently low temperatures, the only excited states possible in the liquid
are the ones related to compressional waves, namely phonons. Long-range motions,
which leave the density of the liquid unaltered (and consequently imply nothing
more than a simple “stirring” of the liquid), do not constitute excited states
because they differ from the ground state only in the “permutation” of certain
atoms. Motions on an atomic scale are indeed possible, but they require a minimum
energy1 for their excitation; clearly, these excitations would show up only at
comparatively higher temperatures (T ∼1/k) and might well turn out to be
Landau’s rotons.

(iii) The wavefunction of the liquid, in the presence of an excitation, should be
approximately of the form

9 =8
∑

i

f (ri), (3)

where8 denotes the ground-state wavefunction of the system while the summation
of f (ri) goes over all the N coordinates r1, . . . , rN ; the wavefunction9 is, clearly,
symmetric in its arguments. The exact character of the function f (r) can be
determined by making use of a variational principle that requires the energy of the
state9 (and hence the energy associated with the excitation in question) to be a
minimum.

The optimal choice for f (r) turns out to be, see Problem 11.8,

f (r)= exp i(k · r), (4)

9The reader interested in pursuing Feynman’s line of argument should refer to Feynman’s original papers or to a
review of Feynman’s work on superfluidity by Mehra and Pathria (1994).



368 Chapter 11 . Statistical Mechanics of Interacting Systems

with the (minimized) energy value

ε(k)=
~2k2

2mS(k)
, (5)

where S(k) is the structure factor of the liquid, that is, the Fourier transform of the pair
correlation function g(r):

S(k)= 1+n
∫
(g(r)− 1)eik·r dr; (6)

it may be recalled here that the function ng(r2− r1) is the probability density for finding
an atom in the neighborhood of the point r2 when another one is known to be at the point
r1; see Section 10.7. The optimal wavefunction is, therefore, given by

9 =8
∑

i

eik·ri . (7)

Now the momentum associated with this excited state is ~k because

P9 =

(
−i~

∑
i

∇i

)
9 = ~k9, (8)

P8 being identically equal to zero. Naturally, this would be interpreted as the momentum
p associated with the excitation. One thus obtains, from first principles, the energy–
momentum relationship for the elementary excitations in a Bose liquid.

On physical grounds one can show that, for small k, the structure factor S(k) rises lin-
early as ~k/2mc, reaches a maximum near k = 2π/r0 (corresponding to a maximum in
the pair correlation function at the nearest-neighbor spacing r0, which for liquid He4 is
about 3.6 Å) and thereafter decreases to approach, with minor oscillations (corresponding
to the subsidiary maxima in the pair correlation function at the spacings of the next near-
est neighbors), the limiting value 1 for large k; the limiting value 1 arises from the presence
of a delta function in the expression for g(r) (because, as r2→ r1, one is sure to find an
atom there).10 Accordingly, the energy ε(k) of an elementary excitation in liquid He4 would

start linearly as ~kc, show a “dip” at k0 ' 2Å
−1

and rise again to approach the eventual
limit of ~2k2/2m.11 These features are shown in Figure 11.2. Clearly, Feynman’s approach
merges both phonons and rotons into a single, unified scheme in which they represent

10For a microscopic study of the structure factor S(k), see Huang and Klein (1964); also Jackson and Feenberg (1962).
11It is natural that at some value of k < k0, the (ε,k)-curve passes through a maximum; this happens when

dS/dk = 2S/k.
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FIGURE 11.2 The energy spectrum of the elementary excitations in liquid He4. The upper portion shows the
structure factor of the liquid, as derived by Henshaw (1960) from experimental data on neutron diffraction. Curve 1
in the lower portion shows the energy–momentum relationship based on the Feynman formula (5) while curve 2 is
based on an improved formula by Feynman and Cohen (1956). For comparison, the experimental results of Woods
(1966) obtained directly from neutron scattering are also included.

different parts of a common (and continuous) energy spectrum ε(k), as determined by the
structure of the liquid through the function S(k). Since no motion of a rotational character
is involved here, the name “roton” is clearly a misnomer.

It seems appropriate to mention here that, soon after the work of London, which advo-
cated a connection between the phase transition in liquid He4 and the phenomenon of
Bose–Einstein condensation, Bijl (1940) investigated the mathematical structure of the
wavefunctions appropriate to an interacting Bose gas and the excitation energy associ-
ated with those wavefunctions. His picture corresponded very closely to Feynman’s and
indeed led to the wavefunction (7). Bijl also derived an expression for ε(k) that was exactly
the same as (5). Unfortunately, he could not make much use of his results — primarily
because he leaned too heavily on the expansion

S(k)= S(0)+C2k2
+C4k4

+ ·· ·, (9)

which, as we now know, represents neither phonons nor rotons.
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11.5 States with quantized circulation
We now proceed to examine the possibility of “organized motion” in the ground
state of a Bose fluid. In this context, the most important concept is embodied in the cir-
culation theorem of Feynman (1955), which establishes a physical basis for the existence
of “quantized vortex motion” in the fluid. In the case of liquid helium II, this concept has
successfully resolved some of the vital questions that baffled superfluid physicists for a
long time.

The ground-state wavefunction of a superfluid, composed of N bosons, may be
denoted by a symmetric function 8(r1, . . . , rN ); if the superfluid does not partake in any
organized motion, then 8 will be a pure real number. If, on the other hand, it possesses a
uniform mass-motion with velocity vs, then its wavefunction would be

9 =8ei(Ps·R)/~ =8eim(vs·6iri)/~, (1)

where Ps denotes the total momentum of the fluid and R its center of mass:

Ps =Nmvs; R =N−1
∑

i

ri. (2)

The wavefunction (1) is exact if the drift velocity vs is uniform throughout the fluid. If vs

is nonuniform, then the present wavefunction would still be good locally — in the sense
that the phase change 1φ resulting from a “set of local displacements” of the atoms (over
distances too small for velocity variations to be appreciable) would be practically the same
as the one following from expression (1). Thus, for a given set of displacements 1ri of
the atoms constituting the fluid, the change in the phase of the wavefunction would very
nearly be

1φ =
m
~
∑

i

(vsi ·1ri), (3)

where vs is now a function of r.
The foregoing result may be used for calculating the net phase change resulting from

a displacement of atoms along a ring, from their original positions in the ring to the
neighboring ones, so that after displacement we obtain a configuration that is physically
identical to the one we started with; see Figure 11.3. In view of the symmetry of the wave-
function, the net phase change resulting from such a displacement must be an integral
multiple of 2π (so that the wavefunction after the displacement is identical to the one
before the displacement):

m
~
∑′

i
(vsi ·1ri)= 2πn, n= 0,±1,±2, . . . ; (4)

the summation
∑
′ here goes over all the atoms constituting the ring. We note that, for the

foregoing result to be valid, it is only the individual1ri that have to be small, not the whole
perimeter of the ring. Now, for a ring of a macroscopic size, one may regard the fluid as a
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FIGURE 11.3 The wavefunction of the fluid must not change as a result of a permutation of the atoms. If all the
atoms are displaced around a ring, as shown, the phase change must be a multiple of 2π .

continuum; equation (4) then becomes∮
vs ·dr = n

h
m

, n= 0,±1,±2, . . . . (5)

The quantity on the left side of this equation is, by definition, the circulation (of the flow)
associated with the circuit of integration and is clearly quantized, the “quantum of circu-
lation” being h/m. Equation (5) constitutes the circulation theorem of Feynman; it bears a
striking resemblance to the quantum condition of Bohr, namely∮

pdq= nh, (6)

though the region of application here is macroscopic rather than microscopic.12

By Stokes’ theorem, equation (5) may be written as

∫
S

(curl vs) ·dS = n
h
m

, n= 0,±1,±2, . . . , (7)

where S denotes the area enclosed by the circuit of integration. If this area is “simply-
connected” and the velocity vs is continuous throughout the area, then the domain of
integration can be shrunk in a continuous manner without limit. The integral on the
left side is then expected to decrease continuously and finally tend to zero. The right
side, however, cannot vary continuously. We infer that in this particular case the quan-
tum number n must be zero, that is, our integral must be identically vanishing. Thus,
“in a simply-connected region, in which the velocity field is continuous throughout, the
condition

curl vs = 0 (8)

12That the vortices in a superfluid may be quantized, the quantum of circulation being h/m, was first suggested by
Onsager (1949) in a footnote to a paper dealing with the classical vortex theory and the theory of turbulence!
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holds everywhere.” This is precisely the condition postulated by Landau (1941), which has
been the cornerstone of our understanding of the hydrodynamic behavior of superfluid
helium.13

Clearly, the Landau condition is only a special case of the Feynman theorem. It is quite
possible that in a “multiply-connected” domain, which cannot be shrunk continuously to
zero (without encountering singularities in the velocity field), the Landau condition may
not hold everywhere. A typical example of such a domain is provided by the flow of a vortex,
which is a planar flow with cylindrical symmetry, such that

vρ = 0, vφ =
K

2πρ
, vz = 0, (9)

where ρ is the distance measured perpendicular to the axis of symmetry while K is the
circulation of the flow: ∮

v ·dr =
∮

vφ(ρ dφ)= K ; (10)

note that the circuit of integration in (10) must enclose the axis of the vortex.
Another version of the foregoing result is∫

S

(curl v) ·dS =
∫
S

{
1
ρ

d
dρ
(ρvφ)

}
(2πρdρ)= K . (11)

Now, at all ρ 6= 0, curl v= 0 but at ρ = 0, where vφ is singular, curl v appears to be indeter-
minate; it is not difficult to see that, at ρ = 0, curl v diverges (in such a way that the integral
in (11) turns out to be finite). In this context, it seems worthwhile to point out that if we
carry out the integration in (10) along a circuit that does not enclose the axis of the vortex,
or in (11) over a region that does not include the point ρ = 0, the result would be identically
zero.

At this stage we note that the energy associated with a unit length of a classical vortex
is given by

E

L
=

b∫
a

1
2
{2πρ dρ(mn0)}

(
K

2πρ

)2

=
mn0K 2

4π
ln(b/a). (12)

13Drawing on the well-known analogy between the phenomena of superfluidity and superconductivity, and the
resulting correspondence between the mechanical momentum mvs of a superfluid particle and the electromagnetic
momentum 2eA/c of a Cooper pair of electrons, we observe that the relevant counterpart of the Landau condition, in
superconductors, would be

curl A≡ B= 0, (8a)

which is precisely the Meissner effect; furthermore, the appropriate counterpart of the Feynman theorem would be∫
S

B ·dS = n
hc
2e

, (7a)

which leads to the “quantization of the magnetic flux,” the quantum of flux being hc/2e.
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Here, (mn0) is the mass density of the fluid (which is assumed to be uniform), the upper
limit b is related to the size of the container while the lower limit a depends on the structure
of the vortex; in our study, a would be comparable to the interatomic separation.

In the quantum-mechanical case we may describe our vortex through a self-consistent
wavefunction ψ(r), which, in the case of cylindrical symmetry, see equation (9), may be
written as

ψ(r)= n∗1/2eisφfs(ρ), (13)

so that

n(r)≡ |ψ(r)|2 = n∗f 2
s (ρ). (14)

As ρ→∞, fs(ρ)→ 1, so that n∗ becomes the limiting particle density in the fluid in regions
far away from the axis of the vortex. The velocity field associated with this wavefunction
will be

v(r)=
~

2im(ψ∗ψ)
(ψ∗∇ψ −ψ∇ψ∗)

=
~
m
∇(sφ)=

(
0,s

~
mρ

,0
)

. (15)14

Comparing (15) with (9), we conclude that the circulation K in the present case is sh/m;
by the circulation theorem, s must be an integer:

s= 0,±1,±2, . . . . (16)

Clearly, the value 0 is of no interest to us. Furthermore, the negative values of s differ from
the positive ones only in the “sense of rotation” of the fluid. It is, therefore, sufficient to
consider the positive values alone, namely

s= 1,2,3, . . . . (17)

The function fs(ρ) appearing in equation (13) may be determined with the help of a
Schrödinger equation in which the potential term is itself ψ-dependent, namely(

−
~2

2m
∇

2
+u0|ψ |

2

)
ψ = εψ , (18)

14It is of interest to see that the angular momentum per particle in the fluid is given by

1
ψ

(
~
i
∂

∂φ
ψ

)
= s~(=mvφρ);

this is again reminiscent of the quantum condition of Bohr.



374 Chapter 11 . Statistical Mechanics of Interacting Systems

where u0 is given by equation (11.1.51):

u0 = 4πa~2/m, (19)

a being the scattering length of the interparticle interaction operating in the fluid. The
characteristic energy ε follows from the observation that, at large distances from the axis
of the vortex, the fluid is essentially uniform in density, with n(r)→ n∗; equation (18) then
gives

ε = u0n∗ = 4πa~2n∗/m, (20)

which may be compared with equation (11.2.9). Substituting (20) into (18) and remember-
ing that the flow is cylindrically symmetrical, we get

−

[
1
ρ

d
dρ

{
ρ

d
dρ

fs(ρ)

}
−

s2

ρ2
fs(ρ)

]
+ 8πan∗f 3

s (ρ)= 8πan∗fs(ρ). (21)

Expressing ρ in terms of a characteristic length l,

ρ = lρ′ {l = (8πan∗)−1/2
}, (22)

we obtain

d2fs

dρ′2
+

1
ρ′

dfs

dρ′
+

(
1−

s2

ρ′2

)
fs− f 3

s = 0. (23)

Toward the axis of the vortex, where ρ→ 0, the very high velocity of the fluid (and the very
large centrifugal force accompanying it) will push the particles outward, thus causing an
enormous decrease in the density of the fluid. Consequently, the function fs should tend to
zero as ρ→ 0. This will make the last term in equation (23) negligible and thereby reduce
it to the familiar Bessel’s equation. Accordingly, for small ρ,

fs(ρ
′)∼ Js(ρ

′)∼ ρs, (24)

Js being the ordinary Bessel function of order s. For ρ′� 1, fs ' 1; then, the first two terms
of equation (23) become negligible, with the result

fs(ρ
′)' 1−

s2

2ρ′2
. (25)

The full solution is obtained by integrating the equation numerically; the results so
obtained are shown in Figure 11.4 where solutions for s= 1,2, and 3 are displayed.

We thus find that our model of an imperfect Bose gas does allow for the presence of
quantized vortices in the system. Not only that, we do not have to invoke here any special
assumptions regarding the nature of the “core” of the vortex (as one has to do in the classi-
cal theory); our treatment naturally leads to a continual diminution of the particle density
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FIGURE 11.4 Solutions of equation (23) for various values of s (after Kawatra and Pathria, 1966).

n as the axial line is approached, so that there does not exist any specific distribution of
vorticity around this line. The distance scale, which governs the spatial variation of n, is
provided by the parameter l of equation (22); for liquid He4, l ' 1Å.

Pitaevskii (1961), who was among the first to demonstrate the possibility of obtaining
solutions whose natural interpretation lay in quantized vortex motion (see also Gross,
1961; Weller, 1963), also evaluated the energy per unit length of the vortex. Employ-
ing wavefunction (13), with known values of the functions fs(ρ), Pitaevskii obtained the
following results for the energy per unit length of the vortex, with s= 1,2, or 3,

n∗h2

4πm

{
1ln(1.46R/l ), 4 ln(0.59R/l ), 9 ln(0.38R/l )

}
, (26)

where R denotes the outer radius of the domain involved. The above results may be
compared with the “semiclassical” ones, namely

n0h2

4πm

{
1ln(R/a), 4 ln(R/a), 9 ln(R/a)

}
, (27)

which follow from formula (12), with K replaced by sh/m and b by R. It is obvious
that vortices with s> 1 would be relatively unstable because energetically it would be
cheaper for a system to have s vortices of unit circulation rather than a single vortex of
circulation s.

The existence of quantized vortex lines in liquid helium II has been demonstrated con-
vincingly by the ingenious experiments of Vinen (1958–1961) in which the circulation K
around a fine wire immersed in the liquid was measured through the influence it exerts on
the transverse vibrations of the wire. Vinen found that while vortices with unit circulation
were exceptionally stable those with higher circulation too made an appearance. Repeat-
ing Vinen’s experiment with thicker wires, Whitmore and Zimmermann (1965) were able
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to observe stable vortices with circulation up to three quantum units. For a survey of this
and other aspects of the superfluid behavior, see Vinen (1968) and Betts et al. (1969). Kim
and Chan (2004) have even observed a “supersolid” phase of helium-4 at low temperatures
that has the crystalline structure of a solid while also exhibiting superfuid-like flow.

For the relevance of quantized vortex lines to the problem of “rotation” of the super-
fluid, see Section 10.7 of the first edition of this book.

11.6 Quantized vortex rings and the breakdown
of superfluidity

Feynman (1955) was the first to suggest that the formation of vortices in liquid helium II
might provide the mechanism responsible for the breakdown of superfluidity in the liquid.
He considered the flow of liquid helium II from an orifice of diameter D and, by tentative
arguments, found that the velocity v0 at which the flow energy available would just be
sufficient to create quantized vortices in the liquid is given by

v0 =
~

mD
ln(D/l). (1)

Thus, for an orifice of diameter 10−5 cm, v0 would be of the order of 1m/s.15 It is tempting
to identify v0 with vc, the critical velocity of superflow through the given capillary, despite
the fact that this theoretical estimate for v0 is an order of magnitude higher than the cor-
responding experimental values of vc; the latter, for instance, are 13 cm/s,8 cm/s, and
4 cm/s for capillary diameters 1.2× 10−5 cm, 7.9× 10−5 cm, and 3.9× 10−4 cm, respec-
tively. Nevertheless, the present estimate is far more desirable than the prohibitively large
ones obtained earlier on the basis of a possible creation of phonons or rotons in the liquid;
see Section 7.6. Moreover, one obtains here a definitive dependence of the critical veloc-
ity of superflow on the width of the capillary employed which, at least qualitatively, agrees
with the trend seen in the experimental findings. In what follows, we propose to develop
Feynman’s idea further along the lines suggested by the preceding section.

So far we have been dealing with the so-called linear vortices whose velocity field pos-
sesses cylindrical symmetry. More generally, however, a vortex line need not be straight —
it may be curved and, if it does not terminate on the walls of the container or on the free
surface of the liquid, may close on itself. We then speak of a vortex ring, which is very much
like a smoke ring. Of course, the quantization condition (11.5.5) is as valid for a vortex ring
as for a vortex line. However, the dynamical properties of a ring are quite different from
those of a line; see, for instance, Figure 11.5, which shows schematically a vortex ring in
cross-section, the radius r of the ring being much larger than the core dimension l. The
flow velocity vs at any point in the field is determined by a superposition of the flow velo-
cities due to the various elements of the ring. It is not difficult to see that the velocity field

15We have taken here: l ' 1Å, so that ln(D/l)' 7.
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FIGURE 11.5 Schematic illustration of a quantized vortex ring in cross-section.

of the ring, including the ring itself, moves in a direction perpendicular to the plane of the
ring, with a velocity16

v ∼ ~/2mr; (2)

see equation (11.5.15), with s= 1 and ρ ∼ 2r. An estimate of the energy associated with the
flow may be obtained from expression (11.5.12), with L= 2πr,K = h/m, and b∼ r; thus

ε ∼ 2π2~2n0m−1r ln(r/l). (3)

Clearly, the dependence of ε on r arises mainly from the factor r and only slightly from
the factor ln(r/l). Therefore, with good approximation, v ∝ ε−1, that is, a ring with larger
energy moves slower! The reason behind this somewhat startling result is that firstly the
larger the ring the larger the distances between the various circulation-carrying elements
of the ring (thus reducing the velocity imparted by one element to another) and secondly
a larger ring carries with it a larger amount of fluid (M ∝ r3), so the total energy associated
with the ring is also larger (essentially proportional to Mv2, i.e.,∝ r). The product vε, apart
from the slowly varying factor ln(r/l), is thus a constant, which is equal to π2~3n0/m2.

It is gratifying that vortex rings such as the ones discussed here have been observed
and the circulation around them is found to be as close to the quantum h/m as one could
expect under the conditions of the experiment. Figure 11.6 shows the experimental results
of Rayfield and Reif (1964) for the velocity–energy relationship of free-moving, charge-
carrying vortex rings created in liquid helium II by suitably accelerated helium ions. Vortex
rings carrying positive as well as negative charge were observed; dynamically, however,
they behaved alike, as one indeed expects because both the velocity and the energy asso-
ciated with a vortex ring are determined by the properties of a large amount of fluid carried

16This result would be exact if we had a pair of oppositely directed linear vortices, with the same cross-section as
shown in Figure 11.5. In the case of a ring, the velocity would be somewhat larger.
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FIGURE 11.6 The velocity–energy relationship of the vortex rings formed in liquid helium II (after Rayfield and Reif,
1964). The points indicate the experimental data, while the curve represents the theoretical relationship based on
the “quantum of circulation” h/m.

along with the ring rather than by the small charge coupled to it. Fitting experimental
results with the notion of the vortex rings, Rayfield and Reif concluded that their rings
carried a circulation of (1.00± 0.03)× 10−3 cm2/s, which is close to the Onsager–Feynman
unit h/m(= 0.997× 10−3 cm2/s); moreover, these rings seemed to have a core radius of
about 1.2Å, which is comparable with the characteristic parameter l of the fluid.

We shall now show that the dynamics of the quantized vortex rings is such that their
creation in liquid helium II does provide a mechanism for the breakdown of superfluidity.
To see this, it is simplest to consider the case of a superfluid flowing through a capillary of
radius R. As the velocity of flow increases and approaches the critical value vc, quantized
vortex rings begin to form and energy dissipation sets in, which in turn brings about the
rupture of the superflow. By symmetry, the rings will be so formed that their central plane
will be perpendicular to the axis of the capillary and they will be moving in the direction
of the main flow. Now, by the Landau criterion (7.6.24), the critical velocity of superflow is
directly determined by the energy spectrum of the excitations created:

vc = (ε/p)min. (4)

We, therefore, require an expression for the momentum p of the vortex ring. In analogy
with the classical vortex ring, we may take

p= 2π2~n0r2, (5)

which seems satisfactory because (i) it conforms to the general result: v = (∂ε/∂p), though
only to a first approximation, and (ii) it leads to the (approximate) dispersion relation:
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ε ∝ p1/2, which has been separately verified by Rayfield and Reif by subjecting their rings
to a transverse electric field. Substituting (3) and (5) into (4), we obtain

vc ∼

{
~

mr
ln(r/l)

}
min

. (6)

Now, since the r-dependence of the quantity ε/p arises mainly from the factor 1/r, the
minimum in (6) will be obtained when r has its largest value, namely R, the radius of the
capillary. We thus obtain

vc ∼
~

mR
ln(R/l), (7)

which is very much the same as the original estimate of Feynman — with D replaced by R.
Naturally, then, the numerical values of vc obtained from the new expression (7) continue
to be significantly larger than the corresponding experimental values; however, the theory
is now much better founded.

Fetter (1963) was the first to account for the fact that, as the radius r of the ring
approaches the radius R of the capillary, the influence of the “image vortex” becomes
important. The energy of the flow now falls below the asymptotic value given by (3) by a
factor of 10 or so which, in turn, reduces the critical velocity by a similar factor. The actual
result obtained by Fetter was

vc '
11
24

~
mR
= 0.46

~
mR

. (8)

Kawatra and Pathria (1966) extended Fetter’s calculation by taking into account the
boundary effects arising explicitly from the walls of the capillary as well as the ones aris-
ing implicitly from the “image vortex”; moreover, in the computation of ε, they employed
actual wavefunctions, obtained by solving equation (11.5.23), rather than the analytical
approximation employed by Fetter. They obtained

vc ' 0.59
~

mR
, (9)

which is about 30 percent higher than Fetter’s value; for comments regarding the “most
favorable” location for the formation of the vortex ring in the capillary, see the original
reference of Kowatra and Pathria (1966).

11.7 Low-lying states of an imperfect Fermi gas
The Hamiltonian of the quantized field for spin-half fermions

(
σ =+1

2 or − 1
2

)
is given by

equation (11.1.48), namely

Ĥ =
∑
p,σ

p2

2m
a†

pσapσ +
1
2

∑′

u
p′1σ
′
1,p′2σ

′
2

p1σ1,p2σ2 a†
p′1σ
′
1

a†
p′2σ
′
2

ap2σ2 ap1σ1 , (1)
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where the matrix elements u are related to the scattering length a of the two-body inter-
action; the summation in the second part of this expression goes only over those states (of
the two particles) that conform to the principles of momentum and spin conservation. As
in the Bose case, the matrix elements u in the second sum may be approximated by their
values at p= 0, that is,

u
p′1σ
′
1,p′2σ

′
2

p1σ1,p2σ2 ' u
0σ ′1,0σ ′2
0σ1,0σ2

. (2)

Then, in view of the antisymmetric character of the product ap1σ1 ap2σ2 , see equa-
tion (11.1.24c), all those terms of the second sum in (1) that contain identical indices σ1

and σ2 vanish on summation over p1 and p2. Similarly, all those terms that contain iden-
tical indices σ ′1 and σ ′2 vanish on summation over p′1 and p′2.17 Thus, for a given set of
values of the particle momenta, the only choices for the spin components remaining in
the sum are

(i) σ1 =+
1
2 , σ2 =−

1
2 ; σ ′1 =+

1
2 , σ ′2 =−

1
2

(ii) σ1 =+
1
2 , σ2 =−

1
2 ; σ ′1 =−

1
2 , σ ′2 =+

1
2

(iii) σ1 =−
1
2 , σ2 =+

1
2 ; σ ′1 =−

1
2 , σ ′2 =+

1
2

(iv) σ1 =−
1
2 , σ2 =+

1
2 ; σ ′1 =+

1
2 , σ ′2 =−

1
2 .

It is not difficult to see that the contribution arising from choice (i) will be identi-
cally equal to the one arising from choice (iii), while the contribution arising from choice
(ii) will be identically equal to the one arising from choice (iv). We may, therefore, write

Ĥ =
∑
p,σ

p2

2m
a†

pσapσ +
u0

V

∑′

a†
p′1+

a†
p′2−

ap2−ap1+, (3)

where

u0

V
=

(
u0+,0−

0+,0−−u0−,0+
0+,0−

)
, (4)

while the indices + and − denote the spin states σ =+1
2 and σ =−1

2 , respectively; the
summation in the second part of (3) now goes over all momenta that conform to the
conservation law

p′1+p′2 = p1+p2. (5)

To evaluate the eigenvalues of Hamiltonian (3), we shall employ the techniques of the
perturbation theory.

17Physically, this means that in the limiting case of slow collisions only particles with opposite spins interact with one
another.
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First of all, we note that the main term in the expression for Ĥ is already diagonal, and
its eigenvalues are

E(0) =
∑
p,σ

p2

2m
npσ, (6)

where npσ is the occupation number of the single-particle state (p,σ); its mean value, in
equilibrium, is given by the Fermi distribution function

npσ =
1

z−1
0 exp(p2/2mkT)+ 1

. (7)

The sum in (6) may be replaced by an integral, with the result (see Section 8.1, with g = 2)

E(0) = V
3kT

λ3
f5/2(z0), (8)

where λ is the mean thermal wavelength of the particles,

λ= h/(2πmkT)1/2, (9)

while fν(z0) is the Fermi–Dirac function

fν(z0)=
1

0(ν)

∞∫
0

xν−1dx

z−1
0 ex+ 1

=

∞∑
l=1

(−1)l−1 zl
0

lν
; (10)

the ideal-gas fugacity z0 is determined by the total number of particles in the system:

N =
∑
p,σ

npσ = V
2

λ3
f3/2(z0). (11)

The first-order correction to the energy of the system is given by the diagonal elements
of the interaction term, namely the ones for which p′1 = p1 and p′2 = p2; thus

E(1) =
u0

V

∑
p1,p2

np1+
np2−

=
u0

V
N+N−, (12)

where N+(N−) denotes the total number of particles with spin up (down). Substituting the
equilibrium values N+ =N− = 1

2 N , we obtain

E(1) =
u0

4V
N2
= V

u0

λ6

{
f3/2(z0)

}2 . (13)

Substituting u0 ' 4πa~2/m, see equation (11.1.51), we obtain to first order in a

E(1)1 =
πa~2

m
N
V

N = V
2kT

λ3

(a
λ

) {
f3/2(z0)

}2 . (14)
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The second-order correction to the energy of the system can be obtained with the help of
the formula

E(2)n =
∑

m6=n

|Vnm|
2

En−Em
, (15)

where the indices n and m pertain to the unperturbed states of the system. A simple
calculation yields:

E(2) = 2
u2

0

V 2

∑
p1,p2,p′1

np1+np2−

(
1−np′1+

)(
1−np′2−

)
(

p2
1+p2

2−p′21 −p′22

)
/2m

, (16)

where the summation goes over all p1, p2, and p′1 (the value of p′2 being fixed by the
requirement of momentum conservation); it is understood that we do not include in the
sum (16) any terms for which p2

1+p2
2 = p′21 +p′22 . It will be noted that the numerator of

the summand in (16) is closely related to the fact that the squared matrix element for the
transition (p1, p2)→ (p′1, p′2) is directly proportional to the probability that “the states p1
and p2 are occupied and at the same time the states p′1 and p′2 are unoccupied.”

Now, expression (16) does not in itself exhaust terms of second order in a. A contribution
of the same order of magnitude arises from expression (12) if for u0 we employ an expres-
sion more accurate than the one just employed. The desired expression can be obtained
in the same manner as in the Bose case; check the steps leading to equations (11.2.5) and
(11.2.6). In the present case, we obtain

4πa~2

mV
'

u0

V
+ 2

u2
0

V 2

∑
p1,p2,p′1

1(
p2

1+p2
2−p′21 −p′22

)
/2m

,

from which it follows that

u0 '
4πa~2

m

1−
8πa~2

mV

∑
p1,p2,p′1

1(
p2

1+p2
2−p′21 −p′22

)
/2m

. (17)

Substituting (17) into (12), we obtain, apart from the first-order term already given in (14),
a second order term, namely

E(1)2 =−2

(
4πa~2

mV

)2 ∑
p1,p2,p′1

np1+np2−(
p2

1+p2
2−p′21 −p′22

)
/2m

. (18)
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For a comparable term given in (16), the approximation u0 ' 4πa~2/m is sufficient, with
the result

E(2)2 = 2

(
4πa~2

mV

)2 ∑
p1,p2,p′1

np1+np2−

(
1−np′1+

)(
1−np′2−

)
(

p2
1+p2

2−p′21 −p′22

)
/2m

. (19)

Combining (18) and (19), we obtain18

E2 = E(1)2 +E(2)2 =−2

(
4πa~2

mV

)2 ∑
p1,p2,p′1

np1+np2−

(
np′1+

+np′2−

)
(

p2
1+p2

2−p′21 −p′22

)
/2m

. (20)

To evaluate the sum in (20), we prefer to write it as a symmetrical summation over
the four momenta p1, p2, p′1, and p′2 by introducing a Kronecker delta to take care of the
momentum conservation; thus

E2 =−2

(
4πa~2

mV

)2 ∑
p1,p2,p′1,p′2

np1+np2−

(
np′1+

+np′2−

)
δp1+p2,p′1+p′2(

p2
1+p2

2−p′21 −p′22

)
/2m

. (21)

It is obvious that the two parts of the sum (21), one arising from the factor np′1+
and the

other from the factor np′2−
, would give identical results on summation. We may, therefore,

write

E2 =−4

(
4πa~2

mV

)2 ∑
p1,p2,p′1,p′2

np1+np2−np′1+
δp1+p2,p′1+p′2(

p2
1+p2

2−p′21 −p′22

)
/2m

. (22)

The sum in (22) can be evaluated by following a procedure due to Huang, Yang, and
Luttinger (1957), with the result19

E2 = V
8kT

λ3

(
a2

λ2

)
F(z0), (23)

where

F(z0)=−

∞∑
r,s,t=1

(−z0)
r+s+t

√
(rst)(r+ s)(r+ t)

. (24)

18We have omitted here terms containing a “product of four n’s” for the following reason: in view of the fact that
the numerator of such terms would be symmetric and the denominator antisymmetric with respect to the exchange
operation (p1, p2)↔ (p′1, p′2), their sum over the variables p1, p2, p′1 (and p′2) would vanish identically.

19For a direct evaluation of the sum (22), in the limit T→ 0, see Abrikosov and Khalatnikov (1957). See also
Problem 11.12.
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Combining (8), (14), and (23), we obtain to second order in the scattering length a

E = V
kT

λ3

[
3f5/2(z0)+

2a
λ
{f3/2(z0)}

2
+

8a2

λ2
F(z0)

]
, (25)

where z0 is determined by (11).
It is now straightforward to obtain the ground-state energy of the imperfect Fermi gas

(z0→∞); we have simply to know the asymptotic behavior of the functions involved. For
the functions fν(z0), we have from the Sommerfeld lemma (see Appendix E)

fν(z0)≈ (lnz0)
ν/0(ν+ 1), (26)

so that

f5/2(z0)≈
8

15π1/2
(lnz0)

5/2; f3/2(z0)≈
4

3π1/2
(lnz0)

3/2. (27)

Equation (11) then gives

n=
N
V
≈

8

3π1/2λ3
(lnz0)

3/2, (28)

so that

lnz0 ≈ λ
2

(
3π1/2n

8

)2/3

. (29)

The asymptotic behaviour of F(z0) is given by

F(z0)≈
16(11− 2ln2)

105π3/2
(lnz0)

7/2; (30)

see Problem 11.12. Substituting (27) and (30) into (25), and making use of relation (29), we
finally obtain

E0

N
=

3
10

~2

m
(3π2n)2/3

+
πa~2

m
n

{
1+

6
35
(11− 2ln2)

(
3
π

)1/3

n1/3a

}
. (31)

The ground-state pressure of the gas is then given by

P0 = n2 ∂(E0/N)
∂n

=
1
5

~2

m
(3π2n)2/3n+

πa~2

m
n2

{
1+

8
35
(11− 2ln2)

(
3
π

)1/3

n1/3a

}
. (32)
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We may also calculate the velocity of sound, which directly involves the compressibility of
the system, with the result

c2
0 =

∂P0

∂(mn)

=
1
3

~2

m2
(3π2n)2/3

+
2πa~2

m2
n

{
1+

4
15
(11− 2ln2)

(
3
π

)1/3

n1/3a

}
. (33)

The leading terms of the foregoing expressions represent the ground-state results for
an ideal Fermi gas, while the remaining terms represent corrections arising from the
interparticle interactions.

The result embodied in equation (31) was first obtained by Huang and Yang (1957) by
the method of pseudopotentials; Martin and De Dominicis (1957) were the first to attempt
an estimate of the third-order correction.20 Lee and Yang (1957) obtained (31) on the basis
of the binary collision method; for the details of their calculation, see Lee and Yang (1959b,
1960a). The same result was derived somewhat later by Galitskii (1958) who employed the
method of Green’s functions.

11.8 Energy spectrum of a Fermi liquid: Landau’s
phenomenological theory21

In Section 11.4 we discussed the main features of the energy spectrum of a Bose liquid;
such a spectrum is generally referred to as a Bose type spectrum. A liquid consisting of
spin-half fermions, such as liquid He3, is expected to have a different kind of spectrum
which, by contrast, may be called a Fermi type spectrum.

Right away we should emphasize that a liquid consisting of fermions may not neces-
sarily possess a spectrum of the Fermi type; the spectrum actually possessed by such a
liquid depends crucially on the nature of the interparticle interactions operating in the
liquid. The discussion here assumes that the interactions are strictly repulsive so that the
fermions have no opportunity to form bosonic pairs. In the present section, we propose to
discuss the main features of a spectrum which is characteristically of the Fermi type. The
effects of attractive interactions will be discussed in Section 11.9

According to Landau (1956), whose work provides the basic framework for our discus-
sion, the Fermi type spectrum of a quantum liquid is constructed in analogy with the
spectrum of an ideal Fermi gas. As is well-known, the ground state of the ideal Fermi
gas corresponds to a “complete filling up of the single-particle states with p≤ pF and a
complete absence of particles in the states with p> pF ”; the excitation of the system corre-
sponds to a transition of one or more particles from the occupied states to the unoccupied
states. The limiting momentum pF is related to the particle density in the system and, for

20The third-order correction has also been discussed by Mohling (1961).
21For a microscopic theory of a Fermi liquid, see Nozières (1964); see also Tuttle and Mohling (1966).
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spin-half particles, is given by

pF = ~(3π2N/V )1/3. (1)

In a liquid, we cannot speak of quantum states of individual particles. However, as a
basis for constructing the desired spectrum, we may assume that, as interparticle inter-
actions are gradually “switched on” and a transition made from the gaseous to the liquid
state, the ordering of the energy levels (in the momentum space) remains unchanged. Of
course, in this ordering, the role of the gas particles is passed on to the “elementary exci-
tations” of the liquid (also referred to as “quasiparticles”), whose number coincides with
the number of particles in the liquid and which also obey Fermi statistics. Each “quasipar-
ticle” possesses a definite momentum p, so we can speak of a distribution function n(p)
such that ∫

n(p)dτ =N/V , (2)

where dτ = 2d3p/h3. We then expect that the specification of the function n(p) uniquely
determines the total energy E of the liquid. Of course, E will not be given by a simple sum of
the energies ε(p) of the quasiparticles; it will rather be a functional of the distribution func-
tion n(p). In other words, the energy E will not reduce to the simple integral

∫
ε(p)n(p)Vdτ ,

though in the first approximation a variation in its value may be written as

δE = V
∫
ε(p)δn(p)dτ , (3)

where δn(p) is an assumed variation in the distribution function of the “quasiparticles.”
The reason E does not reduce to an integral of the quantity ε(p)n(p) is related to the fact
that the quantity ε(p) is itself a functional of the distribution function. If the initial distri-
bution function is a step function (which corresponds to the ground state of the system),
then the variation in ε(p) due to a small deviation of the distribution function from the
step function (which implies only low-lying excited states of the system) would be given
by a linear functional relationship:

δε(p)=
∫

f (p, p′)δn(p′)dτ ′. (4)

Thus, the quantities ε(p) and f (p, p′) are the first and second functional derivatives of E
with respect to n(p). Inserting spin dependence, we may now write

δE =
∑
p,σ

ε(p,σ)δn(p,σ)+
1

2V

∑
p,σ ;p′,σ ′

f (p,σ ; p′,σ ′)δn(p,σ)δn(p′,σ ′), (5)

where δn are small variations in the distribution function n(p) from the step function (that
characterizes the ground state of the system); it is obvious that these variations will be sig-
nificant only in the vicinity of the limiting momentum pF , which continues to be given
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by equation (1). It is thus understood that the quantity ε(p,σ) in (5) corresponds to the
distribution function n(p,σ) being infinitesimally close to the step function (of the ground
state). One may also note that the function f (p,σ ; p′,σ ′), being a second functional deriva-
tive of E, must be symmetric in its arguments; often, it is of the form a+b ŝ1 · ŝ2, where
the coefficients a and b depend only on the angle between the momenta p and p′.22 The
function f plays a central role in the theory of the Fermi liquid; for an ideal gas, f vanishes.

To discover the formal dependence of the distribution function n(p) on the energy ε(p),
we note that, in view of the one-to-one correspondence between the energy levels of the
liquid and of the ideal gas, the number of microstates (and hence the entropy) of the liquid
is given by the same expression as for the ideal gas; see equation (6.1.15), with all gi = 1 and
a=+1, or Problem 6.1:

S
k
=−

∑
p

{n lnn+ (1−n) ln(1−n)} ≈ −V
∫
{n lnn+ (1−n) ln(1−n)}dτ . (6)

Maximizing this expression, under the constraints δE = 0 and δN = 0, we obtain for the
equilibrium distribution function

n=
1

exp{(ε−µ)/kT}+ 1
. (7)

It should be noted here that, despite its formal similarity with the standard expression
for the Fermi–Dirac distribution function, formula (7) is different insofar as the quantity
ε appearing here is itself a function of n; consequently, this formula gives only an implicit,
and probably a very complicated, expression for the function n.

A word may now be said about the quantity ε appearing in equation (5). Since this ε cor-
responds to the limiting case of n being a step function, it is expected to be a well-defined
function of p. Equation (7) then reduces to the usual Fermi–Dirac distribution function,
which is indeed an explicit function of ε. It is not difficult to see that this reduction remains
valid so long as expression (5) is valid, that is, so long as the variations δn are small, which
in turn means that T � TF . As mentioned earlier, the variation δn will be significant only
in the vicinity of the Fermi momentum pF ; accordingly, we will not have much to do with
the function ε(p) except when p' pF . We may, therefore, write

ε(p' pF )= εF +

(
∂ε

∂p

)
p=pF

(p−pF )+ ·· · ' εF +uF (p−pF ), (8)

where uF denotes the “velocity” of the quasiparticles at the Fermi surface. In the case of an
ideal gas (ε = p2/2m),uF = pF/m. By analogy, we define a parameter m∗ such that

m∗ ≡
pF

uF
=

pF

(∂ε/∂p)p=pF

(9)

22Of course, if the functions involved here are spin-dependent, then the factor 2 in the element dτ (as well as in dτ ′)
must be replaced by a summation over the spin variable(s).
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and call it the effective mass of the quasiparticle with momentum pF (or with p' pF ).
Another way of looking at the parameter m∗ is due to Brueckner and Gammel (1958),

who wrote

ε(p' pF )=
p2

2m
+V (p)=

p2

2m∗
+ const.; (10)

the philosophy behind this expression is that “for quasiparticles with p' pF , the modifi-
cation, V (p), brought into the quantity ε(p) by the presence of inter-particle interactions
in the liquid may be represented by a constant term while the kinetic energy, p2/2m, is
modified so as to replace the particle mass m by an effective, quasiparticle mass m∗”; in
other words, we adopt a mean field point of view. Differentiating (10) with respect to p and
setting p= pF , we obtain

1
m∗
=

1
m
+

1
pF

(
dV (p)

dp

)
p=pF

. (11)

The quantity m∗, in particular, determines the low-temperature specific heat of the
Fermi liquid. We can readily see that, for T � TF , the ratio of the specific heat of a Fermi
liquid to that of an ideal Fermi gas is precisely equal to the ratio m∗/m:

(CV )real

(CV )ideal
=

m∗

m
. (12)

This follows from the fact that (i) expression (6) for the entropy S, in terms of the distri-
bution function n, is the same for the liquid as for the gas, (ii) the same is true of relation
(7) between n and ε, and (iii) for the evaluation of the integral in (6) at low temperatures
only momenta close to pF are important. Consequently, the result stated in Problem 8.13,
namely

CV ' S'
π2

3
k2T a(εF ), (13)

continues to hold — with the sole difference that in the expression for the density of states
a(εF ), in the vicinity of the Fermi surface, the particle mass m gets replaced by the effective
mass m∗; see equation (8.1.21).

We now proceed to establish a relationship between the parameters m and m∗ in terms
of the characteristic function f . In doing so, we neglect the spin-dependence of f , if any;
the necessary modification can be introduced without any difficulty. The guiding principle
here is that, in the absence of external forces, the momentum density of the liquid must
be equal to the density of mass transfer. The former is given by

∫
pndτ , while the latter is

given by m
∫
(∂ε/∂p)ndτ ,(∂ε/∂p) being the “velocity” of the quasiparticle with momentum
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p and energy ε.23 Thus

∫
pndτ =m

∫
∂ε

∂p
ndτ . (14)

Varying the distribution function by δn and making use of equation (4), we obtain

∫
pδndτ =m

∫
∂ε

∂p
δndτ +m

∫∫ {
∂f (p, p′)
∂p

δn′dτ ′
}

ndτ

=m
∫
∂ε

∂p
δndτ −m

∫∫
f (p, p′)

∂n′

∂p′
δndτ dτ ′; (15)

in obtaining the last expression, we have interchanged the variables p and p′ and have
also carried out an integration by parts. In view of the arbitrariness of the variation δn,
equation (15) requires that

p
m
=
∂ε

∂p
−

∫
f (p, p′)

∂n′

∂p′
dτ ′. (16)

We apply this result to quasiparticles with momenta close to pF ; at the same time, we
replace the distribution function n′ by a “step” function, whereby

∂n′

∂p′
=−

p′

p′
δ(p′−pF ).

This enables us to carry out integration over the magnitude p′ of the momentum, so that

∫
f (p, p′)

∂n′

∂p′
2p′2dp′dω′

h3
=−

2pF

h3

∫
f (θ)p′F dω′, (17)

dω′ being the element of a solid angle; note that we have contracted the arguments of
the function f because in simple situations it depends only on the angle between the
two momenta. Inserting (17) into (16), with p= pF , making a scalar product with pF and
dividing by p2

F , we obtain the desired result

1
m
=

1
m∗
+

pF

2h3
· 4
∫

f (θ)cosθ dω′. (18)

If the function f depends on the spins s1 and s2 of the particles involved, then the factor 4
in front of the integral will have to be replaced by a summation over the spin variables.

23Since the total number of quasiparticles in the liquid is the same as the total number of real particles, to obtain the
net transport of mass by the quasiparticles one has to multiply their number by the mass m of the real particle.
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We now derive a formula for the velocity of sound at absolute zero. From first principles,
we have24

c2
0 =

∂P0

∂(mN/V )
=−

V 2

mN

(
∂P0

∂V

)
N

.

In the present context, it is preferable to have an expression in terms of the chemical poten-
tial of the liquid. This can be obtained by making use of the formula Ndµ0 = VdP0, see
Problem 1.16, from which it follows that25

(
∂µ0

∂N

)
V
=−

V
N

(
∂µ0

∂V

)
N
=−

V 2

N2

(
∂P0

∂V

)
N

and hence

c2
0 =

N
m

(
∂µ0

∂N

)
V

. (19)

Now, µ0 = ε(pF )= εF ; therefore, the change δµ0 arising from a change δN in the total
number of particles in the system is given by

δµ0 =
∂εF

∂pF
δpF +

∫
f (pF , p′)δn′dτ ′. (20)

The first part in (20) arises from the fact that a change in the total number of particles in
the system inevitably alters the value of the limiting momentum pF ; see equation (1), from
which (for constant V )

δpF/pF =
1
3
δN/N

and hence

∂εF

∂pF
δpF =

p2
F

3m∗
δN
N

. (21)

24At T = 0,S= 0; so there is no need to distinguish between the isothermal and adiabatic compressibilities of the
liquid.

25Since µ0 is an intensive quantity and, therefore, it depends on N and V only through the ratio N/V , we can write:
µ0 = µ0(N/V ). Consequently, (

∂µ0

∂N

)
V
= µ′0

(
∂(N/V )
∂N

)
V
= µ′0

1
V

and (
∂µ0

∂V

)
N
= µ′0

(
∂(N/V )
∂V

)
N
=−µ′0

N
V 2 .

Hence (
∂µ0

∂N

)
V
=−

V
N

(
∂µ0

∂V

)
N

.
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The second part arises from equation (4). It will be noted that the variation δn′ appearing
in the integral of equation (20) is significant only for p′ ' pF ; we may, therefore, write

∫
f (pF , p′)δn′dτ ′ '

δN
4πV

∫
f (θ)dω′. (22)

Substituting (21) and (22) into (20), we obtain

(
∂µ0

∂N

)
V
=

p2
F

3m∗N
+

1
4πV

∫
f (θ)dω′. (23)

Making use of equations (18) and (1), we finally obtain

c2
0 =

N
m

(
∂µ0

∂N

)
V
=

p2
F

3m2
+

p3
F

6mh3
· 4
∫

f (θ)(1− cosθ)dω′. (24)

Once again, if the function f depends on the spins of the particles, then the factor 4 in front
of the integral will have to be replaced by a summation over the spin variables.

For illustration, we shall apply this theory to the imperfect Fermi gas studied in
Section 11.7. To calculate f (p,σ ; p′,σ ′), we have to differentiate twice the sum of expres-
sion (11.7.12), with u0 = 4πa~2/m, and expression (11.7.22) with respect to the distribution
function n(p,σ) and then substitute p= p′ = pF . Performing the desired calculation, then
changing summations into integrations and carrying out integrations by simple means, we
find that the function f is spin-dependent — the spin-dependent term being in the nature
of an exchange term, proportional to ŝ1 · ŝ2. The complete result, according to Abrikosov
and Khalatnikov (1957), is

f (p,σ ; p′,σ ′)= A(θ)+B(θ)ŝ1 · ŝ2, (25)

where

A(θ)=
2πa~2

m

[
1+ 2a

(
3N
πV

)1/3{
2+

cosθ
2sin(θ/2)

ln
1+ sin(θ/2)
1− sin(θ/2)

}]

and

B(θ)=−
8πa~2

m

[
1+ 2a

(
3N
πV

)1/3{
1−

1
2

sin
(
θ

2

)
ln

1+ sin(θ/2)
1− sin(θ/2)

}]
,

a being the scattering length of the two-body potential and θ the angle between the
momentum vectors pF and p′F . Substituting (25) into formulae (18) and (24), in which the
factor 4 is now supposed to be replaced by a summation over the spin variables, we find
that while the spin-dependent term B(θ)ŝ1 · ŝ2 does not make any contribution toward the
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final results, the spin-independent term A(θ) leads to26

1
m∗
=

1
m
−

8
15m

(7ln2− 1)
(

3N
πV

)2/3

a2 (26)

and

c2
0 =

p2
F

3m2
+

2πa~2

m2

N
V

[
1+

4
15
(11− 2ln2)

(
3N
πV

)1/3

a

]
; (27)

the latter result is identical to expression (11.7.33) derived in the preceding section. Pro-
ceeding backward, one can obtain from equation (27) corresponding expressions for the
ground-state pressure P0 and the ground-state energy E0, namely equations (11.7.32) and
(11.7.31), as well as the ground-state chemical potential µ0, as quoted in Problem 11.15.

11.9 Condensation in Fermi systems
The discussion of the T = 0 Fermi liquid in Sections 11.7 and 11.8 applies when the inter-
actions between the fermions are strictly repulsive. The resulting Fermi liquid has a ground
state and quasiparticle excitations that are qualitatively similar to the ideal Fermi gas.
However, for fermions with attractive interactions, no matter how weak, the degenerate
Fermi gas is unstable due to the formation of bosonic pairs. This leads to a number of
important phenomena including superconductivity in metals, superfluidity in 3He, and
condensation in ultracold Fermi gases. In low-temperature superconductors, screening
and the electron-phonon interaction result in a retarded attraction between quasiparti-
cles on opposite sides of the Fermi surface. The formation of these so-called Cooper pairs
leads to the creation of a superconducting state with critical temperature

kTc ≈ ~ωD exp
(
−

1
N(εF )|u0|

)
, (1)

where N(εF ) is the density of states per spin configuration at the Fermi surface, u0 is
the weak attractive coupling between electrons, and ~ωD is the Debye energy discussed
in Section 7.4 since the coupling is due to the acoustic phonons. As can be seen from
equation (1), the phase transition temperature is nonperturbative in u0. A complete treat-
ment of superconductivity is far beyond the scope of this section, so we refer the reader
to the original papers by Cooper (1956) and Bardeen, Cooper, and Schrieffer (1957) and
the texts on superconductivity by Tilley and Tilley (1990) and Tinkham (1996). The case of
superfluidity in 3He is surveyed by Vollhardt and Wölfle (1990).

Bosonic condensation has also recently been observed in trapped ultracold atomic
Fermi gases. The sign and size of the atomic interactions in ultracold gases can be tuned

26In a dense system, such as liquid He3, the ratio m∗/m would be significantly larger than unity. The experimen-
tal work of Roberts and Sydoriak (1955), on the specific heat of liquid He3, and the theoretical work of Brueckner and
Gammel (1958), on the thermodynamics of a dense Fermi gas, suggest that the ratio (m∗/m)He3 ' 1.85.
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with a magnetic field near Feshbach resonance allowing unprecedented experimental
control of interactions. In particular, experimenters can create a low-lying molecular
bound state or a weakly attractive interaction without allowing a molecular bound state
to form. If interaction between pairs of fermions allows the formation of bound bosonic
molecules, the ground state of a degenerate Fermi gas will be destablized since molecules
will form and, if the density of the bosonic molecules is large enough, they will Bose-
condense — see Greiner, Regal, and Jin (2003); Jochim et al. (2003); and Zwierlein et al.
(2003).

For weakly attractive interactions, the fermionic system condenses into a BCS-like state
and provides an excellent experimental environment for testing theoretical predictions
due to the well-understood nature and experimental control of the atomic interactions.
Theory predicts a smooth crossover from BCS to Bose–Einstein condensation (BEC)
behavior as the magnitude of the attractive interaction parameter u0 is varied from values
small to large. BCS theory describes the behavior for weak coupling. For broad Fesh-
bach resonances of trapped fermions, the most common experimental situation, the BCS
critical temperature is given by

kTc

~ω0
≈

εF

~ω0
exp

(
−

π

2kF |a|

)
∼N1/3 exp

(
−

aosc

1.214N1/6 |a|

)
, (2)

where ω0 = (ω1ω2ω3)
1/3 is the average oscillation frequency of atoms in the trap, aosc =

√
~/mω0, and kF =

√
2mεF/~ is the Fermi wavevector; see Pitaevskii and Stringari (2003),

Leggett (2006), and Pethick and Smith (2008). For large negative scattering lengths, the
transition temperature smoothly crosses over to the BEC limit with noninteracting Bose-
condensation temperature, see equation (7.2.6),

kTc

~ω0
≈

(
N

2ζ(3)

)1/3

, (3)

since the number of Cooper pairs is N/2. The ratio of the transition temperature in the
BEC limit and the Fermi temperature from equation (8.4.3) is

kTc

εF
≈

(
1

12ζ(3)

)1/3

' 0.41. (4)

Mean-field analysis of the broad resonance limit (Leggett, 2006) and analytical analysis of
the narrow resonance limit (Gurarie and Radzihovsky, 2007) both indicate that the phase
transition temperature has a maximum at intermediate coupling. Figure 11.7 is a sketch of
the critical temperature as a function of the coupling parameter u0.

Experimental observations of condensation in a degenerate Fermi gas in the BEC–BCS
crossover region by Regal, Greiner, and Jin (2004) are shown in Figure 11.8. They used a
Feshbach resonance to tune the scattering length of 40K into an attractive range (a< 0) that



394 Chapter 11 . Statistical Mechanics of Interacting Systems

BCS limit

BEC–BCS

kTc

0

Fermi liquid

u0

FIGURE 11.7 Sketch of the BEC–BCS phase diagram on the BCS side of the Feshbach resonance for ultracold
fermions in an atomic trap. The scattering length a and coupling u0 = 4π~2a/m can be tuned from positive values
to negative with the help of a magnetic field. Positive (repulsive) couplings result in a Fermi liquid. Negative
(attractive) couplings result in a BCS condensation at low temperatures. The nature of the condensed phase varies
smoothly from BCS behavior for small negative coupling to Bose–Einstein behavior for large negative coupling.
The phase transition temperature has a maximum at intermediate coupling.

FIGURE 11.8 Time-of-flight images showing condensation of fermions in an ultracold atomic gas. The images show
the quantum mechanical projection of the fermionic system onto a molecular gas and are shown for three values of
the magnetic field on the BCS side of the Feshbach resonance for an ultracold trapped gas of 40K. The temperature
of the Fermi gas is (kT/εF )≈ 0.07. The condensed fraction varies from about 1 to 10 percent of the original cold
fermions in the trap; see Regal, Greiner, and Jin (2004). Figure courtesy of NIST/JILA/University of Colorado.

does not allow a two-particle molecular bound state and observed the fermions condens-
ing into a BCS-like macroscopic quantum state. They explored the BEC–BCS crossover
behavior by tuning |a| from small values to large.

Problems
11.1. (a) Show that, for bosons as well as fermions,

[ψ(rj),Ĥ]=

(
−

~2

2m
∇

2
j +

∫
d3rψ†(r)u(r, rj)ψ(r)

)
ψ(rj),

where Ĥ is the Hamiltonian operator defined by equation (11.1.4).
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(b) Making use of the foregoing result, show that the equation

1
√

N !
〈0|ψ(r1) . . .ψ(rN )Ĥ|9NE〉 = E

1
√

N !
〈0|ψ(r1) . . .ψ(rN )|9NE〉

= E9NE(r1, . . .rN )

is equivalent to the Schrödinger equation (11.1.15).
11.2. The grand partition function of a gaseous system composed of mutually interacting bosons is

given by

lnQ≡
PV
kT
=

V
λ3

[
g5/2(z)− 2{g3/2(z)}2

a
λ
+O

(
a2

λ2

)]
.

Study the analytic behavior of this expression near z = 1 and show that the system exhibits the
phenomenon of Bose–Einstein condensation when its fugacity assumes the critical value

zc = 1+ 4ζ
(

3
2

)
a
λc
+O

(
a2

λ2
c

)
.

Further show that the pressure of the gas at the critical point is given by (Lee and Yang 1958,
1960b)

Pc

kTc
=

1

λ3
c

[
ζ

(
5
2

)
+ 2

{
ζ

(
3
2

)}2 a
λc
+O

(
a2

λ2
c

)]
;

compare these results to equations (11.2.16) through (11.2.18).
11.3. For the imperfect Bose gas studied in Section 11.2, calculate the specific heat CV near absolute

zero and show that, as T→ 0, the specific heat vanishes in a manner characteristic of a system
with an “energy gap”1= 4πa~2n/m.

11.4. (a) Show that, to first order in the scattering length a, the discontinuity in the specific heat CV of
an imperfect Bose gas at the transition temperature Tc is given by

(CV )T=Tc−
− (CV )T=Tc+

=Nk
9a
2λc

ζ(3/2),

while the discontinuity in the bulk modulus K is given by

(K )T=Tc−
− (K )T=Tc+

=−
4πa~2

mv2
c

.

(b) Examine the discontinuities in the quantities (∂2P/∂T 2)v and (∂2µ/∂T 2)v as well, and show
that your results are consistent with the thermodynamic relationship

CV = VT

(
∂2P
∂T 2

)
v

−NT

(
∂2µ

∂T 2

)
v

.
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11.5. (a) Complete the mathematical steps leading to equations (11.3.15) and (11.3.16).
(b) Complete the mathematical steps leading to equations (11.3.23) and (11.3.24).

11.6. The ground-state pressure of an interacting Bose gas (see Lee and Yang, 1960a) turns out to be

P0 =
µ2

0m

8πa~2

[
1−

64
15π

µ
1/2
0 m1/2a

~
+ ·· ·

]
,

where µ0 is the ground-state chemical potential of the gas. It follows that

n≡
(

dP0

dµ0

)
=

µ0m
4πa~2

[
1−

16
3π

µ
1/2
0 m1/2a

~
+ ·· ·

]

and

E0

V
≡ (nµ0−P0)=

µ2
0m

8πa~2

[
1−

32
5π

µ
1/2
0 m1/2a

~
+ ·· ·

]
.

Eliminating µ0 from these results, derive equations (11.3.16) and (11.3.17).
11.7. Show that in an interacting Bose gas the mean occupation number np of the real particles and the

mean occupation number Np of the quasiparticles are connected by the relationship

np =
Np+α

2
p(Np+ 1)

1−α2
p

(p 6= 0),

where αp is given by equations (11.3.9) and (11.3.10). Note that equation (11.3.22) corresponds to
the special case Np = 0.

11.8. The excitation energy of liquid He4, carrying a single excitation above the ground state, is
determined by the minimum value of the quantity

ε =

∫
9∗

{
−

~2

2m

∑
i

∇
2
i +V −E0

}
9d3N r

/∫
9∗9d3N r,

where E0 denotes the ground-state energy of the liquid while9, according to Feynman, is given
by equation (11.4.3). Show that the process of minimization of this expression leads to
equation (11.4.5) for the energy of the excitation.

[Hint: First express ε in the form

ε =
~2

2m

∫
|∇f (r)|2d3r

/∫
f ∗(r1)f (r2)g(r2− r1)d3r1d3r2.

Then show that ε is minimum when f (r) is of the form (11.4.4).]
11.9. Show that, for a sufficiently large momentum ~k (in fact, such that the slope dε/dk of the energy

spectrum is greater than the initial slope ~c), a state of double excitation in liquid He4 is
energetically more favorable than a state of single excitation, that is, there exist wavevectors
k1 and k2 such that, while k1+k2 = k,ε(k1)+ ε(k2) < ε(k).

11.10. Using Fetter’s analytical approximation,

f1(ρ
′)=

ρ′√
(1+ ρ′2)

,
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for the solution of equation (11.5.23) with s= 1, calculate the energy (per unit length) associated
with a quantized vortex line of unit circulation. Compare your result with the one quoted in
(11.5.26).

11.11. (a) Study the nature of the velocity field arising from a pair of parallel vortex lines, with s1 =+1
and s2 =−1, separated by a distance d. Derive and discuss the general equation of the stream
lines.

(b) Again, using Fetter’s analytical approximation for the functions f (ρ′1) and f (ρ′2), calculate
the energy (per unit length) of the system and show that its limiting value, as d→ 0, is
11π~2n0/12m. Making use of this result, derive expression (11.6.8) for the critical velocity
of superflow.

11.12. Establish the asymptotic formula (11.7.30) for the function F(z0).
[Hint: Write the coefficient that appears in the sum (11.7.24) in the form

1
√
(rst)(r+ s)(r+ t)

=

(
2
√
π

)3 ∞∫
0

e−X 2r−Y 2s−Z2t−ξ(r+s)−η(r+t)dX dY dZ dξ dη.

Insert this expression into (11.7.24) and carry out summations over r,s, and t, with the result

F(z0)=
8
π3/2

∞∫
0

1

z−1
0 eX 2+ξ+η + 1

1

z−1
0 eY 2+ξ + 1

1

z−1
0 eZ2+η + 1

dX dY dZ dξ dη.

In the limit z0→∞, the integrand is essentially equal to 1 in the region R defined by

X 2
+ ξ + η < lnz0, Y 2

+ ξ < lnz0, and Z2
+ η < lnz0;

outside this region, it is essentially 0. Hence, the dominant term of the asymptotic expansion is

8
π3/2

∫
R

1 ·dX dY dZ dξ dη,

which, in turn, reduces to the double integral

8
π3/2

∫∫
(lnz0− ξ − η)

1/2(lnz0− ξ)
1/2(lnz0− η)

1/2dξ dη;

the limits of integration here are such that not only ξ < (lnz0) and η < (lnz0), but also
(ξ + η) < (lnz0). The rest of the calculation is straightforward.]

11.13. The grand partition function of a gaseous system composed of mutually interacting, spin-half
fermions has been evaluated by Lee and Yang (1957), with the result27

lnQ≡
PV
kT
=

V
λ3

[
2f5/2(z)−

2a
λ
{ f3/2(z)}2

+
4a2

λ2 f1/2(z){ f3/2(z)}2−
8a2

λ2 F(z)+ ·· ·

]
,

27For the details of this calculation, see Lee and Yang (1959b) where the case of bosons, as well as of fermions, with
spin J has been treated using the binary collision method. The second-order result for the case of spinless bosons was
first obtained by Huang, Yang, and Luttinger (1957) using the method of pseudopotentials.
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where z is the fugacity of the actual system (not of the corresponding noninteracting system,
which was denoted by the symbol z0 in the text); the functions fν(z) and F(z) are defined in a
manner similar to equations (11.7.10) and (11.7.24). From this result, one can derive expressions
for the quantities E(z,V ,T) and N(z,V ,T) by using the formulae

E(z,V ,T)≡ kT 2 ∂(lnQ)

∂T
and N(z,V ,T)≡

∂(lnQ)

∂(lnz)

{
=

2V
λ3 f3/2(z0)

}
.

(a) Eliminating z between these two results, derive equation (11.7.25) for E.
(b) Obtain the zero-point value of the chemical potential µ, correct to second order in (a/λ), and

verify, with the help of equations (11.7.31) and (11.7.32), that

(E+PV )T=0 =N(µ)T=0.

[Hint: At T = 0K,µ= (∂E/∂N)V .]
(c) Show that the low-temperature specific heat and the low-temperature entropy of this gas are

given by (see Pathria and Kawatra, 1962)

CV

Nk
'

S
Nk
'
π2

2

(
kT
εF

)[
1+

8
15π2 (7ln2− 1)(kF a)2+ ·· ·

]
,

where kF = (3π2n)1/3. Clearly, the factor within square brackets is to be identified with the
ratio m∗/m; see equations (11.8.12) and (11.8.26).

[Hint: To determine CV to the first power in T , we must know E to the second power in T .
For this, we require higher-order terms of the asymptotic expansions of the functions fν(z)
and F(z); these are given by

f5/2(z)=
8

15
√
π
(lnz)5/2

+
π3/2

3
(lnz)1/2

+O(1),

f3/2(z)=
4

3
√
π
(lnz)3/2

+
π3/2

6
(lnz)−1/2

+O(lnz)−5/2,

f1/2(z)=
2
√
π
(lnz)1/2

−
π3/2

12
(lnz)−3/2

+O(lnz)−7/2,

and

F(z)=
16(11− 2ln2)

105π3/2 (lnz)7/2

−
2(2ln2− 1)

3
π1/2(lnz)3/2

+O(lnz)5/4.

The first three results here follow from the Sommerfeld lemma (E.17); for the last one, see
Yang (1962).]
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11.14. The energy spectrum ε(p) of a gas composed of mutually interacting, spin-half fermions is given
by (Galitskii, 1958; Mohling, 1961)

ε(p)

p2
F/2m

' x2
+

4
3π
(kF a)+

4
15π2 (kF a)2

×

[
11+ 2x4 ln

x2

|x2− 1|
− 10

(
x−

1
x

)
ln

∣∣∣∣x+ 1
x− 1

∣∣∣∣
−
(2− x2)5/2

x
ln

(
1+ x
√
(2− x2)

1− x
√
(2− x2)

)]
,

where x = p/pF ≤
√

2 and k = p/~. Show that, for k close to kF , this spectrum reduces to

ε(p)

p2
F/2m

' x2
+

4
3π
(kF a)

+
4

15π2 (kF a)2
[
(11− 2ln2)− 4(7ln2− 1)

(
k

kF
− 1

)]
.

Using equations (11.8.10) and (11.8.11), check that this expression leads to the result

m∗

m
' 1+

8
15π2 (7ln2− 1)(kF a)2.

11.15. In the ground state of a Fermi system, the chemical potential is identical to the Fermi energy:
(µ)T=0 = ε(pF ). Making use of the energy spectrum ε(p) of the previous problem, we obtain

(µ)T=0 '
p2

F

2m

[
1+

4
3π
(kF a)+

4
15π2 (11− 2ln2)(kF a)2

]
.

Integrating this result, rederive equation (11.7.31) for the ground-state energy of the system.
11.16. The energy levels of an imperfect Fermi gas in the presence of an external magnetic field B, to

first order in a, may be written as

En =
∑

p

(n+p +n−p )
p2

2m
+

4πa~2

mV
N+N−−µ∗B(N+−N−);

see equations (8.2.8) and (11.7.12). Using this expression for En and following the procedure
adopted in Section 8.2.A, study the magnetic behavior of this gas — in particular, the zero-field
susceptibility χ(T). Also examine the possibility of spontaneous magnetization arising from the
interaction term with a> 0.

11.17. Rewrite the Gross–Pitaevskii equation and the mean field energy, see equations (11.2.21) and
(11.2.23), for an isotropic harmonic oscillator trap with frequency ω0 in a dimensionless form by
defining a dimensionless wavefunction ψ = a3/2

osc/9N , a dimensionless length s = r/aosc, and a
dimensionless energy E/N~ω0. Show that the dimensionless parameter that controls the mean
field energy is Na/aosc, where N is the number of particles in the condensate, a is the scattering
length, and aosc =

√
~/mω0. Next, show that the dimensionless versions of the Gross–Pitaevskii

equation and the mean field energy are

−
1
2
∇̃

2ψ +
1
2

s2ψ +
4πNa
aosc

|ψ |2ψ = µ̃ψ ,
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and

E[ψ]
N~ω0

=

∫ (
1
2

∣∣∣∇̃ψ∣∣∣2+ 1
2

s2
|ψ |2+

2πNa
aosc

|ψ |4
)

ds .

11.18. Solve the Gross–Pitaevskii equation and evaluate the mean field energy, see equations (11.2.21)
and (11.2.23), for a uniform Bose gas to show that this method yields precisely equation (11.2.6).

11.19. Solve the Gross–Pitaevskii equation (11.2.23) in a harmonic trap for the case when the scattering
length a is zero. Show that this reproduces the properties of the ground state of the noninteracting
Bose gas.

11.20. Solve the Gross–Pitaevskii equation and evaluate the mean field energy, see equations (11.2.21)
and (11.2.23), for an isotropic harmonic oscillator trap with frequency ω0 for the case Na/aosc� 1
by ignoring the kinetic energy term. Reproduce the results (11.2.25) through (11.2.28).



12
Phase Transitions: Criticality,

Universality, and Scaling

Various physical phenomena to which the formalism of statistical mechanics has been
applied may, in general, be divided into two categories. In the first category, the micro-
scopic constituents of the given system are, or can be regarded as, practically noninteract-
ing; as a result, the thermodynamic functions of the system follow straightforwardly from
a knowledge of the energy levels of the individual constituents. Notable examples of phe-
nomena belonging to this category are the specific heats of gases (Sections 1.4 and 6.5),
the specific heats of solids (Section 7.4), chemical reactions and equilibrium constants
(Section 6.6), the condensation of an ideal Bose gas (Sections 7.1 and 7.2), the spectral
distribution of the blackbody radiation (Section 7.3), the elementary electron theory of
metals (Section 8.3), the phenomenon of paramagnetism (Sections 3.9 and 8.2), and so on.
In the case of solids, the interatomic interaction does, in fact, play an important physical
role; however, since the actual positions of the atoms, over a substantial range of temper-
atures, do not depart significantly from their mean values, we can rewrite our problem
in terms of the so-called normal coordinates and treat the given solid as an “assembly of
practically noninteracting harmonic oscillators.” We note that the most significant feature
of the phenomena falling in the first category is that, with the sole exception of Bose–
Einstein condensation, the thermodynamic functions of the systems involved are smooth
and continuous!

Phenomena belonging to the second category, however, present a very different sit-
uation. In most cases, one encounters analytic discontinuities or singularities in the
thermodynamic functions of the given system which, in turn, correspond to the occur-
rence of various kinds of phase transitions. Notable examples of phenomena belonging
to this category are the condensation of gases, the melting of solids, phenomena associ-
ated with the coexistence of phases (especially in the neighborhood of a critical point), the
behavior of mixtures and solutions (including the onset of phase separation), phenom-
ena of ferromagnetism and antiferromagnetism, the order–disorder transitions in alloys,
the superfluid transition from liquid He I to liquid He II, the transition from a normal to a
superconducting material, and so on. The characteristic feature of the interparticle inter-
actions in these systems is that they cannot be “removed” by means of a transformation
of the coordinates of the problem; accordingly, the energy levels of the total system can-
not, in any simple manner, be related to the energy levels of the individual constituents.
One finds instead that, under favorable circumstances, a large number of microscopic

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00012-8
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constituents of the system may exhibit a tendency of interacting with one another in a
rather strong, cooperative fashion. This cooperative behavior assumes macroscopic signifi-
cance at a particular temperature Tc, known as the critical temperature of the system, and
gives rise to the kind of phenomena listed previously.

Mathematical problems associated with the study of cooperative phenomena are quite
formidable.1 To facilitate calculations, one is forced to introduce models in which the
interparticle interactions are considerably simplified, yet retain characteristics that are
essential to the cooperative aspect of the problem. One then hopes that a theoretical study
of these simplified models, which still involves serious difficulties of analysis, will repro-
duce the most basic features of the phenomena exhibited by actual physical systems. For
instance, in the case of a magnetic transition, one may consider a lattice structure in which
all interactions other than the ones among nearest-neighbor spins are neglected. It turns
out that a model as simplified as that captures practically all the essential features of the
phenomenon — especially in the close neighborhood of the critical point. The inclusion
of interactions among spins farther out than the nearest neighbors does not change these
features in any significant manner, nor are they affected by the replacement of one lattice
structure by another so long as the dimensionality of the lattice is the same. Not only this,
these features may also be shared, with little modification, by many other physical sys-
tems undergoing very different kinds of phase transitions, for example, gas–liquid instead
of paramagnetic–ferromagnetic. This “unity in diversity” turns out to be a hallmark of
the phenomena associated with phase transitions — a subject we propose to explore in
considerable detail in this and the following two chapters, but first a few preliminaries.

12.1 General remarks on the problem
of condensation

We consider an N-particle system, obeying classical or quantum statistics, with the proviso
that the total potential energy of the system can be written as a sum of two-particle terms
u(rij), with i < j. The function u(r) is supposed to satisfy the conditions

u(r)=+∞ for r ≤ σ ,

0> u(r) >−ε for σ < r < r∗

u(r)= 0 for r ≥ r∗

 ; (1)

see Figure 12.1. Thus, each particle may be looked upon as a hard sphere of diameter σ ,
surrounded by an attractive potential of range r∗ and of (maximum) depth ε. From a prac-
tical point of view, conditions (1) do not entail any “serious restriction” on the two-body
potential, for the interparticle potentials ordinarily met with in nature are not materially

1In this connection, one should note that the mathematical schemes developed in Chapters 10 and 11 give reliable
results only if the interactions among the microscopic constituents of the given system are sufficiently weak — in fact,
too weak to bring about cooperative transitions.
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FIGURE 12.1 A sketch of the interparticle potential u(r), as given by equation (1).

different from the one satisfying these conditions. We, therefore, expect that the conclu-
sions drawn from the use of this potential will not be very far from the realities of the actual
physical phenomena.

Suppose that we are able to evaluate the exact partition function, QN (V ,T), of the
given system. This function will possess certain properties that have been recognized and
accepted for quite some time, though a rigorous proof of these was first attempted by van
Hove as late as in 1949.2 These properties can be expressed as follows:

(i) In the thermodynamic limit (i.e., when N and V →∞while the ratio N/V stays
constant), the quantity N−1 lnQ tends to be a function only of the specific volume
v (= V /N) and the temperature T ; this limiting form may be denoted by the symbol
f (v,T). It is natural to identify f (v,T)with the intensive variable−A/NkT , where A is
the Helmholtz free energy of the system. The thermodynamic pressure P is then
given by

P(v,T)=−
(
∂A
∂V

)
N ,T
= kT

(
∂f
∂v

)
T

, (2)

which turns out to be a strictly nonnegative quantity.
(ii) The function f (v,T) is everywhere concave, so the slope (∂P/∂v)T of the (P,v)-curve

is never positive. While at high temperatures the slope is negative for all v, at lower
temperatures there can exist a region (or regions) in which the slope is zero and,
consequently, the system is infinitely compressible! The existence of such regions, in
the (P,v)-diagram, corresponds to the coexistence of two or more phases of different
density in the given system; in other words, it constitutes direct evidence of the onset
of a phase transition in the system. In this connection it is important to note that, so
long as one uses the exact partition function of the system, isotherms of the van der
Waals type, which possess unphysical regions of positive slope, never appear. On the

2For historical details, see Griffiths (1972, p. 12).
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FIGURE 12.2 An unphysical isotherm corrected with the help of the Maxwell construction; the horizontal line is
such that the areas A and B are equal. The “corrected” isotherm corresponds to a phase transition, taking place at
pressure P̃(T), with densities v−1

1 and v−1
3 of the respective phases.

other hand, if the partition function is evaluated under approximations, as we did in
the derivation of the van der Waals equation of state in Section 10.3, isotherms with
unphysical regions may indeed appear. In that case the isotherms in question have
got to be “corrected,” by introducing a region of “flatness” (∂P/∂v = 0), with the help
of the Maxwell construction of equal areas; see Figure 12.2.3 The real reason for the
appearance of unphysical regions in the isotherms is that the approximate evalua-
tions of the partition function introduce, almost invariably (though implicitly), the
restraint of a uniform density throughout the system. This restraint eliminates the
very possibility of the system passing through states in which there exist, side by
side, two phases of different densities; in other words, the existence of a region of
“flatness” in the (P,v)-diagram is automatically ruled out. On the other hand, an
exact evaluation of the partition function must allow for all possible configurations
of the system, including the ones characterized by a simultaneous existence of two
or more phases of different densities. Under suitable conditions (for instance, when
the temperature is sufficiently low), such a configuration might turn out to be the
equilibrium configuration of the system, with the result that the system shows up in
a multiphase, rather than a single-phase, state. We should, in this context, mention
that if in the evaluation of the partition function one introduces no other
approximation except the assumption of a uniform density in the system, then the
resulting isotherms, corrected with the help of the Maxwell construction, would be
the exact isotherms of the problem.

3The physical basis of the Maxwell construction can be seen with the help of the Gibbs free energy density g(T ,P).
Since dg =−sdT + vdP and along the “corrected” isotherm dP = dT = 0, it follows that g1 = g3; see Figure 12.2. To achieve
the same result from the theoretical isotherm (along which dT = 0 but dP 6= 0), we clearly require that the quantity vdP,
integrated along the isotherm from state 1 to state 3, must vanish; this leads to the “theorem of equal areas.”
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(iii) The presence of an absolutely flat portion in an isotherm, with mathematical
singularities at its ends, is, strictly speaking, a consequence of the limiting process
N→∞. If N were finite, and if the exact partition function were used, then the
quantity P′, defined by the relation

P′ = kT
(
∂ lnQ
∂V

)
N ,T

, (3)

would be free from mathematical singularities. The ordinarily sharp corners in an
isotherm would be rounded off; at the same time, the ordinarily flat portion of the
isotherm would not be strictly flat — it would have for large N a small, negative
slope. In fact, the quantity P′ in this case would not be a function of v and T alone; it
would depend on the number N as well, though in a thermodynamically negligible
manner.

If we employ the grand partition function Q, as obtained from the exact partition
functions QN , namely

Q(z,V ,T)=
∑
N≥0

QN (V ,T)zN , (4)

a similar picture results. To see this, we note that for real molecules, with a given V , the
variable N will be bounded by an upper limit, say Nm, which is the number of molecules
that fill the volume V “tight-packed”; obviously, Nm ∼ V /σ 3. For N >Nm, the potential
energy of the system will be infinite; accordingly,

QN (N >Nm)≡ 0. (5)

Hence, for all practical purposes, our power series in (4) is a polynomial in z (which is≥ 0)
and is of degree Nm. Since the coefficients QN are all positive and Q0 ≡ 1, the sum Q≥ 1.
The thermodynamic potential lnQ is, therefore, a well-behaved function of the parameters
z, V , and T . Consequently, so long as V (and hence Nm) remains finite, we do not expect
any singularities or discontinuities in any of the functions derived from this potential. A
nonanalytic behavior could appear only in the limit (V ,Nm)→∞.

We now define P′ by the relation

P′ =
kT
V

lnQ (V finite); (6)

since Q≥ 1,P′ ≥ 0. The mean number of particles and the mean square deviation in this
number are given by the formulae

N =
(
∂ lnQ

∂ lnz

)
V ,T

(7)
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and

N2−N
2
≡
(
N −N

)2
=

(
∂N
∂ lnz

)
V ,T

, (8)

respectively; see Sections 4.2 and 4.5. Accordingly,(
∂ lnQ

∂ N

)
V ,T
=

(
∂ lnQ

∂ lnz

)
V ,T

/(
∂N
∂ lnz

)
V ,T

=
N

N2−N
2

. (9)

At the same time, writing v for V /N and using (6), we have(
∂ lnQ

∂N

)
V ,T
=

V
kT

(
∂P′

∂N

)
V ,T
=−

v2

kT

(
∂P′

∂v

)
V ,T

. (10)

Comparing (9) and (10), we obtain

(
∂P′

∂v

)
V ,T
=−

kT

V 2

N
3

N2−N
2

, (11)

which is clearly nonpositive.4 For finite V , expression (11) will never vanish; accordingly,
P′ will never be strictly constant. Nevertheless, the slope (∂P′/∂v) can, in a certain region,
be extremely small — in fact, as small as O(1/N); such a region would hardly be distin-
guishable from a phase transition because, on a macroscopic scale, the value of P′ in such
a region would be as good as a constant.5

If we now define the pressure of the system by the limiting relationship

P(v,T)= Lim
V→∞

P′ (v,T ;V )= kT Lim
V→∞

(
1
V

lnQ(z,V ,T)
)

, (12)

then we can expect, in a set of isotherms, an absolutely flat portion (∂P/∂v ≡ 0), with
sharp corners implying mathematical singularities. The mean particle density n would
now be given by

n= Lim
V→∞

[
1
V
∂ lnQ(z,V ,T)

∂ lnz

]
; (13)

it seems important to mention here that the operation V →∞ and the operation ∂/∂ lnz
cannot be interchanged freely.

In passing, we note that the picture emerging from the grand partition function Q,
which has been obtained from the exact partition functions QN , remains practically

4Compare equation (11), which has been derived here nonthermodynamically, with equation (4.5.7) derived earlier.
5The presence of such a region entails that (N2−N

2
) be O(N

2
). This implies that the fluctuations in the variable N

be macroscopically large, which in turn implies equally large fluctuations in the variable v within the system and hence

the coexistence of two or more phases with different values of v. In a single-phase state, (N2−N
2
) is O(N); the slope

(∂P′/∂v) is then O(N
0
), as an intensive quantity should be.
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unchanged even if one had employed a set of approximate QN . This is so because the
argument developed in the preceding paragraphs makes no use whatsoever of the actual
form of the functions QN . Thus, if an approximate QN leads to the van der Waals type
of loop in the canonical ensemble, as shown in Figure 12.2, the corresponding set of QN ,
when employed in a grand canonical ensemble, would lead to isotherms free from such
loops (Hill, 1953).

Subsequent to van Hove, Yang and Lee (1952) suggested an altemative approach that
enables one to carry out a rigorous mathematical discussion of the phenomenon of con-
densation and of other similar transitions. In their approach, one is primarily concerned
with the analytic behavior of the quantities P and n, of equations (12) and (13), as func-
tions of z at different values of T . The problem is examined in terms of the “zeros of the
grand partition function Q in the complex z-plane,” with attention focused on the way
these zeros are distributed in the plane and the manner in which they evolve as the vol-
ume of the system is increased. For real, positive z, Q≥ 1, therefore none of the zeros will
lie on the real, positive axis in the z-plane. However, as V →∞ (and hence the degree of
the polynomial (4) and, with it, the number of zeros itself grows to infinity), the distribu-
tion of zeros is expected to become continuous and, depending on T , may in fact converge
on the real, positive axis at one or more points zc. If so, our functions P(z) and n(z), even
with z varied along the real axis only, may, by virtue of their relationship to the function
lnQ, turn out to be singular at the points z = zc. The presence of such a singularity would
imply the onset of a phase transition in the system. For further details of this approach, see
Sections 12.3 and 12.4 of the first edition of this book; see also Griffiths (1972, pp. 50–58).

12.2 Condensation of a van der Waals gas
We start with the simplest, and historically the first, theoretical model that undergoes a
gas–liquid phase transition. This model is generally referred to as the van der Waals gas
and obeys the equation of state, see equation (10.3.9),

P =
RT

v−b
−

a

v2
, (1)

v being the molar volume of the gas; the parameters a and b then also pertain to one
mole of the gas. We recall that, while a is a measure of the attractive forces among the
molecules of the system, b is a measure of the repulsive forces that come into play when
two molecules come too close to one another; accordingly, b is also a measure of the
“effective space” occupied by the molecules (by virtue of a finite volume that may be asso-
ciated with each one of them). In Section 10.3, the equation of state (1) was derived under
the express assumption that v� b; here, we shall pretend, with van der Waals, that this
equation holds even when v is comparable to b.

The isotherms following from equation (1) are shown in Figure 12.3. We note that,
for temperatures above a critical temperature Tc,P decreases monotonically with v. For
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FIGURE 12.3 The isotherms of a van der Waals system; those for T < Tc are “corrected” with the help of the
Maxwell construction, thus leading to the coexistence curve at the top of which sits the critical point.

T < Tc, however, the relationship is nonmonotonic, so that over a certain range of v we
encounter a region where (∂P/∂v) > 0; such a region is unphysical and must be “corrected”
with the help of the Maxwell construction,6 leading to an isotherm with a flat portion sig-
naling transition from the gaseous state with molar volume vg(T) to the liquid state with
molar volume vl(T) at a constant pressure P(T). For vl < v < vg , the system resides in a
state of mixed phases — partly liquid, partly gaseous — and, since the passage from one
end of the flat portion to the other takes place with 1v 6= 0 but 1P = 0, the system is all
along in a state of infinite compressibility; clearly, we are encountering here a brand of
behavior that is patently singular. As T increases toward Tc, the transition takes place at
a comparatively higher value of P, with vg less than and vl more than before — so that,
as T→ Tc, both vg and vl approach a common value vc that may be referred to as the
critical volume; the corresponding value of P may then be designated by Pc, and we find
ourselves located at the critical point of the system. The locus of all such points as vl(T)
and vg(T) is generally referred to as the coexistence curve, for the simple reason that in the
region enclosed by this curve the gaseous and the liquid phases mutually coexist; the top
of this curve, where vl = vg , coincides with the critical point itself. Finally, the isotherm

6A more precise formulation of the van der Waals theory, as the limit of a theory with an infinite range potential, has
been formulated by Kac, Uhlenbeck and Hemmer (1963). They considered the potential

u(r)=
{
+∞ for r ≤ σ
−κe−κr for r > σ ,

so that the integral
∫
∞

σ
u(r)dr is simply −exp(−κσ); when κ→ 0 the potential becomes infinite in range but infinitesi-

mally weak. Kac et al. showed that, in this limit, the model becomes essentially the same as van der Waals’ — with one
noteworthy improvement, that is, no unphysical regions in the (P,v)–diagram appear and hence no need for the Maxwell
construction arises.
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pertaining to T = Tc, which, of course, passes through the critical point is referred to as the
critical isotherm of the system; it is straightforward to see that the critical point is a point
of inflection of this isotherm, so that both (∂P/∂v)T and (∂2P/∂v2)T vanish at this point.
Using (1), we obtain for the coordinates of the critical point

Pc =
a

27b2
, vc = 3b, Tc =

8a
27bR

, (2)

so that the number

K≡ RTc/Pcvc = 8/3= 2.666 . . . . (3)

We thus find that, while Pc,vc, and Tc vary from system to system (through the interaction
parameters a and b), the quantity K has a common, universal value for all of them — so
long as they all obey the same (i.e., van der Waals) equation of state. The experimental
results for K indeed show that it is nearly the same over a large group of substances; for
instance, its value for carbon tetrachloride, ethyl ether, and ethyl formate is 3.677, 3.814,
and 3.895, respectively — close, though not exactly the same, and also a long way from the
van der Waals value. The concept of universality is, nonetheless, there (even though the
van der Waals equation of state may not truly apply).

It is now tempting to see if the equation of state itself can be written in a universal form.
We find that this indeed can be done by introducing reduced variables

Pr =
P
Pc

, vr =
v
vc

, Tr =
T
Tc

. (4)

Using (1) and (2), we readily obtain the reduced equation of state

(
Pr +

3

v2
r

)
(3vr − 1)= 8Tr , (5)

which is clearly universal for all systems obeying van der Waals’ original equation of
state (1); all we have done here is to rescale the observable quantities P, v, and T in terms
of their critical values and thereby “push the interaction parameters a and b into the back-
ground.” Now, if two different systems happen to be in states characterized by the same
values of vr and Tr , then their Pr would also be the same; the systems are then said to be in
“corresponding states” and, for that reason, the statement just made is referred to as the
“law of corresponding states.” Clearly, the passage from equation (1) to equation (5) takes
us from an expression of diversity to a statement of unity!

We shall now examine the behavior of the van der Waals system in the close neighbor-
hood of the critical point. For this, we write

Pr = 1+π , vr = 1+ψ , Tr = 1+ t. (6)
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Equation (5) then takes the form

π
(

2+ 7ψ + 8ψ2
+ 3ψ3

)
+ 3ψ3

= 8t
(

1+ 2ψ +ψ2
)

. (7)

First of all, along the critical isotherm (t = 0) and in the close vicinity of the critical point
(|π |, |ψ | � 1), we obtain the simple, asymptotic result

π ≈−
3
2
ψ3, (8)

which is indicative of the “degree of flatness” of the critical isotherm at the critical point.
Next, we examine the dependence of ψ on t as we approach the critical point from below.
For this, we write (7) in the form

3ψ3
+ 8(π − t)ψ2

+ (7π − 16t)ψ + 2(π − 4t)' 0. (9)

Now, a close look at the (symmetric) shape of the coexistence curve near its top (where
|t| � 1) shows that the three roots ψ1,ψ2, and ψ3 of equation (9), which arise from the
limiting behavior of the roots v1,v2, and v3 of the original equation of state (1) as T→ Tc−,
are such that |ψ2| � |ψ1,3| and |ψ1| ' |ψ3|. This means that, in the region of interest,

π ≈ 4t, (10)

so that one of the roots, ψ2, of equation (9) essentially vanishes while the other two are
given by

ψ2
+ 8tψ + 4t ' 0. (9a)

We expect the middle term here to be negligible (as will be confirmed by the end result),
yielding

ψ1,3 ≈±2|t|1/2; (11)

note that the upper sign here pertains to the gaseous phase and the lower sign to the liquid
phase.

Finally, we consider the isothermal compressibility of the system which, in terms of
reduced variables, is determined essentially by the quantity−(∂ψ/∂π)t . Retaining only the
dominant terms, we obtain from (7)

−

(
∂ψ

∂π

)
t
≈

2

7π + 9ψ2− 16t
. (12)

For t > 0, we approach the critical point along the critical isochore (ψ = 0); equation (12),
with the help of equation (10), then gives

−

(
∂ψ

∂π

)
t→0+

≈
1
6t

. (13)
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For t < 0, we approach the critical point along the coexistence curve (on which ψ2
≈−4t);

we now obtain

−

(
∂ψ

∂π

)
t→0−

≈
1

12|t|
. (14)

For the record, we quote here results for the specific heat, CV , of the van der Waals gas
(Uhlenbeck, 1966; Thompson, 1988)

CV ≈

(CV )ideal+
9
2

Nk
(

1+
28
25

t
)

(t ≤ 0) (15a)

(CV )ideal (t > 0), (15b)

which imply a finite jump at the critical point.
Equations (8), (11), (13), (14), and (15) illustrate the nature of the critical behavior dis-

played by a van der Waals system undergoing the gas–liquid transition. While it differs in
several important respects from the critical behavior of real physical systems, it shows up
again and again in studies pertaining to other critical phenomena that have apparently
nothing to do with the gas–liquid phase transition. In fact, this particular brand of behav-
ior turns out to be a benchmark against which the results of more sophisticated theories
are automatically compared.

12.3 A dynamical model of phase transitions
A number of physico-chemical systems that undergo phase transitions can be represented,
to varying degrees of accuracy, by an “array of lattice sites, with only nearest-neighbor
interaction that depends on the manner of occupation of the neighboring sites.” This
simple-minded model turns out to be good enough to provide a unified, theoretical basis
for understanding a variety of phenomena such as ferromagnetism and antiferromag-
netism, gas–liquid and liquid–solid transitions, order–disorder transitions in alloys, phase
separation in binary solutions, and so on. There is no doubt that this model considerably
oversimplifies the actual physical systems it is supposed to represent; nevertheless, it does
retain the essential physical features of the problem — features that account for the prop-
agation of long-range order in the system. Accordingly, it does lead to the onset of a phase
transition in the given system, which arises in the nature of a cooperative phenomenon.

We find it convenient to formulate our problem in the language of ferromagnetism;
later on, we shall establish correspondence between this language and the languages
appropriate to other physical phenomena. We thus regard each of the N lattice sites to
be occupied by an atom possessing a magnetic moment µ, of magnitude gµB

√
[ J( J + 1)],

which is capable of (2J + 1) discrete orientations in space. These orientations define “dif-
ferent possible manners of occupation” of a given lattice site; accordingly, the whole
lattice is capable of (2J + 1)N different configurations. Associated with each configuration
is an energy E that arises from mutual interactions among the neighboring atoms of the
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lattice and from the interaction of the whole lattice with an external field B. A statistical
analysis in the canonical ensemble should then enable us to determine the expectation
value, M(B,T), of the net magnetization M . The presence of a spontaneous magnetization
M(0,T) at temperatures below a certain (critical) temperature Tc and its absence above
that temperature will then be interpreted as a ferromagnetic phase transition in the system
at T = Tc.

Detailed studies, both theoretical and experimental, have shown that, for all ferromag-
netic materials, data on the temperature dependence of the spontaneous magnetization,
M(0,T), fit best with the value J = 1

2 ; see Figure 12.4. One is, therefore, tempted to infer
that the phenomenon of ferromagnetism is associated only with the spins of the electrons
and not with their orbital motions. This is further confirmed by gyromagnetic experiments
(Barnett, 1944; Scott, 1951, 1952), in which one either reverses the magnetization of a freely
suspended specimen and observes the resulting rotation or imparts a rotation to the spec-
imen and observes the resulting magnetization; the former is known as the Einstein–de
Haas method, the latter the Barnett method. From these experiments one can derive the
relevant g-value of the specimen which, in each case, turns out to be very close to 2; this,
as we know, pertains to the electron spin. Therefore, in discussing the problem of ferro-
magnetism, we may specifically take: µ= 2µB

√
[s(s+ 1)], where s is the quantum number

associated with the electron spin. With s= 1
2 , only two orientations are possible for each

lattice site, namely sz =+
1
2 (withµz =+µB) and sz =−

1
2 (withµz =−µB). The whole lattice

is then capable of 2N configurations; one such configuration is shown in Figure 12.5.
We now consider the nature of the interaction energy between two neighboring spins

si and sj. According to quantum mechanics, this energy is of the form Kij± Jij, where the
upper sign applies to “antiparallel” spins (S= 0) and the lower sign to “parallel” spins
(S= 1). Here, Kij is the direct or Coulomb energy between the two spins, while Jij is the
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FIGURE 12.4 Spontaneous magnetization of iron, nickel, and cobalt as a function of temperature. Theoretical
curves are based on the Weiss theory of ferromagnetism.
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FIGURE 12.5 One of the 2N possible configurations of a system composed of N spins; here, N = 25.

exchange energy between them:

Kij =

∫
ψ∗i (1)ψ

∗

j (2)uijψj(2)ψi(1)dτ1dτ2, (1)

while

Jij =

∫
ψ∗j (1)ψ

∗

i (2)uijψj(2)ψi(1)dτ1dτ2, (2)

uij being the relevant interaction potential. The energy difference between a state of
“parallel” spins and one of “antiparallel” spins is given by

ε↑↑− ε↑↓ =−2Jij. (3)

If Jij > 0, the state ↑↑ is energetically favored against the state ↑↓; we then look for the
possibility of ferromagnetism. If, on the other hand, Jij < 0, the situation is reversed and we
see the possibility of antiferromagnetism.

It seems useful to express the interaction energy of the two states, ↑↑ and ↓↓, by a single
expression; for this, we consider the eigenvalues of the scalar product

si · sj =
1
2

{
(si+ sj)

2
− s2

i − s2
j

}
=

1
2

S(S+ 1)− s(s+ 1), (4)

which equals+1
4 if S= 1 and−3

4 if S= 0. We may, therefore, write for the interaction energy
of the spins i and j

εij = const.− 2Jij(si · sj), (5)

which is consistent with the energy difference (3). The precise value of the constant here is
immaterial because the potential energy is arbitrary to the extent of an additive constant
anyway. Typically, the exchange interaction Jij falls off rapidly as the separation of the two
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spins is increased. To a first approximation, therefore, we may regard Jij as negligible for all
but nearest-neighbor pairs (for which its value may be denoted by a common symbol J).
The interaction energy of the whole lattice is then given by

E = const.− 2J
∑
n.n.

(
si · sj

)
, (6)

where the summation goes over all nearest-neighbor pairs in the lattice. The model based
on expression (6) for the interaction energy of the lattice is known as the Heisenberg model
(1928).

A simpler model results if we use, instead of (6), a truncated expression in which the
product (si · sj), which is equal to the sum (sixsjx+ siysjy + sizsjz), is replaced by a single term
sizsjz; one reason for adopting this simpler model is that it does not necessarily require a
quantum-mechanical treatment (because all the variables in the truncated expression for
E commute). Expression (6) may now be written as

E = const.− J
∑
n.n.

σiσj, (7)

where the new symbol σi (or σj) =+1 for an “up” spin and −1 for a “down” spin; note
that, with the introduction of the new symbol, we still have: ε↑↑− ε↑↓ =−2J . The model
based on expression (7) is known as the Ising model; it originated with Lenz (1920) and
was subsequently investigated by his student Ising (1925).7

A different model results if we suppress the z-components of the spins and retain the
x- and y-components instead. This model was originally introduced by Matsubara and
Matsuda (1956) as a model of a quantum lattice gas, with possible relevance to the super-
fluid transition in liquid He4. The critical behavior of this so-called XY model has been
investigated in detail by Betts and coworkers, who have also emphasized the relevance of
this model to the study of insulating ferromagnets (see Betts et al., 1968 – 1974).

It seems appropriate to regard the Ising and the XY models as special cases of an
anisotropic Heisenberg model with interaction parameters Jx, Jy, and Jz; while the Ising
model represents the situation Jx, Jy � Jz, the XY model represents just the opposite. Intro-
ducing a parameter n, which denotes the number of spin components entering into the
Hamiltonian of the system, we may regard the Ising, the XY , and the Heisenberg models
as pertaining to the n-values 1, 2, and 3, respectively. As will be seen later, the parameter
n, along with the dimensionality d of the lattice, constitutes the basic set of elements that
determine the qualitative nature of the critical behavior of a given system. For the time
being, though, we confine our attention to the Ising model, which is not only the sim-
plest one to analyze but also unifies the study of phase transitions in systems as diverse as
ferromagnets, gas–liquids, liquid mixtures, binary alloys, and so on.

7For an historical account of the origin and development of the Lenz–Ising model, see the review article by Brush
(1967). This review gives a large number of other references as well.
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To study the statistical mechanics of the Ising model, we disregard the kinetic energy
of the atoms occupying the various lattice sites, for the phenomenon of phase transitions
is essentially a consequence of the interaction energy among the atoms; in the interac-
tion energy again, we include only the nearest-neighbor contributions, in the hope that
the farther-neighbor contributions would not affect the results qualitatively. To fix the
z-direction, and to be able to study properties such as magnetic susceptibility, we subject
the lattice to an external magnetic field B, directed “upward”; the spin σi then possesses
an additional potential energy −µBσi.8 The Hamiltonian of the system in configuration
{σ1,σ2, . . . ,σN } is then given by

H{σi} = −J
∑
n.n.

σiσj −µB
∑

i

σi, (8)

and the partition function by

QN (B,T)=
∑
σ1

∑
σ2

. . .
∑
σN

exp[−βH{σi}]

=

∑
σ1

∑
σ2

. . .
∑
σN

exp

[
βJ
∑
n.n.

σiσj +βµB
∑

i

σi

]
. (9)

The Helmholtz free energy, the internal energy, the specific heat, and the net magnetiza-
tion of the system then follow from the formulae

A(B,T)=−kT lnQN (B,T), (10)

U(B,T)=−T 2 ∂

∂T

(
A
T

)
= kT 2 ∂

∂T
lnQN , (11)

C(B,T)=
∂U
∂T
=−T

∂2A

∂T 2
, (12)

and

M(B,T)= µ

(∑
i

σi

)
=

(
−
∂H
∂B

)
=

1
β

(
∂ lnQN

∂B

)
T
=−

(
∂A
∂B

)
T

. (13)

Obviously, the quantity M(0,T) gives the spontaneous magnetization of the system; if it
is nonzero at temperatures below a certain critical temperature Tc, the system would be
ferromagnetic for T < Tc and paramagnetic for T > Tc. At the transition temperature itself,
the system is expected to show some sort of a singular behavior.

It is obvious that the energy levels of the system as a whole will be degenerate, in the
sense that the various configurations {σi} will not all possess distinct energy values. In
fact, the energy of a given configuration does not depend on the detailed values of all

8Henceforth, we use the symbol µ instead of µB.
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the variables σi; it depends only on a few numbers such as the total number N+ of “up”
spins, the total number N++ of “up–up” nearest-neighbor pairs, and so on. To see this,
we define certain other numbers as well: N− as the total number of “down” spins, N−− as
the total number of “down–down” nearest-neighbor pairs, and N+− as the total number
of nearest-neighbor pairs with opposite spins. The numbers N+ and N− must satisfy the
relation

N++N− =N . (14)

And if q denotes the coordination number of the lattice, that is, the number of nearest
neighbors for each lattice site,9 then we also have the relations

qN+ = 2N+++N+−, (15)

qN− = 2N−−+N+−. (16)

With the help of these relations, we can express all our numbers in terms of any two of
them, say N+ and N++. Thus

N− =N −N+, N+− = qN+− 2N++, N−− =
1
2

qN −qN++N++; (17)

it will be noted that the total number of nearest-neighbor pairs of all types is given, quite
expectedly, by the expression

N+++N−−+N+− =
1
2

qN . (18)

Naturally, the Hamiltonian of the system can also be expressed in terms of N+ and N++;
we have from (8), with the help of the relations established above,

HN (N+,N++)=−J(N+++N−−−N+−)−µB(N+−N−)

=−J
(

1
2

qN − 2qN++ 4N++

)
−µB(2N+−N). (19)

Now, let gN (N+,N++) be “the number of distinct ways in which the N spins of the lattice
can be so arranged as to yield certain preassigned values of the numbers N+ and N++.” The
partition function of the system can then be written as

QN (B,T)=
∑′

N+,N++
gN (N+,N++)exp{−βHN (N+,N++)} , (20)

9The coordination number q for a linear chain is obviously 2; for two-dimensional lattices, namely honeycomb,
square, and triangular, it is 3, 4, and 6, respectively; for three-dimensional lattices, namely simple cubic, body-centered
cubic, and face-centered cubic, it is 6, 8, and 12, respectively.
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that is,

e−βA
= e

βN
(

1
2 qJ−µB

) N∑
N+=0

e−2β(qJ−µB)N+
∑
N++

′

gN (N+,N++)e4βJN++ , (21)

where the primed summation in (21) goes over all values of N++ that are consistent
with a fixed value of N+ and is followed by a summation over all possible values of N+,
that is, from N+ = 0 to N+ =N . The central problem thus consists in determining the
combinatorial function gN (N+,N++) for the various lattices of interest.

12.4 The lattice gas and the binary alloy
Apart from ferromagnets, the Ising model can be readily adapted to simulate the behavior
of certain other systems as well. More common among these are the lattice gas and the
binary alloy.

The lattice gas
Although it had already been recognized that the results derived for the Ising model would
apply equally well to a system of “occupied” and “unoccupied” lattice sites (i.e., to a system
of “atoms” and “holes” in a lattice), it was Yang and Lee (1952) who first used the term
“lattice gas” to describe such a system. By definition, a lattice gas is a collection of atoms,
Na in number, that can occupy only discrete positions in space — positions that constitute
a lattice structure with coordination number q.

Each lattice site can be occupied by at most one atom, and the interaction energy
between two occupied sites is nonzero, say −ε0, only if the sites involved constitute a
nearest-neighbor pair. The configurational energy of the gas is then given by

E =−ε0Naa, (1)

where Naa is the total number of nearest-neighbor pairs (of occupied sites) in a given con-
figuration of the system. Let gN (Na,Naa) denote “the number of distinct ways in which
the Na atoms of the gas, assumed indistinguishable, can be distributed among the N sites
of the lattice so as to yield a certain preassigned value of the number Naa.” The partition
function of the system, neglecting the kinetic energy of the atoms, is then given by

QNa (N ,T)=
∑′

Naa

gN (Na,Naa)eβε0Naa , (2)

where the primed summation goes over all values of Naa that are consistent with the given
values of Na and N ; clearly, the number N here plays the role of the “total volume” available
to the gas.
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Going over to the grand canonical ensemble, we write for the grand partition function
of the system

Q(z,N ,T)=
N∑

Na=0

zNa QNa (N ,T). (3)

The pressure P and the mean number Na of the atoms in the gas are then given by

eβPN
=

N∑
Na=0

zNa

∑′

Naa

gN (Na,Naa)eβε0Naa (4)

and

Na

N
=

1
v
=

z
kT

(
∂P
∂z

)
T

; (5)

here, v denotes the average volume per particle of the gas (measured in terms of the
“volume of a primitive cell of the lattice”).

To establish a formal correspondence between the lattice gas and the ferromagnet, we
compare the present formulae with the ones established in the preceding section — in par-
ticular, formula (4) with formula (12.3.21). The first thing to note here is that the canonical
ensemble of the ferromagnet corresponds to the grand canonical ensemble of the lattice
gas! The rest of the correspondence is summarized in the following chart:

The lattice gas The ferromagnet

Na,N −Na ↔ N+,N −N+(=N−)

ε0 ↔ 4J

z ↔ exp{−2β(qJ −µB)}

P ↔ −

(
A
N
+

1
2

qJ −µB
)

Na

N

(
=

1
v

)
↔

N+
N

(
=

1
2

{
M

Nµ
+ 1

})
,

where

M = µ
(
N+−N−)= µ(2N+−N

)
. (6)

We also note that the ferromagnetic analogue of formula (5) would be

N+
N
=

1
kT

∂
(

A/N + 1
2 qJ −µB

)
2β∂

(
qJ −µB

)


T

=
1
2

[
−

1
Nµ

(
∂A
∂B

)
T
+ 1

]
(7)
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which, by equation (12.3.13), assumes the expected form

N+
N
=

1
2

(
M

Nµ
+ 1

)
. (8)

It is quite natural to ask: does lattice gas correspond to any real physical system in
nature? The immediate answer is that if we let the lattice constant tend to zero (thus going
from a discrete structure to a continuous one) and also add, to the lattice-gas formulae,
terms corresponding to an ideal gas (namely, the kinetic energy terms), then the model
might simulate the behavior of a gas of real atoms interacting through a delta function
potential. A study of the possibility of a phase transition in such a system may, therefore,
be of some value in understanding phase transitions in real gases. The case ε0 > 0, which
implies an attractive interaction among the nearest neighbors, has been frequently cited
as a possible model for a gas–liquid transition.

On the other hand, if the interaction is repulsive (ε0 < 0), so that configurations with
alternating sites being “occupied” and “unoccupied” are the more favored ones, then we
obtain a model that arouses interest in connection with the theory of solidification; in
such a study, however, the lattice constant has to stay finite. Thus, several authors have
pursued the study of the antiferromagnetic version of this model, hoping that this might
throw some light on the liquid–solid transition. For a bibliography of these pursuits, see
the review article by Brush (1967).

The binary alloy
Much of the early activity in the theoretical analysis of the Ising model was related to the
study of order–disorder transitions in alloys. In an alloy — to be specific, a binary alloy —
we have a lattice structure consisting of two types of atoms, say 1 and 2, numbering N1

and N2, respectively. In a configuration characterized by the numbers N11,N22, and N12 of
the three types of nearest-neighbor pairs, the configurational energy of the alloy may be
written as

E = ε11N11+ ε22N22+ ε12N12, (9)

where ε11,ε22, and ε12 have obvious meanings. As in the case of a ferromagnet, the various
numbers appearing in the expression for E may be expressed in terms of the numbers
N ,N1, and N11 (of which only N11 is variable here). Equation (9) then takes the form

E = ε11N11+ ε22

(
1
2

qN −qN1+N11

)
+ ε12

(
qN1− 2N11

)
=

1
2

qε22N +q(ε12− ε22)N1+ (ε11+ ε22− 2ε12)N11. (10)
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The correspondence between this system and the lattice gas is now straightforward:

The lattice gas The binary alloy

Na,N −Na ↔ N1,N −N1(=N2)

−ε0 ↔ (ε11+ ε22− 2ε12)

A ↔ A− 1
2 qε22N −q(ε12− ε22)N1

The correspondence with a ferromagnet can be established likewise; in particular, this
requires that ε11 = ε22 =−J and ε12 =+J .

At absolute zero, our alloy will be in the state of minimum configurational energy,
which would also be the state of maximum configurational order. We expect that the
two types of atoms would then occupy mutually exclusive sites, so that one might
speak of atoms 1 being only at sites a and atoms 2 being only at sites b. As tempera-
ture rises, an exchange of sites results and, in the face of thermal agitation, the order
in the system starts giving way. Ultimately, the two types of atoms get so “mixed up”
that the very notion of the sites a being the “right” ones for atoms 1 and the sites
b being the “right” ones for atoms 2 break down; the system then behaves, from the
configurational point of view, as an assembly of N1+N2 atoms of essentially the same
species.

12.5 Ising model in the zeroth approximation
In 1928 Gorsky attempted a statistical study of order–disorder transitions in binary alloys
on the basis of the assumption that the work expended in transferring an atom from
an “ordered” position to a “disordered” one (or, in other words, from a “right” site to
a “wrong” one) is directly proportional to the degree of order prevailing in the system.
This idea was further developed by Bragg and Williams (1934, 1935) who, for the first
time, introduced the concept of long-range order in the sense we understand it now
and, with relatively simple mathematics, obtained results that could explain the main
qualitative features of the relevant experimental data. The basic assumption in the Bragg–
Williams approximation was that the energy of an individual atom in the given system
is determined by the (average) degree of order prevailing in the entire system rather
than by the ( fluctuating) configurations of the neighboring atoms. In this sense, the
approximation is equivalent to the mean molecular field (or the internal field) theory of
Weiss, which was put forward in 1907 to explain the magnetic behavior of ferromagnetic
materials.

It seems natural to call this approximation the zeroth approximation, for its features
are totally insensitive to the detailed structure, or even to the dimensionality, of the lattice.
We expect that the results following from this approximation will become more reliable
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as the number of neighbors interacting with a given atom increases (i.e., as q→∞), thus
diminishing the importance of local, fluctuating influences.10

We now define a long-range order parameter L in a given configuration by the very
suggestive relationship

L=
1
N

∑
i

σi =
N+−N−

N
= 2

N+
N
− 1 (−1≤ L≤+1), (1)

which gives

N+ =
N
2
(1+L) and N− =

N
2
(1−L). (2)

The magnetization M is then given by

M = (N+−N−)µ=NµL (−Nµ≤M ≤+Nµ); (3)

the parameter L is, therefore, a direct measure of the net magnetization in the system. For
a completely random configuration, N+ =N− = 1

2 N ; the expectation values of both L and
M are then identically zero.

Now, in the spirit of the present approximation, we replace the first part of the Hamilto-
nian (12.3.8) by the expression −J(1

2 qσ)
∑

i σi, that is, for a given σi, we replace each of the
qσj by σ while the factor 1

2 is included to avoid duplication in the counting of the nearest-
neighbor pairs. Making use of equation (1), and noting that σ ≡ L, we obtain for the total
configurational energy of the system

E =−
1
2

(
qJL

)
NL− (µB)NL. (4)

The expectation value of E is then given by

U =−
1
2

qJNL
2
−µBNL. (5)

In the same approximation, the difference 1ε between the overall configurational energy
of an “up” spin and the overall configurational energy of a “down” spin — specifically,
the energy expended in changing an “up” spin into a “down” spin — is given by, see
equation (12.3.8),

1ε =−J(qσ)1σ −µB1σ

= 2µ
(

qJ
µ
σ +B

)
, (6)

10In connection with the present approximation, we may as well mention that early attempts to construct a theory of
binary solutions were based on the assumption that the atoms in the solution mix randomly. One finds that the results
following from this assumption of random mixing are mathematically equivalent to the ones following from the mean
field approximation; see Problems 12.12 and 12.13.
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for here 1σ =−2. The quantity qJσ/µ thus plays the role of the internal (molecular) field
of Weiss; it is determined by (i) the mean value of the long-range order prevailing in the
system and by (ii) the strength of the coupling, qJ , between a given spin i and its q nearest
neighbors. The relative values of the equilibrium numbers N+ and N− then follow from
the Boltzmann principle, namely

N−/N+ = exp
(
−1ε/kT

)
= exp

{
−2µ(B′+B)/kT

}
, (7)

where B′ denotes the internal molecular field:

B′ = qJσ/µ= qJ
(

M/Nµ2
)

. (8)

Substituting (2) into (7), and keeping in mind equation (8), we obtain for L

1−L

1+L
= exp

{
−2(qJL+µB)/kT

}
(9)

or, equivalently,

qJL+µB
kT

=
1
2

ln
1+L

1−L
= tanh−1 L. (10)

To investigate the possibility of spontaneous magnetization, we let B→ 0, which leads
to the relationship

L0 = tanh

(
qJL0

kT

)
. (11)

Equation (11) may be solved graphically; see Figure 12.6. For any temperature T , the
appropriate value of L0(T) is determined by the point of intersection of (i) the straight
line y = L0 and (ii) the curve y = tanh(qJL0/kT). Clearly, the solution L0 = 0 is always there;
however, we are interested in nonzero solutions, if any. For those, we note that, since the
slope of the curve (ii) varies from the initial value qJ/kT to the final value zero while the
slope of the line (i) is unity throughout, an intersection other than the one at the origin is
possible if, and only if,

qJ/kT > 1, (12)

that is,

T < qJ/k = Tc, say. (13)

We thus obtain a critical temperature Tc, below which the system can acquire a nonzero
spontaneous magnetization and above which it cannot. It is natural to identify Tc with
the Curie temperature of the system — the temperature that marks a transition from the
ferromagnetic to the paramagnetic behavior of the system or vice versa.

It is clear from Figure 12.6, as well as from equation (11), that if L0 is a solution of the
problem, then −L0 is also a solution. The reason for this duplicity of solutions is that, in



12.5 Ising model in the zeroth approximation 423
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FIGURE 12.6 The graphical solution of equation (11), with Tc = qJ/k.

the absence of an external field, there is no way of assigning a “positive,” as opposed to a
“negative,” direction to the alignment of spins. In fact, if B were zero right from the begin-
ning, then the positive solution of equation (11) would be as likely to occur as the negative
one — with the result that the true expectation value of L0(T)would be zero. If, on the other
hand, B were nonzero to begin with (to be definite, say B> 0), then equation (10) for L(B,T)
would admit only positive solutions and, in the limit B→ 0+, we would obtain a positive
L0(T). The “up–down symmetry” will then be broken and we will see a net alignment of
spins in the “up” direction.11

The precise variation of L0(T)with T can be obtained by solving equation (11) numeri-
cally; the general trend, however, can be seen from Figure 12.6. We note that, at T =
qJ/k (= Tc), the straight line y = L0 is tangential to the curve y = tanh(qJL0/kT) at the ori-
gin; the relevant solution then is L0(Tc)= 0. As T decreases, the initial slope of the curve
becomes larger and the relevant point of intersection moves rapidly away from the origin;
accordingly, L0(T) rises rapidly as T decreases below Tc. To obtain an approximate depen-
dence of L0(T) on T near T = Tc, we write (11) in the form L0 = tanh(L0Tc/T) and use the
approximation tanhx ' x− x3/3, to obtain

L0(T)≈ {3(1−T/Tc)}
1/2 (T . Tc,B→ 0). (14)

On the other hand, as T→ 0,L0→ 1, in accordance with the asymptotic relationship

L0(T)≈ 1− 2exp(−2Tc/T) {(T/Tc)� 1}. (15)

Figure 12.7 shows a plot of L0(T) versus T , along with the relevant experimental results for
iron, nickel, cobalt, and magnetite; we find the agreement not too bad.

11The concept of “broken symmetry” plays a vital role in this and many other phenomena in physics; for details, see
Fisher (1972) and Anderson (1984).
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FIGURE 12.7 The spontaneous magnetization of a Weiss ferromagnet as a function of temperature. The
experimental points (after Becker) are for iron (×), nickel (o), cobalt (1), and magnetite (+).

The field-free configurational energy and the field-free specific heat of the system are
given by, see equation (5),

U0(T)=−
1
2

qJNL
2
0 (16)

and

C0(T)=−qJNL0
dL0

dT
=

NkL
2
0

(T/Tc)2/(1−L
2
0)−T/Tc

, (17)

where the last step has been carried out with the help of equation (11). Thus, for all T > Tc,
both U0(T) and C0(T) are identically zero. However, the value of the specific heat at the
transition temperature Tc, as approached from below, turns out to be, see equations (14)
and (17),

C0(Tc−)= Lim
x→0

 Nk · 3x
(1−x)2
1−3x − (1− x)

= 3
2

Nk. (18)

The specific heat, therefore, displays a discontinuity at the transition point. On the
other hand, as T→ 0, the specific heat vanishes, in accordance with the formula, see
equations (15) and (17),

C0(T)≈ 4Nk
(

Tc

T

)2

exp(−2Tc/T). (19)

The full trend of the function C0(T) is shown in Figure 12.8.
It is important to note that the vanishing of the configurational energy and the spe-

cific heat of the system at temperatures above Tc is directly related to the fact that, in the
present approximation, the configurational order prevailing in the system at lower temper-
atures is completely wiped out as T→ Tc. Consequently, the configurational entropy and
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FIGURE 12.8 The field-free specific heat of a Weiss ferromagnet as a function of temperature.

the configurational energy of the system attain their maximum values at T = Tc; beyond
that, the system remains thermodynamically “inert.” As a check, we evaluate the con-
figurational entropy of the system at T = Tc; with the help of equations (11) and (17),
we get

S0(Tc)=

Tc∫
0

C0(T)dT
T

=−qJN

0∫
1

L0

T
dL0

=Nk

1∫
0

(tanh−1 L0)dL0 =Nk ln2, (20)

precisely the result we expect for a system capable of 2N equally likely microstates.12 The
fact that all these microstates are equally likely to occur is again related to the fact that for
T ≥ Tc there is no (configurational) order in the system.

We now proceed to study the magnetic susceptibility of the system. Using equa-
tion (10), we get

χ(B,T)=

(
∂M
∂B

)
T

=Nµ

(
∂L
∂B

)
T

=
Nµ2

k
1−L

2
(B,T)

T −Tc{1−L
2
(B,T)}

. (21)

For L� 1 (which is true at high temperatures for a wide range of B but is also true near Tc

if B is small), we obtain the Curie–Weiss law

χ0(T)≈ (Nµ
2/k)(T −Tc)

−1 (T & Tc,B→ 0), (22a)

12Recall equation (3.3.14), whereby S= k ln�.
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which may be compared with the Curie law derived earlier for a paramagnetic system; see
equation (3.9.12). For T less than, but close to, Tc we utilize equation (14) as well and get

χ0(T)≈ (Nµ
2/2k)(Tc −T)−1 (T . Tc,B→ 0). (22b)

Experimentally, one finds that the Curie–Weiss law is satisfied with considerable accuracy,
except that the empirical value of Tc thus obtained is always somewhat larger than the true
transition temperature of the material; for instance, in the case of nickel, the empirical
value of Tc obtained in this manner turns out to be about 650 K while the actual transition
takes place at about 631 K. In passing, we add that, as T→ 0, the low-field susceptibility
vanishes, in accordance with the formula

χ0(T)≈
4Nµ2

kT
exp(−2Tc/T). (23)

Finally, we examine the relationship between L and B at T = Tc. Using, once again,
equation (10) and employing the approximation tanh−1 x ' x+ x3/3, we get

L≈ (3µB/kTc)
1/3 (T = Tc,B→ 0). (24)

At this point we wish to emphasize the remarkable similarity that exists between the
critical behavior of a gas–liquid system obeying van der Waals equation of state and that
of a magnetic system treated in the Bragg–Williams approximation. Even though the two
systems are physically very different, the level of approximation is such that the exponents
governing power-law behavior of the various physical quantities in the critical region turn
out to be the same; compare, for instance, equation (14) with (12.2.11), equations (22a) and
(22b) with (12.2.13) and (12.2.14), equation (24) with (12.2.8) — along with the behavior of
the specific heat as well. This sort of similarity will be seen again and again whenever we
employ an approach similar in spirit to the mean field approach of this section.

Before we close our discussion of the so-called zeroth approximation, we would like to
demonstrate that it corresponds exactly to the random mixing approximation (which was
employed originally in the theory of binary solutions). According to equation (12.3.19), the
mean configurational energy in the absence of the external field is given by

U0 =−J
(

1
2

qN − 2qN++ 4N++

)
. (25)

At the same time, equations (2) and (16) of the present approach give

N+ =
1
2

N
(
1+L0

)
and U0 =−

1
2

qJNL
2
0. (26)

Combining (25) and (26), we obtain

N++ =
1
8

qN
(
1+L0

)2
, (27)
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so that

N++
1
2 qN

=

(
N+
N

)2

. (28)

Thus, the probability of having an “up–up” nearest-neighbor pair of spins in the lat-
tice is precisely equal to the square of the probability of having an “up” spin; in other
words, there does not exist, in spite of the presence of a nearest-neighbor interaction
(characterized by the coupling constant J), any specific correlation between the neigh-
boring spins of the lattice. Put differently, there does not exist any short-range order
in the system, apart from what follows statistically from the long-range order (charac-
terized by the parameter L). It follows that, in the present approximation, our system
consists of a specific number of “up” spins, namely N(1+L)/2, and a corresponding
number of “down” spins, namely N(1−L)/2, distributed over the N lattice sites in a
completely random manner — similar to the mixing of N(1+L)/2 atoms of one kind
with N(1−L)/2 atoms of another kind in a completely random manner to obtain a
binary solution of N atoms; see also Problem 12.4. For this sort of mixing, we obviously
have

N++ =
1
2

qN

(
1+L

2

)2

, N−− =
1
2

qN

(
1−L

2

)2

, (29a)

N+− = 2 ·
1
2

qN

(
1+L

2

)(
1−L

2

)
, (29b)

with the result that

N++N−−
(N+−)2

=
1
4

. (30)

12.6 Ising model in the first approximation
The approaches considered in the preceding section have a natural generalization toward
an improved approximation. The mean field approach leads naturally to the Bethe
approximation (Bethe, 1935; Rushbrooke, 1938), which treats the interaction of a given
spin with its nearest neighbors somewhat more accurately. The random mixing approach,
on the other hand, leads to the quasichemical approximation (Guggenheim, 1935; Fowler
and Guggenheim, 1940), which takes into account the specific short-range order of the lat-
tice — over and above the one that follows statistically from the long-range order. As shown
by Guggenheim (1938) and by Chang (1939), the two methods yield identical results for the
Ising model. It seems worthwhile to mention here that the extension of these approxima-
tions to higher orders, or their application to the Heisenberg model, does not produce
identical results.
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In the Bethe approximation, a given spin σ0 is regarded as the central member of a
group, which consists of this spin and its q nearest neighbors, and in writing down the
Hamiltonian of this group the interaction between the central spin and its q neighbors is
taken into account exactly while the interaction of these neighbors with other spins in the
lattice is taken into account through a mean molecular field B′. Thus

Hq+1 =−µBσ0−µ
(
B+B′

) q∑
j=1

σj − J
q∑

j=1

σ0σj, (1)

B being the external magnetic field acting on the lattice. The internal field B′ is determined
by the condition of self-consistency, which requires that the mean value, σ 0, of the central
spin be the same as the mean value, σ j, of any of the q neighbors. The partition function Z
of this group of spins as a whole is given by

Z =
∑

σ0,σj=±1

exp

 1
kT

µBσ0+µ
(
B+B′

) q∑
j=1

σj + J
q∑

j=1

σ0σj




=

∑
σ0,σj=±1

exp

ασ0+
(
α+α′

) q∑
j=1

σj + γ

q∑
j=1

σ0σj

 , (2)

where

α =
µB
kT

, α′ =
µB′

kT
and γ =

J
kT

. (3)

Now, the right side of (2) can be written as a sum of two terms, one pertaining to σ0 =+1
and the other to σ0 =−1, that is,

Z = Z++Z−,

where

Z± =
∑
σj=±1

exp

±α+ (α+α′± γ ) q∑
j=1

σj


= e±α

[
2cosh

(
α+α′± γ

)]q . (4)

The mean value of the central spin is then given by

σ 0 =
Z+−Z−

Z
, (5)
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while the mean value of any one of its q neighbors is given by, see (2) and (4),

σ j =
1
q

 q∑
j=1

σj

= 1
q

(
1
Z
∂Z
∂α′

)

=
1
Z

{
Z+ tanh

(
α+α′+ γ

)
+Z− tanh

(
α+α′− γ

)}
. (6)

Equating (5) and (6), we get

Z+
{

1− tanh
(
α+α′+ γ

)}
= Z−

{
1+ tanh

(
α+α′− γ

)}
. (7)

Substituting for Z+ and Z− from (4), we finally obtain

e2α′
=

{
cosh

(
α+α′+ γ

)
cosh(α+α′− γ )

}q−1

. (8)

Equation (8) determines α′ which, in turn, determines the magnetic behavior of the lattice.
To study the possibility of spontaneous magnetization, we set α(= µB/kT)= 0. Equa-

tion (8) then reduces to

α′ =
q− 1

2
ln

{
cosh

(
α′+ γ

)
cosh(α′− γ )

}
. (9)

In the absence of interactions (γ = 0), α′ is clearly zero. In the presence of interactions
(γ 6= 0), α′ may still be zero unless γ exceeds a certain critical value, γc say. To determine
this value, we expand the right side of (9) as a Taylor series around α′ = 0, with the result

α′ = (q− 1) tanhγ

{
α′− sech2γ

α′3

3
+ ·· ·

}
. (10)

We note that, for all γ , α′ = 0 is one possible solution of the problem; this, however, does
not interest us. A nonzero solution requires that

(q− 1) tanhγ > 1,

that is,

γ > γc = tanh−1
(

1
q− 1

)
=

1
2

ln
(

q
q− 2

)
. (11)

In terms of temperature, this means that

T < Tc =
2J
k

/
ln
(

q
q− 2

)
, (12)
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which determines the Curie temperature of the lattice. From (10), we also infer that for
temperatures less than, but close to, the Curie temperature

α′ '
{

3cosh2 γc
[
(q− 1) tanhγ − 1

]}1/2
'
{

3(q− 1)(γ − γc)
}1/2

'

{
3(q− 1)

J
kTc

(
1−

T
Tc

)}1/2

. (13)

The parameter L, which is a measure of the long-range order in the system, is, by definition,
equal to σ . From equations (5) and (7), we get

L=
(Z+/Z−)− 1
(Z+/Z−)+ 1

=
sinh(2α+ 2α′)

cosh(2α+ 2α′)+ exp(−2γ )
. (14)

In the limit B→ 0 (which means α→ 0) and at temperatures less than, but close to, the
Curie temperature (γ & γc;α′ ' 0), we obtain

L0 =
sinh(2α′)

cosh(2α′)+ exp(−2γ )
'

2α′

1+ (q− 2)/q
=

q
q− 1

α′. (15)

Substituting from (12) and (13), we get

L0 '

[
3

q
q− 1

{
q
2

ln
(

q
q− 2

)}(
1−

T
Tc

)]1/2

. (16)

We note that, for q� 1, equations (12) and (16) reduce to their zeroth-order counter parts
(12.5.13) and (12.5.14), respectively; in either case, as T→ Tc from below, L0 vanishes as
(Tc −T)1/2. We also note that the spontaneous magnetization curve in the present approxi-
mation has the same general shape as in the zeroth approximation; see Figure 12.7. Of
course, in the present case the curve depends explicitly on the coordination number q,
being steepest for small q and becoming less steep as q increases — tending ultimately to
the limiting form given by the zeroth approximation.

We shall now study correlations that might exist among neighboring spins in the lattice.
For this, we evaluate the numbers N++,N−−, and N+− in terms of the parameters α, α′,
and γ , and compare the resulting expressions with the ones obtained under the mean field
approximation. Carrying out summations in (2) over all the spins (of the group) except σ0

and σ1, we obtain

Z =
∑

σ0,σ1=±1

[
exp

{
ασ0+ (α+α

′)σ1+ γ σ0σ1
}{

2cosh(α+α′+ γ σ0)
}q−1

]
. (17)

Writing this as a sum of three parts pertaining, respectively, to the cases (i) σ0 = σ1 =+1,
(ii) σ0 = σ1 =−1, and (iii) σ0 =−σ1 =±1, we have

Z = Z+++Z−−+Z+−, (18)
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where, naturally enough,

N++ : N−− : N+− :: Z++ : Z−− : Z+−. (19)

We thus obtain, using (8) as well,

N++ ∝ e(2α+α
′
+γ )

{
2cosh(α+α′+ γ )

}q−1 ,

N−− ∝ e(−2α−α′+γ ) {2cosh(α+α′− γ )
}q−1

= e(−2α−3α′+γ )
{2cosh(α+α′+ γ )}q−1,

and

N+− ∝ e(−α
′
−γ )

{
2cosh(α+α′+ γ )

}q−1
+ e(α

′
−γ )

{
2cosh(α+α′− γ )

}q−1

= 2e(−α
′
−γ )
{2cosh(α+α′+ γ )}q−1.

Normalizing these expressions with the help of the relationship

N+++N−−+N+− =
1
2

qN , (20)

we obtain the desired results

(
N++,N−−,N+−

)
=

1
2

qN

(
e2α+2α′+γ ,e−2α−2α′+γ ,2e−γ

)
2
{

eγ cosh(2α+ 2α′)+ e−γ
} , (21)

whereby

N++N−−(
N+−

)2
=

1
4

e4γ
=

1
4

e4J/kT . (22)

The last result differs significantly from the one that followed from the random mixing
approximation, namely (12.5.30). The difference lies in the extra factor exp(4J/kT) which,
for J > 0, favors the formation of parallel-spin pairs ↑↑ and ↓↓, as opposed to antiparallel-
spin pairs ↑↓ and ↓↑. In fact, one may regard the elementary process

↑↑ + ↓↓ ⇔ 2 ↑↓, (23)

which leaves the total numbers of “up” spins and “down” spins unaltered, as a kind of
a “chemical reaction” which, proceeding from left to right, is endothermic (requiring an
amount of energy 4J to get through) and, proceeding from right to left, is exothermic
(releasing an amount of energy 4J). Equation (22) then constitutes the law of mass action
for this reaction, the expression on the right side being the equilibrium constant of the
reaction. Historically, equation (22) was adopted by Guggenheim as the starting point
of his “quasichemical” treatment of the Ising model; only later on did he show that his
treatment was equivalent to the Bethe approximation expounded here.
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Equation (22) tells us that, for J > 0, there exists among like neighbors (↑ and ↑ or ↓
and ↓) a positive correlation and among unlike neighbors (↑ and ↓) a negative correlation,
and that these correlations are a direct consequence of the nearest-neighbor interaction.
Accordingly, there must exist a specific short-range order in the system, over and above the
one that follows statistically from the long-range order. To see this explicitly, we note that
even when long-range order disappears (α+α′ = 0), some short-range order still persists.
For instance, from equation (21) we obtain

(
N++,N−−,N+−

)
L=0 =

1
2

qN

(
eγ ,eγ ,2e−γ

)
4coshγ

(24)

which, only in the limit γ → 0, goes over to the random-mixing result, see equa-
tion (12.5.29) with L= 0,

(
N++,N−−,N+−

)
L=0 =

1
2

qN
(1,1,2)

4
. (25)

In the zeroth approximation, equation (25) is supposed to hold at all temperatures above
Tc; we now find that a better approximation at these temperatures is provided by (24).

Next, we evaluate the configurational energy U0 and the specific heat C0 of the lattice
in the absence of the external field (α = 0). In view of equation (12.5.25),

U0 =−J
(

1
2

qN − 2qN++ 4N++

)
α=0

. (26)

The expression for N++ is given by equation (21) while that for N+ can be obtained
from (14):

(N+)α=0 =
1
2

N(1+L0)=
1
2

N
exp(2α′)+ exp(−2γ )

cosh(2α′)+ exp(−2γ )
. (27)

Equation (26) then gives

U0 =−
1
2

qJN
cosh(2α′)− exp(−2γ )
cosh(2α′)+ exp(−2γ )

, (28)

where α′ is determined by equation (9). For T > Tc, α′ = 0, so

U0 =−
1
2

qJN
1− exp(−2γ )
1+ exp(−2γ )

=−
1
2

qJN tanhγ . (29)

Obviously, this result arises solely from the short-range order that persists in the system
even above Tc. As for the specific heat, we get

C0/Nk =
1
2

qγ 2sech2γ (T > Tc). (30)

As T→∞, C0 vanishes like T−2. We note that a nonzero specific heat above the transition
temperature is a welcome feature of the present approximation, for it brings our model
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FIGURE 12.9 The field-free specific heat of an Ising lattice with coordination number 4. Curve 1 obtains in the
Bethe approximation, curve 2 in the Bragg–Williams approximation.

somewhat closer to real physical systems. In this connection, we recall that in the previous
approximation the specific heat was zero for all T > Tc. Figure 12.9 shows the specific heat
of an Ising lattice, with coordination number 4, as given by the Bethe approximation; for
comparison, the result of the previous approximation is also included.

We are now in a position to study the specific heat discontinuity at T = Tc. The limiting
value of C0, as T approaches Tc from above, can be obtained from equation (30) by letting
γ → γc. One obtains, with the help of equation (11),

1
Nk

C0 (Tc+)=
1
2

qγ 2
c sech2γc =

1
8

q2(q− 2)

(q− 1)2

{
ln
(

q
q− 2

)}2

. (31)

To obtain the corresponding result as T approaches Tc from below, we must use the general
expression (28) for U0, with α′→ 0 as γ → γc. Expanding (28) in powers of the quantities
(γ − γc) and α′, and making use of equation (13), we obtain for (1−T/Tc)� 1

U0 =−
1
2

qJN
[

1
(q− 1)

+
q(q− 2)

(q− 1)2
(γ − γc)+

q(q− 2)

(q− 1)2
α′2+ ·· ·

]
=−

1
2

qJN
[

1
(q− 1)

+
q(q− 2)(3q− 2)

(q− 1)2
J

kTc

(
1−

T
Tc

)
+ ·· ·

]
. (32)

Differentiating with respect to T and substituting for Tc, we obtain

1
Nk

C0(Tc−)=
1
8

q2(q− 2)(3q− 2)

(q− 1)2

{
ln
(

q
q− 2

)}2

, (33)

which is (3q− 2) times larger than the corresponding result for T = Tc+; compare
with equation (31). The specific-heat discontinuity at the transition point is, therefore,
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given by

1
Nk

1C0 =
3
8

q2(q− 2)
(q− 1)

{
ln
(

q
q− 2

)}2

. (34)

One may check that, for q� 1, the foregoing results go over to the ones following from the
zeroth approximation.

Finally, we examine the relationship between L and B at T = Tc. Using equations (8) and
(14), with both α and α′� 1 while γ = γc, we get

L≈
{

3q2µB/(q− 1)(q− 2)kTc

}1/3
(T = Tc,B→ 0); (35)

compare with equation (12.5.24). For the behavior of χ0, see Problem 12.16.
In passing, we note that, according to equation (12), the transition temperature for a

lattice with q= 2 is zero, which essentially means that a one-dimensional Ising chain does
not undergo a phase transition. This result is in complete agreement with the one follow-
ing from an exact treatment of the one-dimensional lattice; see Section 13.2. In fact, for
a lattice with q= 2, any results following from the Bethe approximation are completely
identical with the corresponding exact results (see Problem 13.3); on the other hand, the
Bragg–Williams approximation is least reliable when q= 2.

That Tc for q= 2 is zero (rather than 2J/k) is in line with the fact that, for all q, the first
approximation yields a transition temperature closer to the correct value of Tc than does
the zeroth approximation. The same is true of the amplitudes that determine the quan-
titative behavior of the various physical quantities near T = Tc, though the exponents in
the various power laws governing this behavior remain the same; compare, for instance,
equation (16) with (12.5.14), equation (35) with (24) as well as the behavior of the spe-
cific heat. In fact, one finds that successive approximations of the mean field approach,
while continuing to improve the theoretical value of Tc and the quantitative behavior of
the various physical quantities (as given by the amplitudes), do not modify their quali-
tative behavior (as determined by the exponents). For an account of the higher-order
approximations, see Domb (1960).

One important virtue of the Bethe approximation is that it brings out the role of the
dimensionality of the lattice in bringing about a phase transition in the system. The fact
that Tc = 0 for q= 2 and thereon it increases steadily with q leads one to infer that, while a
linear Ising chain does not undergo phase transition at any finite T , higher dimensionality
does promote the phenomenon. One may, in fact, argue that the absence of a phase tran-
sition in a one-dimensional chain is essentially due to the fact that, the interactions being
severely short-ranged, “communication” between any two parts of the chain can be com-
pletely disrupted by a single defect in-between. The situation remains virtually unaltered
even if the range of interactions is allowed to increase — so long as it remains finite. Only
when interactions become truly long-ranged, with Jij ∼ |i− j|−(1+σ)(σ > 0), does a phase
transition at a finite T become possible — but only if σ < 1; for σ > 1, we are back to the
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case of no phase transition, while the borderline case σ = 1 remains in doubt. For more
details, see Griffiths (1972, pp. 89–94).

Peierls (1936) was the first to demonstrate that at sufficiently low temperatures the Ising
model in two or three dimensions must exhibit a phase transition. He considered the lat-
tice as made up of two kinds of domains, one consisting of “up” spins and the other of
“down” spins, separated by a set of boundaries between the neighboring domains, and
argued on energy considerations that in a two- or three-dimensional lattice the long-range
order that exists at 0K would persist at finite temperatures. Again, for details, see Griffiths
(1972, pp. 59–66).

12.7 The critical exponents
A basic problem in the theory of phase transitions is to study the behavior of a given system
in the neighborhood of its critical point. We know that this behavior is marked by the fact
that the various physical quantities pertaining to the system possess singularities at the
critical point. It is customary to express these singularities in terms of power laws char-
acterized by a set of critical exponents that determine the qualitative nature of the critical
behavior of the given system. To begin with, we identify an order parameter m, and the cor-
responding ordering field h, such that, in the limit h→ 0, m tends to a limiting value m0,
with the property that m0 = 0 for T ≥ Tc and 6= 0 for T < Tc. For a magnetic system, the nat-
ural candidate for m is the parameter L(= σ) of Sections 12.5 and 12.6, while h is identified
with the quantity µB/kTc; for a gas–liquid system, one may adopt the density differential
(ρl − ρc) or |ρg − ρc| for m and the pressure differential (P−Pc) for h. The various critical
exponents are then defined as follows.

The manner in which m0→ 0, as T→ Tc from below, defines the exponent β:

m0 ∼ (Tc −T)β (h→ 0,T . Tc). (1)

The manner in which the low-field susceptibility χ0 diverges, as T→ Tc from above (or
from below), defines the exponent γ (or γ ′):

χ0 ∼

(
∂m
∂h

)
T ,h→0

∼

{
(T −Tc)

−γ (h→ 0,T & Tc) (2a)

(Tc −T)−γ
′

(h→ 0,T . Tc); (2b)

in the gas–liquid transition, the role of χ0 is played by the isothermal compressibility,
κT = ρ

−1(∂ρ/∂P)T , of the system. Next, we define an exponent δ by the relation

m|T=Tc ∼ h1/δ (T = Tc,h→ 0); (3)

in the case of a gas–liquid system, δ is a measure of the “degree of flatness” of the critical
isotherm at the critical point, for then

|P−Pc|

∣∣∣
T=Tc

∼ |ρ− ρc|
δ (T = Tc,P→ Pc). (4)
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Finally, we define exponents α and α′ on the basis of the specific heat, CV , of the gas–liquid
system:

CV ∼

{
(T −Tc)

−α (T & Tc) (5a)

(Tc −T)−α
′

(T . Tc). (5b)

In connection with the foregoing relations, especially equations (5), we wish to empha-
size that in certain cases the exponent in question is rather small in value; it is then more
appropriate to write

f (t)∼
|t|−λ− 1

λ
(|t| � 1). (6)

Now, if λ > 0, the function f (t) would have a power-law divergence at t = 0; in case λ→ 0,
the function f (t)would have a logarithmic divergence instead:

f (t)∼ ln(1/|t|) (|t| � 1). (7)

In either case, the derivative f ′(t)∼ |t|−(1+λ).
A survey of the results derived in Sections 12.2 through 12.6 shows that for a gas–liquid

system obeying van der Waals equation of state or for a magnetic system treated in the
mean field approximation (it does not matter what order of approximation one is talking
about), the various critical exponents are the same:

β =
1
2

, γ = γ ′ = 1, δ = 3, α = α′ = 0. (8)

In Table 12.1 we have compiled experimental data on critical exponents pertaining
to a variety of systems including the ones mentioned above; for completeness, we
have included here data on another two exponents, ν and η, which will be defined in
Section 12.12. We find that, while the observed values of an exponent, say β, differ very
little as one goes from system to system within a given category (or even from category
to category), these values are considerably different from the ones following from the
mean field approximation. Clearly, we need a theory of phase transitions that is basically
different from the mean field theory.

To begin with, some questions arise:

(i) Are these exponents completely independent of one another or are they mutually
related? In the latter case, how many of them are truly independent?

(ii) On what characteristics of the given system do they depend? This includes the
question why, for systems differing so much from one another, they differ so little.

(iii) How can they be evaluated from first principles?

The answer to question (i) is simple: yes, the various exponents do obey certain rela-
tions and hence are not completely independent. These relations appear in the form
of inequalities, dictated by the principles of thermodynamics, which will be explored
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Table 12.1 Experimental Data on Critical Exponents

Critical Magnetic Gas–liquid Binary Fluid Binary Ferroelectric Superfluid Mean Field
Exponents Systems(a) Systems(b) Mixtures(c) Alloys(d) Systems(e) He4(f) Results

α,α′ 0.0–0.2 0.1–0.2 0.05–0.15 −−− −−− −0.026 0
β 0.30–0.36 0.32–0.35 0.30–0.34 0.305 ± 0.005 0.33–0.34 −−− 1/2
γ 1.2–1.4 1.2–1.3 1.2–1.4 1.24 ± 0.015 1.0 ± 0.2 inaccessible 1
γ ′ 1.0–1.2 1.1–1.2 −−− 1.23 ± 0.025 1.23 ± 0.02 inaccessible 1
δ 4.2–4.8 4.6–5.0 4.0–5.0 −−− −−− inaccessible 3

ν 0.62–0.68 −−− −−− 0.65 ± 0.02 0.5–0.8 0.675 1/2
η 0.03–0.15 −−− −−− 0.03–0.06 −−− −−− 0

(a)Stierstadt et al. (1990).
(b)Voronel (1976); Rowlinson and Swinton (1982).
(c)Rowlinson and Swinton (1982).
(d)Als-Nielsen (1976); data pertain to beta-brass only.
(e)Kadanoff et al. (1967); Lines and Glass (1977).
(f)Ahlers (1980).

in Section 12.8; in the modern theory of phase transitions, see Sections 12.10 through
12.12 and Chapter 14, the same relations turn up as equalities, and the number of these
(restrictive) relations is such that, in most cases only two of the exponents are truly
independent.

As regards question (ii), it turns out that our exponents depend on a very small number
of characteristics, or parameters, of the problem, which explains why they differ so little
from one system to another in a given category of systems (and also from one category
to another, even though systems in those categories are so different from one another).
The characteristics that seem to matter are (a) the dimensionality, d, of the space in which
the system is embedded, (b) the number of components, n, of the order parameter of the
problem, and (c) the range of microscopic interactions in the system.

Insofar as interactions are concerned, all that matters is whether they are short-ranged
(which includes the special case of nearest-neighbor interactions) or long-ranged. In the
former case, the values of the critical exponents resulting from nearest-neighbor interac-
tions remain unaltered — regardless of whether further-neighbor interactions are included
or not; in the latter case, assuming Jij ∼ |i− j|−(d+σ) with σ > 0, the critical exponents
depend on σ . Unless a statement is made to the contrary, the microscopic interactions
operating in the given system will be assumed to be short-ranged; the critical exponents
then depend only on d and n — both of which, for instructional purposes, may be treated
as continuous variables.

Insofar as d is concerned, we recall the Bethe approximation that highlighted the
special role played by the dimensionality of the lattice through, and only through, the coor-
dination number q. We also recall that, while the theoretical value of Tc and the various
amplitudes of the problem were influenced by q, the critical exponents were not. In more
accurate theories we find that the critical exponents depend more directly on d and only
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indirectly on q; however, for a given d, they do not depend on the structural details of the
lattice (including the number q).

Insofar as n is concerned, the major difference lies between the Ising model (n= 1)
with discrete symmetry (σi =+1 or−1) and other models (n≥ 2)with continuous symme-
try (−1≤ σiα ≤+1 for α = 1, . . . ,n, with |σi| = 1). In the former case, Tc is zero for d ≤ 1 and
nonzero for d > 1; in the latter, Tc is zero for d ≤ 2 and nonzero for d > 2.13 In either case,
the critical exponents depend on both d and n, except that for d > 4 they become indepen-
dent of d and n, and assume values identical to the ones given by the mean field theory;
the physical reason behind this overwhelming generality is examined in Section 12.13. In
passing, we note that, for given d and n, the critical exponents do not depend on whether
the spins constituting the system are treated classically or quantum-mechanically.

As regards question (iii), the obvious procedure for evaluating the critical exponents
is to carry out exact (or almost exact) analysis of the various models — a task to which
the whole of Chapter 13 is devoted. An alternative approach is provided by the renormal-
ization group theory, which is discussed in Chapter 14. A modest attempt to evaluate the
critical exponents is made in Section 12.9, which yields results that are inconsistent with
the experiment but teaches us quite a few lessons about the shortcomings of the so-called
classical approaches.

12.8 Thermodynamic inequalities
The first rigorous relation linking critical exponents was derived by Rushbrooke (1963)
who, on thermodynamic grounds, showed that for any physical system undergoing a phase
transition (

α′+ 2β + γ ′
)
≥ 2. (1)

The proof of inequality (1) is straightforward if one adopts a magnetic system as an exam-
ple. We start with the thermodynamic formula for the difference between the specific heat
at constant field CH and the specific heat at constant magnetization CM (see Problem 3.40)

CH −CM =−T
(
∂H
∂T

)
M

(
∂M
∂T

)
H
= Tχ−1

{(
∂M
∂T

)
H

}2

. (2)

Since CM ≥ 0, it follows that

CH ≥ Tχ−1
{(

∂M
∂T

)
H

}2

. (3)

Now, letting H→ 0 and T→ Tc from below, we get

D1(Tc −T)−α
′

≥D2Tc(Tc −T)γ
′
+2(β−1), (4)

13The special case n= 2 with d = 2 is qualitatively different from others; for details, see Section 13.7.
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where D1 and D2 are positive constants; here, use has been made of power laws (12.7.1, 2b,
and 5b).14 Inequality (4) may as well be written as

(Tc −T)2−(α
′
+2β+γ ′)

≥D2Tc/D1. (5)

Since (Tc −T) can be made as small as we like, (5) will not hold if (α′+ 2β + γ ′) < 2. The
Rushbrooke inequality (1) is thus established.

To establish further inequalities, one utilizes the convexity properties of the Helmholtz
free energy A(T ,M). Since dA=−SdT +HdM ,

(
∂A
∂T

)
M
=−S,

(
∂2A

∂T 2

)
M

=−

(
∂S
∂T

)
M
=−

CM

T
≤ 0 (6a, b)

and (
∂A
∂M

)
T
=H ,

(
∂2A

∂M2

)
T

=

(
∂H
∂M

)
T
=

1
χ
≥ 0. (7a, b)

It follows that A(T ,M) is concave in T and convex in M . We now proceed to establish the
Griffiths inequality (1965a, b)

α′+β(δ+ 1)≥ 2. (8)

Consider a magnetic system in zero field and at a temperature T1 < Tc. Then, by (7a),
A(T ,M) is a function of T only, so we can write

A(T1,M)= A(T1,0) (−M1 ≤M ≤M1), (9)

where M1 is the spontaneous magnetization at temperature T1; see Figure 12.10. Applying
(6a) to (9), we get

S(T1,M)= S(T1,0) (−M1 ≤M ≤M1). (10)

We now define two new functions

A∗(T ,M)= {A(T ,M)−Ac}+ (T −Tc)Sc (11)

and

S∗(T ,M)= S(T ,M)− Sc, (12)

14Recalling the correspondence between a gas–liquid system and a magnet, one might wonder why we have
employed CH , rather than CM , in place of CV . The reason is that, since we are letting H→ 0 and T→ Tc−,M→ 0 as
well. So, as argued by Fisher (1967), in the limit considered here, CH and CM display the same singular behavior. In fact,
it can be shown that if the ratio CM/CH → 1 as T→ Tc , then (α′+ 2β + γ ′) must be greater than 2; on the other hand, if
this ratio tends to a value less than 1, then (α′+ 2β + γ ′)= 2. For details, see Stanley (1971), Section 4.1.
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M

0 T

(T1, M1)

(T1, 2M1)
(H , 0)

(H . 0 )

(H   02)

(H   01)

FIGURE 12.10 Magnetization, M(T ,H), of a magnetic system for H > 0, H < 0, and H→ 0. Here, M1 denotes the
spontaneous magnetization of the system at a temperature T1 < Tc .

where Ac = A(Tc,0) and Sc = S(Tc,0). It follows that

(
∂A∗

∂T

)
M
=−S∗,

(
∂2A∗

∂T 2

)
M

=−

(
∂S∗

∂T

)
M
=−

CM

T
≤ 0. (13a, b)

Thus, A∗ is also concave in T . Geometrically, this means that, for any choice of T1, the curve
A∗(T), with M fixed at M1, lies below the tangent line at T = T1, that is,

A∗(T ,M1)≤ A∗(T1,M1)+

(
∂A∗

∂T

)
M1,T=T1

(T −T1); (14)

see Figure 12.11. Letting T = Tc in (14), we get

A∗(Tc,M1)≤ A∗(T1,M1)− S∗(T1,M1)(Tc −T1) (15)

which, in view of equations (9) through (12), may be written as

A∗(Tc,M1)≤ A∗(T1,0)− S∗(T1,0)(Tc −T1). (16)

Utilizing, once again, the concavity of the function A∗(T) but this time at T = Tc (with M
fixed at zero and the slope (∂A∗/∂T) vanishing), we get, see (14),

A∗(T ,0)≤ A∗(Tc,0). (17)

Now, letting T = T1 in (17) and noting that A∗(Tc,0)= 0 by definition, we get

A∗(T1,0)≤ 0. (18)
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TcT1

T

M � M1

FIGURE 12.11 The function A∗(T ,M) of a magnetic system, with magnetization M fixed at M1. The slope of this
curve is S(Tc ,0)− S(T ,M1), which is positive for all T ≤ Tc .

Combining (16) and (18), we finally get

A∗(Tc,M1)≤−(Tc −T1)S
∗(T1,0), (19)

valid for all T1 < Tc.
The next step is straightforward. We let T1→ Tc−, so that M1→ 0 and along with it

A∗(Tc,M1)=

 M1∫
0

HdM


T=Tc

≈DMδ+1
1 ≈D′(Tc −T1)

β(δ+1), (20)

while

S∗(T1,0)=

T1∫
Tc

C(T ,0)
T

dT ≈−
D′′

Tc
(Tc −T1)

1−α′ , (21)

where D, D′, and D′′ are positive constants; here, use has been made of power laws (12.7.1,
3, and 5b). Substituting (20) and (21) into (19), we get

(Tc −T1)
2−α′−β(δ+1)

≥D′Tc/D′′. (22)

Again, since (Tc −T1) can be made as small as we like, (22) will not hold if α′+β(δ+ 1) < 2.
The Griffiths inequality (8) is thus established. It will be noted that unlike the Rushbrooke
inequality, which related critical exponents pertaining only to T < Tc, the present inequal-
ity relates two such exponents, α′ and β, with one, namely δ, that pertains to the critical
isotherm (T = Tc).

While inequalities (1) and (8) are thermodynamically exact, Griffiths has derived several
others that require certain plausible assumptions on the system in question. We quote two
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of them here, without proof:

γ ′ ≥ β(δ− 1) (23)

γ ≥ (2−α)(δ− 1)/(δ+ 1). (24)

For a complete list of such inequalities, see Griffiths (1972), p. 102, where references to
original papers are also given.

Before proceeding further, the reader may like to verify that the experimental data on
critical exponents, as given earlier in Table 12.1, do indeed conform to the inequalities
proved or quoted in this section. It is important in this connection to note that the mean
field exponents (α = α′ = 0, β = 1/2, γ = γ ′ = 1, and δ = 3) satisfy all these relations as
equalities.

12.9 Landau’s phenomenological theory
As early as 1937 Landau attempted a unified description of all second-order phase transi-
tions — second-order in the sense that the second derivatives of the free energy, namely
the specific heat and the magnetic susceptibility (or isothermal compressibility, in the
case of fluids), show a divergence while the first derivatives, namely the entropy and
the magnetization (or density, in the case of fluids), are continuous at the critical point.
He emphasized the importance of an order parameter m0 (which would be zero on the
high-temperature side of the transition and nonzero on the low-temperature side) and
suggested that the basic features of the critical behavior of a given system may be deter-
mined by expanding its free energy in powers of m0 (for we know that, in the close vicinity
of the critical point, m0� 1). He also argued that in the absence of the ordering field (h= 0)
the up–down symmetry of the system would require that the proposed expansion contain
only even powers of m0. Thus, the zero-field free energy ψ0(= A0/NkT) of the system may
be written as

ψ0(t,m0)= q(t)+ r(t)m2
0+ s(t)m4

0+ ·· ·

(
t =

T −Tc

Tc
, |t| � 1

)
; (1)

at the same time, the coefficients q(t), r(t), s(t) . . .may be written as

q(t)=
∑
k≥0

qktk, r(t)=
∑
k≥0

rktk, s(t)=
∑
k≥0

sktk, . . . . (2)

The equilibrium value of the order parameter is then determined by minimizing ψ0

with respect to m0; retaining terms only up to the order displayed in (1), which for
thermodynamic stability requires that s(t) > 0, we obtain

r(t)m0+ 2s(t)m3
0 = 0. (3)
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The equilibrium value of m0 is thus either 0 or ±
√

[−r(t)/2s(t)]. The first solution is of
lesser interest, though this is the only one we will have for t > 0; it is the other solutions that
lead to the possibility of spontaneous magnetization in the system. To obtain physically
sensible results, see equations (9) through (11), we must have in equation (2): r0 = 0, r1 > 0,
and s0 > 0, with the result

|m0| ≈ [(r1/2s0)|t|]
1/2 (t . 0), (4)

giving β = 1/2.
The asymptotic expression for the free energy, namely

ψ0(t,m0)≈ q0+ r1tm2
0+ s0m4

0 (r1,s0 > 0), (5)

is plotted in Figure 12.12. We see that, for t ≥ 0, there is only one minimum, which is located
at m0 = 0; for t = 0, the minimum is rather flat. For t < 0, on the other hand, we have two
minima, located at m0 =±ms, as given by expression (4), with a maximum at m0 = 0. Now,
since ψ0 has to be convex in m0, so that the susceptibility of the system be nonnegative,
see equation (12.8.7b), we must replace the nonconvex portion of the curve, which lies
between the points m0 =−ms and m0 =+ms, by a straight line (along which the suscep-
tibility would be infinite). This replacement is reminiscent of the Maxwell construction
employed in Sections 12.1 and 12.2.

We now subject the system to an ordering field h, assumed positive. If the field is weak,
the only change in the expression for the free energy would be the addition of a term−hm.
Disregarding the appearance of any higher powers of (hm) as well as any modifications of

�0(t, m0)

m0
1ms2ms

t . 0

t , 0

t 5 0

FIGURE 12.12 The free energy ψ0(t,m0) of the Landau theory, shown as a function of m0, for three different values
of t. The dashed curve depicts spontaneous magnetization ms(t), while the horizontal line for t < 0 provides the
Maxwell construction.
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the coefficients already present, we may now write

ψh(t,m)=−hm+q(t)+ r(t)m2
+ s(t)m4. (6)

The equilibrium value of m is now given by15

−h+ 2r(t)m+ 4s(t)m3
= 0. (7)

The low-field susceptibility of the system, in units of Nµ2/kT , thus turns out to be

χ =

(
∂h
∂m

)−1

t
=

1

2r(t)+ 12s(t)m2
, (8)

valid in the limit h→ 0. Now, for t > 0, m→ 0 and we get

χ ≈ 1/2r1t (t & 0), (9)

giving γ = 1. On the other hand, for t < 0, m→
√

[(r1/2s0)|t|], see (4); we then get

χ ≈ 1/4r1|t| (t . 0), (10)

giving γ ′ = 1. Finally, if we set t = 0 in (7), we obtain the following relation between h
and m:

h≈ 4s0m3 (h→ 0), (11)

giving δ = 3.
We shall now look at the specific heats Ch and Cm. If t > 0, then h→ 0 implies m→ 0,

so in this limit there is no difference between Ch and Cm. Equation (1) then gives, in units
of Nk,

Ch = Cm =−

(
∂2ψ0

∂t2

)
m→0

=−(2q2+ 6q3t+ ·· ·) (t & 0). (12)

For t < 0, we have

Cm =−
[
(2q2+ 6q3t+ ·· ·)+ (2r2+ ·· ·)m

2
s + ·· ·

]
=−

[
2q2+{6q3− (r1r2/s0)}t+ . . .

]
(t . 0). (13)

Next, using equation (12.8.2) along with (4) and (10), we have

Ch−Cm =

(
∂h
∂m

)
t

{(
∂m
∂t

)
h

}2

≈
r2

1

2s0
(t . 0). (14)

15It may be mentioned here that the passage from equation (1) to (6) is equivalent to effecting a Legendre transfor-
mation from the Helmholtz free energy A to the Gibbs free energy G (= A−HM), and equation (7) is analogous to the
relation (∂A/∂M)T =H .
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It follows that, while Cm possesses a cusp-like singularity at t = 0, Ch undergoes a jump
discontinuity of magnitude

(Ch)t→0−− (Ch)t→0+ ≈ r2
1/2s0. (15)

It follows that α = α′ = 0.
The most striking feature of the Landau theory is that it gives exactly the same critical

exponents as the mean field theory of Sections 12.5 and 12.6 (or the van der Waals theory
of Section 12.2). Actually it goes much further, for it starts with an expression for the free
energy of the system containing parameters qk,rk,sk, . . ., which represent the structure of
the given system and the interactions operating in it, and goes on to show that, while the
amplitudes of the various physical quantities near the critical point do depend on these
parameters, the critical exponents do not! This universality (of critical exponents) suggests
that we are dealing here with a class of systems which, despite their structural differences,
display a critical behavior that is qualitatively the same for all members of the class. This
leads to the concept of a universality class which, if Landau were right, would be a rather
large one. The fact of the matter is that the concept of universality is very much overstated
in Landau’s theory; in reality, there are many different universality classes — each defined
by the parameters d and n of Section 12.7 and by the range of the microscopic interac-
tions — such that the critical exponents within a class are the same while they vary from
one class to another. The way Landau’s theory is set up, the parameter n is essentially equal
to 1 (because the order parameter m0 is treated as a scalar), the parameter d plays no role
at all (though later on we shall see that the mean field exponents are, in fact, valid for all n
if d > 4), while the microscopic interactions are implicitly long-ranged.16

An objection commonly raised against the Landau theory is that, knowing fully well
that the thermodynamic functions of the given system are going to be singular at t = 0, a
Taylor-type expansion of the free energy around m= 0 is patently a wrong start. While the
objection is valid, it is worth noting how a regular function, (1) or (6), leads to an equation
of state, (3) or (7), which yields different results for t→ 0− from the ones for t→ 0+, the
same being true of whether h→ 0+ or 0−. The trick lies in the fact that we are not using
equation (1) or (6) as such for all t; for t < 0, we use instead a modified form, as “corrected”
by the Maxwell construction (see Figure 12.12). The spirit of the singularity is thereby cap-
tured, though the nature of the singularity, being closely tied with the nature of the original
expansion, could not be any different from the mean-field type. The question now arises:
how can the Landau theory be improved so that it may provide a more satisfactory picture
of the critical phenomena? Pending exact analyses, one wonders if some generalization of
the Landau approach, admitting more than one universality class, would provide a bet-
ter picture than the one presented so far. It turns out that the scaling approach, initiated
by Widom (1965), by Domb and Hunter (1965), and by Patashinskii and Pokrovskii (1966),
provided the next step in the right direction.

16In certain systems such as superconductors, the effective interactions (which, for instance, lead to the formation of
Cooper pairs of electrons) are, in fact, long-ranged. The critical exponents pertaining to such systems turn out to be the
same as one gets from the mean field theory. For details, see Tilley and Tilley (1990).
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12.10 Scaling hypothesis for thermodynamic
functions

The scaling approach, which took the subject of phase transitions far beyond the mean
field theory, emerged independently from three different sources — from Widom (1965),
who searched for a generalization of the van der Waals equation of state that could
accommodate nonclassical exponents; from Domb and Hunter (1965), who analyzed the
behavior of the series expansions of higher derivatives of the free energy with respect to
the magnetic field at the critical point of a magnetic system; and from Patashinskii and
Pokrovskii (1966), who studied the behavior of multipoint correlation functions for the
spins constituting a system. All three were led to the same form of a thermodynamic equa-
tion of state. Subsequently, Kadanoff (1966a) suggested a scaling hypothesis from which
not only could this equation of state be derived but one could also obtain a number of rela-
tions among the critical exponents, which turned out to be equalities consistent with the
findings of Section 12.8. This approach also made it clear why one needed only two inde-
pendent numbers to describe the nature of the singularity in question; all other relevant
numbers followed as consequences.

To set the stage for this development, we go back to the equation of state following from
the Landau theory, namely (12.9.7), and write it in the asymptotic form

h(t,m)≈ 2r1tm+ 4s0m3. (1)

In view of the relationship (12.9.4), we rewrite (1) in the form

h(t,m)≈
r3/2

1

s1/2
0

|t|3/2

2 sgn(t)

(
s1/2

0

r1/2
1

m

|t|1/2

)
+ 4

(
s1/2

0

r1/2
1

m

|t|1/2

)3
. (2)

It follows that

m(t,h)≈
r1/2

1

s1/2
0

|t|1/2
× a function of

(
s1/2

0

r3/2
1

h

|t|3/2

)
(3)

and, within the context of the Landau theory, the function appearing here is universal for
all systems conforming to this theory. In the same spirit, the relevant part of the free energy
ψh(t,m) — the part that determines the nature of the singularity — may be written in the
form

ψ
(s)
h (t,m)≈−hm+ r1tm2

+ s0m4 (4)

=
r2

1

s0
t2

−( s1/2
0

r3/2
1

h

|t|3/2

)(
s1/2

0

r1/2
1

m

|t|1/2

)
+ sgn(t)

(
s1/2

0

r1/2
1

m

|t|1/2

)2

+

(
s1/2

0

r1/2
1

m

|t|1/2

)4
. (5)
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Substituting (3) into (5), one gets

ψ (s)(t,h)≈
r2

1

s0
t2
× a function of

(
s1/2

0

r3/2
1

h

|t|3/2

)
, (6)

where, again, the function appearing here is universal. As a check, we see that differentiat-
ing (6) with respect to h we readily obtain (3).

The most notable feature of the equation of state, as expressed in (3), is that, instead
of being the usual relationship among three variables m, h, and t, it is now a relationship
among only two variables, namely m/|t|1/2 and h/|t|3/2. Thus, by scaling m with |t|1/2 and
h with |t|3/2, we have effectively reduced the total number of variables by one. Similarly,
we have replaced equation (4) by (6), which expresses the singular part of the free energy
ψ scaled with t2 as a function of the single variable h scaled with |t|3/2. This reduction in
the total number of effective variables may be regarded as the first important achievement
of the scaling approach.

The next step consists of generalizing (6), to write

ψ (s)(t,h)≈ F |t|2−αf (Gh/|t|1), (7)

where α and 1 are universal numbers common to all systems in the given universality
class, f (x) is a universal function which is expected to have two different branches, f+ for
t > 0 and f− for t < 0, while F and G (like r1 and s0) are nonuniversal parameters char-
acteristic of the particular system under consideration. We expect α and 1 to determine
all the critical exponents of the problem, while the amplitudes appearing in the various
power laws will be determined by F , G, and the limiting values of the function f (x) and its
derivatives (as x tends to zero). Equation (7) constitutes the so-called scaling hypothesis,
whose status will become much more respectable when it acquires legitimacy from the
renormalization group theory; see Sections 14.1 and 14.3.

First of all it should be noted that the exponent of |t|, outside the function f (x) in
equation (7), has been chosen to be (2−α), rather than 2 of the corresponding mean
field expression (6), so as to ensure that the specific heat singularity is correctly repro-
duced. Secondly, the fact that one must not encounter any singularities as one crosses the
critical isotherm (t = 0) at nonzero values of h or m requires that the exponents on the
high-temperature side of the critical point be the same as on the low-temperature side,
that is,

α′ = α and γ ′ = γ . (8)

From equation (7) it readily follows that

m(t,h)=−

(
∂ψ (s)

∂h

)
t

≈−FG|t|2−α−1f ′(Gh/|t|1) (9)
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and

χ(t,h)=−

(
∂2ψ (s)

∂h2

)
t

≈−FG2
|t|2−α−21f ′′(Gh/|t|1). (10)

Letting h→ 0, we obtain for the spontaneous magnetization

m(t,0)≈ B|t|β (t . 0), (11)

where

B=−FGf ′−(0), β = 2−α−1, (12a, b)

and for the low-field susceptibility

χ(t,0)≈ |t|−γ
{

C+ (t & 0) (13a)

C− (t . 0), (13b)

where

C± =−FG2f ′′±(0), γ = α+ 21− 2. (14a, b)

Combining (12b) and (14b), we get

1= β + γ = 2−α−β, (15)

so that

α+ 2β + γ = 2. (16)

To recover δ, we write the function f ′(x) of equation (9) as xβ/1g(x), so that

m(t,h)≈−FG(1+β/1)hβ/1g(Gh/|t|1). (17)

Inverting (17), we can write

|t| ≈ G1/1h1/1
× a function of (FG(1+β/1)hβ/1/m). (18)

It follows that, along the critical isotherm (t = 0), the argument of the function appearing
in (18) would have a universal value (which makes the function vanish), with the result
that

m∼ FG(1+β/1)hβ/1 (t = 0). (19)

Comparing (19) with (12.7.3), we infer that

δ =1/β. (20)
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Combining (20) with the previous relations, namely (12b) and (15), we get

α+β(δ+ 1)= 2 (21)

and

γ = β(δ− 1). (22)

Finally, combining (21) and (22), we have

γ = (2−α)(δ− 1)/(δ+ 1). (23)

For completeness, we write down for the specific heat Ch at h= 0

C(s)h (t,0)=−
∂2ψ (s)

∂t2

∣∣∣∣∣
h→0

≈−(2−α)(1−α)F |t|−α
{

f+(0) (t & 0) (24a)

f−(0) (t . 0). (24b)

We thus see that the scaling hypothesis (7) leads to a number of relations among
the critical exponents of the system, emphasizing the fact that only two of them are
truly independent. Comparing these relations with the corresponding ones appearing
in Section 12.8 — namely, (16), (21), (22), and (23) with (12.8.1), (12.8.8), (12.8.23), and
(12.8.24) — we feel satisfied that they are mutually consistent, though the present ones
are far more restrictive than the ones there. Besides exponent relations, we also obtain
here relations among the various amplitudes of the problem; though individually these
amplitudes are nonuniversal, certain combinations thereof turn out to be universal. For
instance, the combination (FC±/B2), which consists of coefficients appearing in equa-
tions (7), (11), and (13), is universal; see equations (12a) and (14a). The same is true of the
ratio C+/C−. For further information on this question, see the original papers by Watson
(1969) and a review by Privman, Hohenberg, and Aharony (1991).

We now pose the question: why do “universality classes” exist in the first place? In
other words, what is the reason that a large variety of systems differing widely in their
structures should belong to a single universality class and hence have common critical
exponents and common scaling functions? The answer lies in the role played by the corre-
lations among the microscopic constituents of the system which, as T→ Tc, become large
enough to prevail over macroscopic distances in the system and in turn make structural
details at the local level irrelevant. We now turn our attention to this important aspect of
the problem.

12.11 The role of correlations and fluctuations
Much can be learned about criticality by scattering radiation — light, x-rays, neutrons, and
so on — off the system of interest; see Section 10.7.A. In a standard scattering experiment,
a well-collimated beam of light, or other radiation, with known wavelength λ is directed at
the sample and one measures the intensity, I(θ), of the light scattered at an angle θ from
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the “forward” direction of the beam. The radiation undergoes a shift in the wavevector, k,
which is related to the parameters θ and λ by

|k| =
4π
λ

sin
1
2
θ . (1)

Now, the scattered intensity I(θ) is determined by the fluctuations in the medium. If the
medium were perfectly uniform (i.e., spatially homogenous), there would be no scattering
at all! If one has in mind light scattering from a fluid, then the relevant fluctuations corre-
spond to regions of different refractive index and, hence, of different particle density n(r).
For neutron scattering from a magnet, fluctuations in the spin or magnetization density
are the relevant quantities, and so on. We need to study here the normalized scattering
intensity I(θ ;T ,H)/I idea1(θ), where I(θ ;T ,H) is the actual scattering intensity observed
at angle θ , which will normally depend on such factors as temperature, magnetic field,
and so on, while I idea1(θ) is the scattering that would take place if the individual parti-
cles (or spins) that cause the scattering could somehow be taken far apart so that they no
longer interact and hence are quite uncorrelated with one another. Now, this normalized
scattering intensity turns out to be essentially proportional to the quantity

g̃(k)=
∫

g(r)eik·r dr, (2)

which represents the Fourier transform of the appropriate real-space correlation function
g(r), which will be defined shortly.

As the critical point of the system (say, a fluid) is approached, one observes an enor-
mously enhanced level of scattering, especially at low angles which corresponds, via
equations (1) and (2), to long wavelength density fluctuations in the fluid. In the criti-
cal region, the scattering is so large that it can be visible to the unaided eye, particularly
through the phenomenon of critical opalescence. This behavior is, by no means, limited
to fluids. Thus if, for example, one scatters neutrons from iron in the vicinity of the Curie
point, one likewise sees a dramatic growth in the low-angle neutron scattering intensity,
as sketched in Figure 12.13. One sees that for small-angle scattering there is a pronounced
peak in I(θ ;T) as a function of temperature, and this peak approaches closer and closer to
Tc as the angle is decreased. Of course, one could never actually observe zero-angle scat-
tering directly, since that would mean picking up the oncoming beam itself, but one can
extrapolate to zero angle. When this is done, one finds that the zero-angle scattering I(0;T)
actually diverges at Tc. This is the most dramatic manifestation of the phenomenon of criti-
cal opalescence and is quite general, in that it is observed whenever appropriate scattering
experiments can be performed. Empirically, one may write for small-angle scattering

Imax(θ)∼ k−λ1 , {Tmax(θ)−Tc} ∼ kλ2 , (3)

so that

Imax(θ){Tmax(θ)−Tc}
λ1/λ2 = const. (4)
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I(�;T )
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0�

FIGURE 12.13 Schematic plot of the elastic scattering intensity of neutrons scattered at an angle θ from a magnetic
system, such as iron, in the vicinity of the critical point Tc . The small arrows mark the smoothly rounded maxima (at
fixed θ ) which occur at a temperature Tmax(θ) that approaches Tc as θ→ 0.

Here, λ1 and λ2 are positive exponents (which, as will be seen later, are determined by the
universality class to which the system belongs), while k, for a given θ , is determined by
equation (1); note that, for small θ , k is essentially proportional to θ .

The first real insight into the problem of critical scattering in fluids was provided by
Ornstein and Zernike (1914) and Zernike (1916) who emphasized the difference between
the direct influence of the microscopic interactions among the atoms of the fluid, which
are necessarily short-ranged, and the indirect (but more crucial) influence of the density–
density correlations that become long-ranged as the critical temperature is approached; it
is the latter that are truly responsible for the propagation of long-range order in the sys-
tem and for practically everything else that goes with it. Unfortunately, the original work of
Ornstein and Zernike makes difficult reading; moreover, it is based on the classical theory
of van der Waals. Nevertheless, the subject has been neatly clarified in the review arti-
cles by Fisher (1964, 1983) and Domb (1985), to which the reader may turn for further
details. Here, we shall stick to the language of the magnetic systems and work out the most
essential parts of the theory in somewhat general terms.

We define the spin–spin correlation function g(i, j), for the pair of spins at sites i and j,
by the standard definition

g(i, j)= σiσj − σ iσ j. (5)

For i= j, expression (5) denotes the “mean-square fluctuation in the value of the variable
σ at site i”; on the other hand, as the separation between the sites i and j increases indefi-
nitely, the spins σi and σj get uncorrelated, so that σiσj→ σ iσ j and the function g(i, j)→ 0.
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In view of the fact that expression (5) can also be written as

g(i, j)= (σi− σ i)(σj − σ j), (6)

the function g(i, j) may also be looked upon as a measure of the “correlation among
the fluctuations in the order parameter of the system at sites i and j.” This makes sense
because σi may, quite appropriately, be regarded as the locally fluctuating order parameter
linked to site i, just as σ is the order parameter for the whole system. We shall now establish
connections between the function g(i, j) and some important thermodynamic properties
of the system.

We start with the partition function of the system, see equation (12.3.9),

QN (H ,T)=
∑
{σi}

exp

[
βJ
∑
n.n.

σiσj +βµH
∑

i

σi

]
, (7)

where the various symbols have their usual meanings. It follows that

∂

∂H
(lnQN )= βµ

(∑
i

σi

)
= βM , (8)

where M(= µ
∑

i σi) denotes the net magnetization of the system. Next, since

∂2

∂H2
(lnQN )=

∂

∂H

(
1

QN

∂QN

∂H

)
=

1
QN

∂2QN

∂H2
−

1

Q2
N

(
∂QN

∂H

)2

= β2(M2−M
2
), (9)

we obtain for the magnetic susceptibility of the system

χ ≡
∂M
∂H
= β(M2−M

2
) (10a)

= βµ2


(∑

i

σi

)2

−

(∑
i

σi

)2= βµ2
∑

i

∑
j

g(i, j). (10b)

Equation (10a) is generally referred to as the fluctuation–susceptibility relation; it may
be compared with the corresponding relation for fluids, namely (4.5.7), which connects
isothermal compressibility κT with the density fluctuations in the system. Equations (10)
and (4.5.7) represent the equilibrium limit of the fluctuation–dissipation theorem dis-
cussed later in Section 15.6. Equation (10b), on the other hand, relates χ to a summation
of the correlation function g(i, j) over all i and j; assuming homogeneity, this may be
written as

χ =Nβµ2
∑

r

g(r) (r = rj − ri). (11)
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Treating r as a continuous variable, equation (11) may be written as

χ =
Nβµ2

ad

∫
g(r)dr, (12)

where a is a microscopic length, such as the lattice constant, so defined that Nad
= V , the

volume of the system; for a similar result appropriate to fluids, see equation (10.7.14).
Finally, introducing the Fourier transform of the function g(r), through equation (2), we
observe that

χ =
Nβµ2

ad
g̃(0); (13)

compare this result to equation (10.7.21) for fluids.
Our next task consists in determining the mathematical form of the functions g(r) and

g̃(k). Pending exact calculations, let us see what the mean field theory has to offer in this
regard. Following Kadanoff (1976b), we consider a magnetic system subject to an exter-
nal field H which is nonuniform, that is, H = {Hi}, where Hi denotes the field at site i.
Using mean field approximation, the thermal average of the variable σi is given by, see
equation (12.5.10),

σ i = tanh(βµHeff), (14)

where

Heff =Hi+ ( J/µ)
∑
n.n.

σ j; (15)

note that, in view of the nonuniformity of H , the product (qσ) of equation (12.5.10) has
been replaced by a sum of σ j over all the nearest neighbors of spin i. If σ varies slowly
in space, which means that the applied field is not too nonuniform, then (15) may be
approximated as

Heff 'Hi+ (qJ/µ)σ i+ (cJa2/µ)∇2σ i, (16)

where c is a number of order unity whose actual value depends on the structure of the
lattice, while a is an effective lattice constant; note that the term involving ∇σ i cancels
on summation over the q nearest neighbors that are supposed to be positioned in some
symmetrical fashion around the site i. At the same time, the function tanhx, for small x,
may be approximated by x− x3/3. Retaining only essential terms, we get from (14) and (16)

βµHi = (1−qβJ)σ i+
1
3
(qβJ)3σ 3

i − cβJa2
∇

2σ i. (17)
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Now, the conditions for criticality are {Hi} = 0 and qβcJ = 1; see equation (12.5.13). So, near
criticality, we may introduce our familiar variables

hi = βµHi, t = (T −Tc)/Tc ' (βc −β)/βc; (18)

equation (17) then reduces to (
t+

1
3
σ 2

i − c′a2
∇

2
)
σ i = hi, (19)

where c′ is another number of order unity. Equation (19) generalizes equation (12.10.1) of
Landau’s theory by taking into account the nonuniformity of σ .

Differentiating (19) with respect to hj, we get

(
t+ σ 2

i − c′a2
∇

2
) ∂σ i

∂hj
= δi,j. (20)

The “response function” ∂σ i/∂hj is identical with the correlation function g(i, j);17 equa-
tion (20) may, therefore, be written as(

t+ σ 2
i − c′a2

∇
2
)

g(i, j)= δi,j. (21)

For t > 0 and {hi} → 0, σ i→ 0; equation (21) then becomes(
t− c′a2

∇
2
)

g(i, j)= δi,j. (22)

Assuming homogeneity, so that g(i, j)= g(r) where r = rj− ri, and introducing Fourier
transforms, equation (22) gives the form(

t+ c′a2k2
)

g̃(k)= const. (23)

It follows that g̃(k) is a function of the magnitude k only (which is not surprising in view of
the assumed symmetry of the lattice). Thus

g̃(k)∼
1

t+ c′a2k2
, (24)

17Remembering that M = µ6iσ i, we change the field {Hi} to {Hi + δHi}, with the result that

δM = µ
∑

i̇

∑
j

(∂σ i/∂Hj)δHj

.

Now, for simplicity, we let all δHj be the same; then

(δM/δH)= µ
∑

i

∑
j

(∂σ i/∂Hj).

Comparing this with (10b), we infer that (∂σ i/∂Hj)= βµg(i, j) and hence (∂σ i/∂hj)= g(i, j).
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which is the famous Ornstein–Zernike result derived originally for fluids.
Now, taking the inverse Fourier transform of g̃(k), we obtain (disregarding numerical

factors that are not so essential for the present argument)

g(r)∼
∫

e−ik·r

t+ c′a2k2
dd(ka) (25a)

∼

∞∫
0

ad

t+ c′a2k2

(
1

kr

)(d−2)/2

J(d−2)/2(kr)kd−1dk; (25b)

see equations (8) and (11) of Appendix C. The integral in (25b) is tabulated; see Gradshteyn
and Ryzhik (1965, p. 686). We get

g(r)∼

(
a2

ξr

)(d−2)/2

K(d−2)/2

(
r
ξ

)
{ξ = a(c′/t)1/2

}, (26)

Kµ(x) being a modified Bessel function. For x� 1, Kµ(x)∼ x−1/2e−x; equation (26) then
gives

g(r)∼
ad−2

ξ (d−3)/2r(d−1)/2
e−r/ξ (r� ξ). (27)

On the other hand, for x� 1, Kµ(x), for µ > 0,∼ x−µ ; equation (26) then gives

g(r)∼
ad−2

rd−2

(
r� ξ ;d > 2

)
. (28)

In the special case d = 2, we obtain instead

g(r)∼ ln(ξ/r) (r� ξ ;d = 2). (29)

It is worth noting that equation (26) simplifies considerably when d = 3. Since K1/2(x) is
exactly equal to (π/2x)1/2e−x for all x,

g(r)|d=3 ∼
a
r

e−r/ξ (30)

for all r. Equation (30) is another important result of Ornstein and Zernike.
Clearly, the quantity ξ appearing here is a measure of the “distances over which the

spin–spin (or density–density) correlations in the system extend” — hence the name
correlation length. So long as T is significantly above Tc, ξ =O(a); see (26). However, as
T approaches Tc, ξ increases indefinitely — ultimately diverging at T = Tc. The resulting
singularity is also of the power-law type:

ξ ∼ at−1/2 (t & 0). (31)
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The divergence of ξ at T = Tc is perhaps the most important clue we have for our
general understanding of the critical phenomena. As ξ →∞, correlations extend over the
entire system, paving the way for the propagation of long-range order (even though the
microscopic interactions, which are at the root of the phenomenon, are themselves short-
ranged). Moreover, since correlations extend over macroscopic distances in the system, any
structural details that differentiate one system from another at the microscopic level lose
significance, leading thereby to universal behavior!

Going back to equations (13) and (24), we see that the singularity in χ is indeed of the
type expected in a mean field theory, namely

χ ∼ g̃(0)∼ t−1 (t & 0). (32)

In view of the foregoing results, one may write

1
g̃(k)

∼
1
χ
(1+ ξ2k2). (33)

In a so-called Ornstein–Zernike analysis, one plots 1/g̃(k) (or 1/I(k), where I(k) is the
intensity of the light scattered at angle θ , see equation (1)) in the critical region versus k2.
The data for small k (ka . 0.1), for which the above treatment holds, fall close to a straight
line whose intercept with the vertical axis determines χ(t). As t→ 0, this intercept tends to
zero but the successive isotherms remain more or less parallel to one another; the reduced
slope evidently serves to determine ξ(t). For t ' 0, these plots show a slight downward cur-
vature, indicating departure from the k2-law to one in which the power of k is somewhat
less than 2. Finally, as regards the plot I(θ ;T) of Figure 12.13 earlier in this section, the max-
imum in the curve, according to equation (24), should lie at t = 0 for all θ and the height
of the maximum should be∼ k−2 (i.e., essentially∼ θ−2); thus, according to the mean field
expression for g̃(k), the exponent λ1 in equation (3) should be 2 while λ2 should be 0.

12.12 The critical exponents ν and η

According to the mean field theory, the divergence of ξ at T = Tc is governed by the
power law (12.11.31), with a critical exponent 1

2 . We anticipate that the experimental data
on actual systems may not conform to this law. We, therefore, introduce a new critical
exponent, ν, such that

ξ ∼ t−ν (h→ 0, t & 0). (1)

In the spirit of the scaling hypothesis, see Section 12.10, the corresponding exponent
ν′ appropriate to t . 0 would be the same as ν.18 Table 12.1 in Section 12.7 shows

18It turns out that the exponent ν′ is relevant only for scalar models, for which n= 1; for vector models (n≥ 2), ξ is
infinite at all T ≤ Tc and hence ν′ is irrelevant.
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experimental results for ν obtained from a variety of systems; we see that the observed
values of ν, while varying very little from system to system, differ considerably from the
mean field value.

As regards the correlation function, the situation for t & 0 is described very well by a law
of the type (12.11.27), namely

g(r)∼ e−r/ξ(t)
× some power of r (t & 0), (2)

where ξ(t) is given by (1). The variation of g(r) with r in this regime is governed primarily
by the exponential, so g(r) falls rapidly as r exceeds ξ (which is typically of the order of the
lattice constant a). As t→ 0 and hence ξ →∞, the behavior of g(r)would be expected to be
like equation (12.11.28) or (12.11.29). A problem now arises: we have an exact expression
for g(r) at T = Tc for a two-dimensional Ising model (see Section 13.4), according to which

g(r)∼ r−1/4 (d = 2,n= 1, t = 0), (3)

which is quite different from the mean field expression (12.11.29). We, therefore, generalize
our classical result to

g(r)∼ r−(d−2+η) (t = 0), (4)

which introduces another critical exponent, η. Clearly, η for the two-dimensional Ising
model is 1

4 , which can even be confirmed by experiments on certain systems that are
effectively two-dimensional. Table 12.1 shows experimental values of η for some systems
in three dimensions; typically, η turns out to be a small number, which makes it rather
difficult to measure reliably.

We shall now derive some scaling relations involving the exponents ν and η. First of
all we write down the correlation function g(r; t,h) and its Fourier transform g̃(k; t,h) in a
scaled form. For this, we note that, while h scales with t1, the only natural variable with
which r will scale is ξ ; accordingly, r will scale with t−ν . We may, therefore, write

g(r; t,h)≈
G(rtν ,h/t1)

rd−2+η
, g̃(k; t,h)≈

G̃(k/tν ,h/t1)

k2−η
, (5a, b)

where the functions G(x,y) and G̃(z,y), like the exponents 1,ν, and η, are universal for a
given universality class; in expressions (5), for simplicity, we have suppressed nonuniversal
parameters that vary from system to system within a class. In the absence of the field (h=
0), expressions (5) reduce to

g(r; t,0)≈
G0(rtν)

rd−2+η
, g̃(k; t,0)≈

G̃0(k/tν)

k2−η
, (6a, b)
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where G0(x) and G̃0(z) are again universal. At the critical point (h= 0, t = 0), we have
simply

gc(r)∼
1

rd−2+η
, g̃c(k)∼

1

k2−η
. (7a, b)

We now recall equation (12.11.12), which relates χ to an integral of g(r) over dr, and
substitute expression (6a) into it. We get, ignoring nonuniversal parameters as well as
numerical factors,

χ ∼

∫
G0(rtν)

rd−2+η
rd−1 dr. (8)

By a change of variables, this gives

χ ∼ t−(2−η)ν . (9)

Invoking the standard behavior of χ , we obtain

γ = (2− η)ν. (10)

Note that the same scaling relation can also be obtained by appealing to equa-
tions (12.11.13) and (6b); the argument is that, in the limit k→ 0, the function G̃0(z) must
be∼ z2−η (so that k is eliminated), leaving behind a result identical to (9). In passing, we
note that in the critical region

χ ∼ ξ2−η. (11)

Relation (10) is consistent with the Fisher inequality (1969)

γ ≤ (2− η)ν,

and is obviously satisfied by the mean field exponents (γ = 1,ν = 1
2 ,η = 0); it also checks

well with the experimental data given earlier in Table 12.1. In fact, this relation provides
a much better method of extracting the elusive exponent η, from a knowledge of γ and ν,
than determining it directly from experiment. Incidentally, the presence of η explains the
slight downward curvature of the Ornstein–Zernike plot, 1/g̃(k) versus k2, as k→ 0, for the
appropriate expression for 1/g̃(k) now is

1
g̃(k)

∼
1
χ
(1+ ξ2−ηk2−η), (12)

rather than (12.11.33).
We shall now derive another exponent relation involving ν, but first notice that all expo-

nent relations derived so far have no explicit dependence on the dimensionality d of the
system (though the actual values of the exponents do depend on d). There is, however,
one important relationship that does involve d explicitly. For this, let us visualize what
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happens inside the system (say, a magnetic one) as t→ 0 from above. At some stage the
correlation length ξ becomes significantly larger than the atomic spacings, with the result
that magnetic domains, of alternating magnetization, begin to appear. The closer we get
to the critical point, the larger the size of these domains; one may, in fact, say that the vol-
ume� of any such domain is∼ ξd. Now, the singular part of the free energy density of the
system — or, for that matter, of any one of these domains — is given by, see equa-
tion (12.10.7) with h= 0,

f (s)(t)∼ t2−α , (13)

which vanishes as t→ 0. At the same time, the domain volume� diverges. It seems natural
to expect that f (s), being a density, would vanish as 1/�, that is,

f (s)(t)∼�−1
∼ ξ−d

∼ tdν . (14)

Comparing (13) and (14), we obtain the desired relationship

dν = 2−α, (15)

which is generally referred to as a hyperscaling relation — to emphasize the fact that it goes
beyond, and cannot be derived from, the ordinary scaling formulation of Section 12.10
without invoking something else, such as the domain volume�.

The relation in equation (15) is consistent with the Josephson inequalities (1967):

dν ≥ 2−α, dν′ ≥ 2−α′, (16a, b)

proved rigorously by Sokal (1981); of course, the scaling theory does not distinguish
between exponents pertaining to t > 0 and their counterparts pertaining to t < 0. It is
important to note that the classical exponents (ν = 1

2 ,α = 0) satisfy (15) only for d = 4,
which shows that the hyperscaling relations, (15) and any others that follow from it, have a
rather different status than the other scaling relations (that do not involve d explicitly). The
renormalization group theory, to be discussed in Chapter 14, shows why the hyperscaling
relations are to be expected fairly generally, why typically they hold for d < 4 but break
down for d > 4; see also Section 12.13. The reader may check that relation (15) is satisfied
reasonably well by the experimental data of Table 12.1, with d = 3; it is also satisfied by the
exponents derived theoretically by solving different models exactly, or almost exactly, as in
Chapter 13.

Combining (15) with other scaling relations, see Section 12.10, we may write

dν = 2−α = 2β + γ = β(δ+ 1)= γ (δ+ 1)/(δ− 1). (17)

It follows that

2− η = γ /ν = d(δ− 1)/(δ+ 1), (18)
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which is consistent with the Buckingham–Gunton inequality (1969)

2− η ≤ d(δ− 1)/(δ+ 1). (19)

Notice that the experimental observation that, for magnetic systems in three dimensions,
δ < 4.8, implies that η ≥ 0.034.

12.13 A final look at the mean field theory
We now return to the question: why does the mean field theory fail to represent the true
nature of the critical phenomena in real systems? The short answer is — because it neglects
fluctuations! As emphasized in Section 12.11, correlations among the microscopic con-
stituents of a given system are at the very heart of the phenomenon of phase transitions,
for it is through them that the system acquires a long-range order (even when the micro-
scopic interactions are themselves short-ranged). At the same time, there is so direct a
relationship between correlations and fluctuations, see equation (12.11.6), that they grow
together and, as the critical point is approached, become a dominant feature of the system.
Neglecting fluctuations is, therefore, a serious drawback of the mean field theory.

The question now arises: is mean field theory ever valid? In other words, can fluctua-
tions ever be neglected? To answer this question, we recall the fluctuation–susceptibility
relation (12.11.10a), namely

χ = (M2−M
2
)/kT = (1M)2/kT (1)

and write it in the form

(1M)2/M
2
= kTχ/M

2
. (2)

Now, in order that the neglect of fluctuations be justified, we must have:

kTχ �M
2

. (3)

Requirement (3) is generally referred to as the Ginzburg criterion (1960); for a more
detailed discussion of this criterion, along with physical illustrations, see Als-Nielsen and
Birgeneau (1977).

We apply condition (3) to a domain, of volume �∼ ξd, close to but below the critical
point; we are assuming here a system of the Ising type (n= 1), so that ξ is finite for t < 0.
Invoking the power-law behavior of χ and M , we have

kTc(Aξd
|t|−γ )� (Bξd

|t|β)2 (t . 0), (4)

where A and B are positive constants. Since ξ ∼ a|t|−ν , we get

|t|dν−2β−γ
� B2ad/AkTc. (5)
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In view of the scaling relation α+ 2β + γ = 2, we may as well write

|t|dν−(2−α)�D, (6)

where D is a positive number of order unity.19 For the mean field theory (with ν = 1
2 ,α = 0)

to be valid, condition (6) assumes the form

|t|(d−4)/2
�D. (7)

Now, since |t| can be made as small as we like, condition (7) will be violated unless d > 4.
We, therefore, conclude that the mean field theory is valid for d > 4; by implication, it is
inadequate for d ≤ 4.

The preceding result has been established for scalar models (n= 1) only. In
Section 13.5, we shall see that in the case of the spherical model, which pertains to the limit
n→∞, the mean field results do apply when d > 4. This means that, once again, fluctua-
tions can be neglected if d > 4. Now fluctuations are supposed to decrease with decreasing
n; the validity of the mean field theory for d > 4 should, therefore, hold for all n.

Ordinarily, when a system is undergoing a phase transition, expression (2), which is
a measure of the relative fluctuations in the system, is expected to be of order unity.
Condition (6) then suggests that the exponents ν and α obey the hyperscaling relation

dν = 2−α. (8)

Experience shows that this relation is indeed obeyed when d < 4. At d = 4, the mean field
theory begins to take over and thereafter, for all d > 4, the critical exponents are stuck at
the mean field values (which are independent of both d and n). The dimensionality d = 4
is often referred to as the upper critical dimension for the kind of systems under study.

An alternative way of looking into the question posed at the beginning of this section
is to examine the specific heat of the system which, according to the mean field theory,
undergoes a jump discontinuity at the critical point whereas in real systems it shows a
weak divergence. The question now arises: what is the source of this divergence that is
missed by the mean field theory? The answer again lies in the “neglect of fluctuations.” To
see it more explicitly, we look at the internal energy of the system which, in the absence of
the field, is given by

U =−J

(∑
n.n.

σiσj

)
=−J

∑
n.n.

σiσj. (9)

In the mean field theory, one replaces σiσj by σi σj(= σ
2), see equation (12.5.5), which leads

to the jump discontinuity in the specific heat of magnitude 3
2/Nk; see equation (12.5.18).

19To see this, we note that A∼Nµ2/�kTc while B∼Nµ/�, with the result that D∼Nad/�=O(1).
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The fluctuational part of U , which is neglected in the mean field theory, may be written as

Uf =−J
∑
n.n.

(σiσj − σ iσ j)=−J
∑
n.n.

g(rij), (10)

where g(r) is the spin–spin correlation function, for which we may use the mean field
expression (12.11.26); thus, we will be using the mean field theory itself to predict its own
shortcomings! Since the nearest-neighbor distances rij in (10) are all much smaller than
ξ , one may be tempted to use for g(rij) the zeroth-order approximation (12.11.28). This,
however, produces a temperature-independent term, which does not contribute to the
specific heat of the system. We must, therefore, go to the next approximation, which can
be obtained by using the asymptotic formulae

Kµ(x)
∣∣
x�1 ≈



1
2
0(µ)

(
1
2

x
)−µ
+

1
2
0(−µ)

(
1
2

x
)µ

for 0< µ< 1 (11a)

x−1
+

(
1
2

x
)

ln
(

1
2

x
)

for µ= 1 (11b)

1
2
0(µ)

(
1
2

x
)−µ
−

1
2
0(µ− 1)

(
1
2

x
)2−µ

for µ > 1, (11c)

with µ= (d− 2)/2 and x = rij/ξ . The temperature-dependent part of Uf comes from the
second term(s) in (11); remembering that ξ here is∼ at−1/2, we get20

(Uf /NJ)thermal ∼


t(d−2)/2 for 2< d < 4 (12a)

t ln(1/t) for d = 4 (12b)

t for d > 4. (12c)

The fluctuational part of the specific heat then turns out to be

Cf /Nk ∼


t(d−4)/2 for 2< d < 4 (13a)

ln(1/t) for d = 4 (13b)

const. for d > 4. (13c)

It follows that the specific-heat singularity for d > 4 is indeed a “jump discontinuity,”
and hence the mean field theory remains applicable in this case. For d = 4, Cf shows a
logarithmic divergence and for d < 4 a power-law divergence, making mean field theory
invalid for d ≤ 4.

It is rather instructive to see what part of the fluctuation–correlation spectrum, g̃(k),
contributes significantly to the divergence of the specific heat at t = 0. For this, we examine

20Note that the negative sign in (10) cancels the implicit negative sign of 0(−µ) in (11a), that of ln( 1
2 x) in (11b), and

the explicit negative sign in (11c).
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the quantity −∂g(rij)/∂t, which essentially determines the behavior of Cf near the critical
point; see equation (10). Using equation (12.11.25a), we have

−
∂g(rij)

∂t
∼ ad

∫
e−ik·rij

t2(1+ ξ2k2)2
kd−1dk. (14)

Now, the values of k that are much larger than ξ−1 contribute little to this integral; the only
significant contributions come from the range (0,kmax), where kmax =O(ξ−1); moreover,
since rij� ξ , the exponential for these values of k is essentially equal to 1. Expression (14)
may, therefore, be written as

−
∂g(rij)

∂t
∼ ad

∫
kd−1dk

t2(1+ ξ2k2)2
(15)

which, for d < 4, scales as (a/ξ)dt−2
∼ t(d−4)/2; compare with (13a). We thus see that the

most significant contribution to the criticality of the problem arises from fluctuations
whose length scale, k−1, is of order ξ or longer and hardly any contribution comes from
fluctuations whose length scale is shorter. Now, it is only the latter that are likely to pick
up the structural details of the system at the atomic level; since they do not play any sig-
nificant role in bringing about the phenomenon, the precise nature of criticality remains
independent of the structural details. This explains why a large variety of systems, differ-
ing so much in their structure at the macroscopic level, may, insofar as critical behavior is
concerned, fall into a single universality class.

Problems
12.1. Assume that in the virial expansion

Pv
kT
= 1−

∞∑
j=1

j
j+ 1

βj

(
λ3

v

)j

, (10.4.22)

where βj are the irreducible cluster integrals of the system, only terms with j = 1 and j = 2 are
appreciable in the critical region. Determine the relationship between β1 and β2 at the critical
point, and show that kTc/Pcvc = 3.

12.2. Assuming the Dietrici equation of state,

P(v−b)= kT exp(−a/kTv),

evaluate the critical constants Pc, vc, and Tc of the given system in terms of the parameters a and
b, and show that the quantity kTc/Pcvc = e2/2' 3.695.

Further show that the following statements hold in regard to the Dietrici equation of state:
(a) It yields the same expression for the second virial coefficient B2 as the van der Waals equation

does.
(b) For all values of P and for T ≥ Tc, it yields a unique value of v.
(c) For T < Tc, there are three possible values of v for certain values of P and the critical volume

vc is always intermediate between the largest and the smallest of the three volumes.
(d) The Dietrici equation of state yields the same critical exponents as the van der Waals

equation does.
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12.3. Consider a nonideal gas obeying a modified van der Waals equation of state

(P+a/vn)(v−b)= RT (n> 1).

Examine how the critical constants Pc, vc, and Tc, and the critical exponents β, γ , γ ′, and δ, of this
system depend on the number n.

12.4. Following expressions (12.5.2), define

p= (1+L)/2 and q= (1−L)/2 (−1≤ L≤ 1) (1)

as the probabilities that a spin chosen at random in a lattice composed of N spins is either “up” or
“down.” The partition function of the system may then be written as

Q(B,T)=
∑

L

g(L)eβN( 1
2 qJL2

+µBL), (2)

where g(L) is the multiplicity factor associated with a particular value of L, that is,

g(L)=N !/(Np)!(Nq)! ; (3)

note that in writing the Hamiltonian here we have made the assumption of random mixing,
according to which

(N+++N−−−N+−)=
1
2

qN(p2
+q2
− 2pq)=

1
2

qNL2.

(a) Determine the value, L∗, of L that maximizes the summand in (2). Check that L∗ is identical to
the mean value, L, as given by equation (12.5.10).

(b) Write down the free energy A and the internal energy U of the system, and show that the
entropy S conforms to the relation

S(B,T)=−Nk(p∗ lnp∗+q∗ lnq∗),

where p∗ = p(L∗) and q∗ = q(L∗).
12.5. Using the correspondence established in Section 12.4, apply the results of the preceding problem

to the case of a lattice gas. Show, in particular, that the pressure, P, and the volume per particle, v,
are given by

P = µB−
1
8

qε0

(
1+L

2
)
−

1
2

kT ln

(
1−L

2

4

)

and

v−1
=

1
2
(1±L).

Check that the critical constants of this system are: Tc = qε0/4k, Pc = kTc(ln2− 1
2 ), and vc = 2, so

that the quantity kTc/Pcvc = 1/(ln4− 1)' 2.589.
12.6. Consider an Ising model with an infinite-range interaction such that each spin interacts equally

strongly with all other spins:

H =−c
∑
i<j

σiσj −µB
∑

i

σi.

Express this Hamiltonian in terms of the parameter L(=N−16iσi) and show that, in the limit
N→∞ and c→ 0, the mean field theory, with J =Nc/q, is exact for this model.

12.7. Study the Heisenberg model of a ferromagnet, based on the interaction (12.3.6), in the mean field
approximation and show that this also leads to a phase transition of the kind met with in the Ising
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model. Show, in particular, that the transition temperature Tc and the Curie–Weiss constant C are
given by

Tc =
qJ
k

2s(s+ 1)
3

and C =
N(gµB)

2

Vk
s(s+ 1)

3
.

Note that the ratio Tc/CV = 2qJ/N(gµB)
2 is the molecular field constant of the problem; compare

to equation (12.5.8).
12.8. Study the spontaneous magnetization of the Heisenberg model in the mean field approximation

and examine the dependence of L0 on T (i) in the neighborhood of the critical temperature where
(1−T/Tc)� 1, and (ii) at sufficiently low temperatures where T/Tc � 1. Compare these results
with the corresponding ones, namely (12.5.14) and (12.5.15) for the Ising model.

[In this connection, it may be pointed out that, at very low temperatures, the experimental
data do not agree with the theoretical formula derived here. We find instead a much better
agreement with the formula L0 = {1−A(kT/J)3/2

}, where A is a numerical constant (equal to
0.1174 in the case of a simple cubic lattice). This formula is known as Bloch’s T 3/2-law and is
derivable from the spin-wave theory of ferromagnetism; see Wannier (1966), Section 15.5.]

12.9. An antiferromagnet is characterized by the fact that the exchange integral J is negative, which
tends to align neighboring spins antiparallel to one another. Assume that a given lattice structure
is such that the whole lattice can be divided into two interpenetrating sublattices, a and b say, so
that the spins belonging to each sublattice, a as well as b, tend to align themselves in the same
direction, while the directions of alignment in the two sublattices are opposite to one another.
Using the Ising as well as Heisenberg type of interaction, and working in the mean field
approximation, evaluate the paramagnetic susceptibility of such a lattice at high temperatures.

12.10. The Néel temperature TN of an antiferromagnet is defined as that temperature below which the
sublattices a and b possess nonzero spontaneous magnetizations Ma and Mb, respectively.
Determine TN for the model described in the preceding problem.

12.11. Suppose that each atom of a crystal lattice can be in one of several internal states (which may be
denoted by the symbol σ ) and the interaction energy between an atom in state σ ′ and its nearest
neighbor in state σ ′′ is denoted by u(σ ′,σ ′′){= u(σ ′′,σ ′)}. Let f (σ ) be the probability of an atom
being in a particular state σ , independently of the states in which its nearest neighbors are. The
interaction energy and the entropy of the lattice may then be written as

E =
1
2

qN
∑
σ ′,σ ′′

u(σ ′,σ ′′)f (σ ′)f (σ ′′)

and

S/Nk =−
∑
σ

f (σ ) ln f (σ ),

respectively. Minimizing the free energy (E−TS), show that the equilibrium value of the function
f (σ ) is determined by the equation

f (σ )= C exp{−(q/kT)6σ ′u(σ ,σ ′)f (σ ′)},

where C is the constant of normalization. Further show that, for the special case
u(σ ′,σ ′′)=−Jσ ′σ ′′, where the σ can be either+1 or−1, this equation reduces to the Weiss
equation (12.5.11), with f (σ )= 1

2 (1+L0σ).
12.12. Consider a binary alloy containing NA atoms of type A and NB atoms of type B, so that the relative

concentrations of the two components are: xA =NA/(NA+NB)≤
1
2 and xB =NB/(NA+NB)≥

1
2 .

The degree of long-range order, X , is such that[
A
a

]
=

1
2

NxA(1+X),
[

A
b

]
=

1
2

NxA(1−X),[
B
a

]
=

1
2

N(xB− xAX),
[

B
b

]
=

1
2

N(xB+ xAX),
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where N =NA+NB, while the symbol
[

A
a

]
denotes the number of atoms of type A occupying

sites of the sublattice a, and so on. In the Bragg–Williams approximation, the number of
nearest-neighbor pairs of different kinds can be written down straightaway; for instance,[

AA
ab

]
=

1
2

qN · xA(1+X) · xA(1−X),

and so on. The configurational energy of the lattice then follows from equation (12.4.9). In the
same approximation, the entropy of the lattice is given by S= k lnW , where

W =
( 1

2 N)![
A
a

]
!
[

B
a

]
!
·

( 1
2 N)![

A
b

]
!
[

B
b

]
!
.

Minimizing the free energy of the lattice, show that the equilibrium value of X is determined by
the equation

X
xB+ xAX 2 = tanh

(
2qxAε

kT
X
)

; ε =
1
2
(ε11+ ε22)− ε12 > 0.

Note that, in the special case of equal concentrations (xA = xB =
1
2 ), this equation assumes the

more familiar form

X = tanh
( qε

2kT
X
)

.

Further show that the transition temperature of the system is given by

Tc = 4xA(1− xA)T 0
c ,

where T 0
c (= qε/2k) is the transition temperature in the case of equal concentrations.

[Note: In the Kirkwood approximation (see Kubo (1965), problem 5.19), T 0
c turns out to be

(ε/k){1−
√

[1− (4/q)]}−1, which may be written as (qε/2k)(1− 1/q+ ·· ·). To this order, the Bethe
approximation also yields the same result.]

12.13. Consider a two-component solution of NA atoms of type A and NB atoms of type B, which are
supposed to be randomly distributed over N(=NA+NB) sites of a single lattice. Denoting the
energies of the nearest-neighbor pairs AA,BB, and AB by ε11,ε22, and ε12, respectively, write down
the free energy of the system in the Bragg–Williams approximation and evaluate the chemical
potentials µA and µB of the two components. Next, show that if ε = (ε11+ ε22− 2ε12) < 0, that is,
if the atoms of the same species display greater affinity to be neighborly, then for temperatures
below a critical temperature Tc, which is given by the expression q|ε|/2k, the solution separates
out into two phases of unequal relative concentrations.

[Note: For a study of phase separation in an isotopic mixture of hard-sphere bosons and
fermions, and for the relevance of this study to the actual behavior of He3

−He4 solutions, see
Cohen and van Leeuwen (1960, 1961).]

12.14. Modify the Bragg–Williams approximation (12.5.29) to include a short-range order parameter s,
such that

N++ =
1
2

qNγ

(
1+L

2

)2

(1+ s), N−− =
1
2

qNγ

(
1−L

2

)2

(1+ s),

N+− = 2 ·
1
2

qNγ

(
1+L

2

)(
1−L

2

)
(1− s).

(a) Evaluate γ from the condition that the total number of nearest-neighbor pairs is 1
2 qN .

(b) Show that the critical temperature Tc of this model is (1− s2)qJ/k.
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(c) Determine the nature of the specific-heat singularity at T = Tc, and compare your result with
both the Bragg–Williams approximation of Section 12.5 and the Bethe approximation of
Section 12.6.

12.15. Show that in the Bethe approximation the entropy of the Ising lattice at T = Tc is given by the
expression

Sc

Nk
= ln2+

q
2

ln
(

1−
1
q

)
−

q(q− 2)
4(q− 1)

ln
(

1−
2
q

)
.

Compare this result with the one following from the Bragg–Williams approximation, namely
(12.5.20).

12.16. Examine the critical behavior of the low-field susceptibility, χ0, of an Ising model in the Bethe
approximation of Section 12.6, and compare your results with equations (12.5.22) of the
Bragg–Williams approximation.

12.17. A function f (x) is said to be concave over an interval (a,b) if it satisfies the property

f {λx1+ (1− λ)x2} ≥ λf (x1)+ (1− λ)f (x2),

where x1 and x2 are two arbitrary points in the interval (a,b)while λ is a positive number in the
interval (0,1). This means that the chord joining the points x1 and x2 lies below the curve f (x).
Show that this also means that the tangent to the curve f (x) at any point x in the interval (a,b)
lies above the curve f (x) or, equivalently, that the second derivative ∂2f /∂x2 throughout this
interval≤ 0.

12.18. In view of the thermodynamic relationship

CV = TV (∂2P/∂T 2)V −TN(∂2µ/∂T 2)V

for a fluid, µ being the chemical potential of the system, Yang and Yang (1964) pointed out that, if
CV is singular at T = Tc, then either (∂2P/∂T 2)V or (∂2µ/∂T 2)V or both will be singular. Define an
exponent2 by writing

(∂2P/∂T 2)V ∼ (Tc −T)−2 (T . Tc),

and show that (Griffiths, 1965b)

2≤ α′+β and 2≤ (2+α′δ)/(δ+ 1).

12.19. Determine the numerical values of the coefficients r1 and s0 of equation (12.9.5) in (i) the
Bragg–Williams approximation of Section 12.5 and (ii) the Bethe approximation of Section 12.6.
Using these values of r1 and s0, verify that equations (12.9.4), (12.9.9), (12.9.10), (12.9.11), and
(12.9.15) reproduce correctly the results obtained in the zeroth and the first approximation,
respectively.

12.20. Consider a system with a modified expression for the Landau free energy, namely

ψh(t,m)=−hm+q(t)+ r(t)m2
+ s(t)m4

+u(t)m6,

with u(t) a fixed positive constant. Minimize ψ with respect to the variable m and examine the
spontaneous magnetization m0 as a function of the parameters r and s. In particular, show the
following:21

(a) For r > 0 and s>−(3ur)1/2,m0 = 0 is the only real solution.

(b) For r > 0 and−(4ur)1/2 < s ≤−(3ur)1/2,m0 = 0 or±m1, where m2
1 =

√
(s2
−3ur)−s
3u . However, the

minimum of ψ at m0 = 0 is lower than the minima at m0 =±m1, so the ultimate equilibrium
value of m0 is 0.

(c) For r > 0 and s=−(4ur)1/2,m0 = 0 or±(r/u)1/4. Now, the minimum of ψ at m0 = 0 is of the
same height as the ones at m0 =±(r/u)1/4, so a nonzero spontaneous magnetization is as
likely to occur as the zero one.

21To fix ideas, it is helpful to use (r,s)-plane as our “parameter space.”
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(d) For r > 0 and s<−(4ur)1/2, m0 =±m1 — which implies a first-order phase transition
(because the two possible states available here differ by a finite amount in m). The line
s=−(4ur)1/2, with r positive, is generally referred to as a “line of first-order phase
transitions.”

(e) For r = 0 and s< 0, m0 =±(2|s|/3u)1/2.
(f ) For r < 0, m0 =±m1 for all s. As r→ 0, m1→ 0 if s is positive.
(g) For r = 0 and s> 0, m0 = 0 is only solution. Combining this result with (f), we conclude that

the line r = 0, with s positive, is a “line of second-order phase transitions,” for the two states
available here differ by a vanishing amount in m.

The lines of first-order phase transitions and second-order phase transitions meet at the point
(r = 0,s= 0), which is commonly referred to as a tricritical point (Griffiths, 1970).

12.21. In the preceding problem, put s= 0 and approach the tricritical point along the r-axis, setting
r ≈ r1t. Show that the critical exponents pertaining to the tricritical point in this model are

α =
1
2

,β =
1
4

,γ = 1, and δ = 5.

12.22. Consider a fluid near its critical point, with isotherms as sketched in Figure 12.3. Assume that the
singular part of the Gibbs free energy of the fluid is of the form

G(s)(T ,P)∼ |t|2−αg(π/|t|1),

where π = (P−Pc)/Pc, t = (T −Tc)/Tc while g(x) is a universal function, with branches g+ for
t > 0 and g− for t < 0; in the latter case, the function g− has a point of infinite curvature at a value
of π that varies smoothly with t, such that π(0)= 0 and (∂π/∂t)t→0 = const.
(a) Using the above expression for G(s), determine the manner in which the densities, ρl and ρg ,

of the two phases approach one another as t→ 0 from below.
(b) Also determine how (P−Pc) varies with (ρ− ρc) as the critical point is approached along the

critical isotherm (t = 0).
(c) Examine as well the critical behavior of the isothermal compressibility κT , the adiabatic

compressibility κS, the specific heats CP and CV , the coefficient of volume expansion αP , and
the latent heat of vaporization l.

12.23. Consider a model equation of state which, near the critical point, can be written as

h≈ am(t+bm2)2 (1<2< 2;a,b> 0).

Determine the critical exponents β, γ , and δ of this model, and check that they obey the scaling
relation (12.10.22).

12.24. Assuming that the correlation function g(ri, rj) is a function only of the distance r = |rj − ri|, show
that g(r) for r 6= 0 satisfies the differential equation

d2g
dr2 +

d− 1
r

dg
dr
−

1
ξ2 g = 0.

Check that expression (12.11.27) for g(r) satisfies this equation in the regime r� ξ , while
expression (12.11.28) does so in the regime r� ξ .

12.25. Consider the correlation function g(r; t,h) of Section 12.11 with h> 0.22 Assume that this function
has the following behavior:

g(r)∼ e−r/ξ(t,h)
× some power of r (t & 0),

such that ξ(0,h)∼ h−ν
c
. Show that νc

= ν/1.
Next, assume that the susceptibility χ(0,h)∼ h−γ

c
. Show that γ c

= γ /1= (δ− 1)/δ.

22For more details, see Tarko and Fisher (1975).
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12.26. Liquid He4 undergoes a superfluid transition at T ' 2.17 K. The order parameter in this case is a
complex number9, which is related to the Bose condensate density ρ0 as

ρ0 ∼ |9|
2
∼ |t|2β (t . 0).

The superfluid density ρs, on the other hand, behaves as

ρs ∼ |t|ν (t . 0).

Show that the ratio23

(ρ0/ρs)∼ |t|ην (t . 0).

12.27. The surface tension, σ , of a liquid approaches zero as T→ Tc from below. Define an exponent µ
by writing

σ ∼ |t|µ (t . 0).

Identifying σ with the “free energy associated with a unit area of the liquid–vapor interface,” argue
that µ= (d− 1)ν = (2−α)(d− 1)/d.

[Note: Analysis of the experimental data on surface tension yields: µ= 1.27± 0.02, which
agrees with the fact that for most fluids α ' 0.1.]

23The corresponding ratio for a magnetic system is M2
0 /0, where M0 is the spontaneous magnetization and 0 the

helicity modulus of the system; for details, see Fisher, Barber, and Jasnow (1973).



13
Phase Transitions: Exact (or Almost

Exact) Results for Various Models

In the preceding chapter we saw that the onset of a phase transition in a given physico-
chemical system is characterized by (singular) features whose qualitative nature is deter-
mined by the universality class to which the system belongs. In this chapter we propose
to consider a variety of model systems belonging to different universality classes and ana-
lyze them theoretically to find out how these features arise and how they vary from class to
class.

In this context, we recall that the parameters distinguishing one universality class from
another are: (i) the space dimensionality d, (ii) the dimensionality of the order parameter,
often referred to as the spin dimensionality, n, and (iii) the range of the microscopic inter-
actions. As regards the latter, unless a statement is made to the contrary, we shall assume a
short-range interaction which, in most cases, will be of the nearest-neighbor type; the only
parameters open for selection will then be d and n.

We start our analysis with the properties of one-dimensional fluids, the one-
dimensional Ising (n= 1) model, and the general n-vector models (again in one dimen-
sion). We then return to the Ising model — this time in two dimensions — and follow
it with a study of two models in general d but with n→∞. These studies will give us a
fairly good idea as to what to expect in the most practical, three-dimensional situations
for which, unfortunately, we have no exact solutions — though a variety of mathematical
techniques have been developed to obtain almost exact results in many cases of interest.
For completeness, these and other results of physical importance will be revisited in the
last section of this chapter.

13.1 One-dimensional fluid models
A system of interacting particles in one dimension can be solved analytically for sev-
eral cases. In particular, a system of hard spheres in one dimension can be solved in the
canonical ensemble (Tonks, 1936) while the one-dimensional isobaric ensemble allows
the solution of a more general set of nearest-neighbor interactions. None of these mod-
els exhibits a transition to an ordered phase but they do display many of the short-range
correlation properties characteristic of fluids.

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00013-X
© 2011 Elsevier Ltd. All rights reserved.
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13.1.A Hard spheres on a ring

The partition function of a one-dimensional system of hard spheres was first evaluated by
Tonks (1936). For this we consider the case of N hard spheres with diameter D on a ring
of circumference L, obeying periodic boundary conditions. The free energy, the pressure,
and the pair correlation function of this system can be determined exactly both for finite
N and in the thermodynamic limit. The hard sphere pair interaction is given by

u(r)=

{
∞ for r ≤D

0 for r >D.
(1)

The configurational partition function can be written as an integral over the spatially
ordered positions of the N spheres, with particle 1 set at x1 = 0, while the other particles
labeled j = 2,3, . . . ,N are restricted by the conditions xj−1+D< xj < L− (N − j+ 1)D:

ZN (L)=
L
N

L−(N−1)D∫
D

dx2

L−(N−2)D∫
x2+D

dx3 · · ·

L−D∫
xN−1+D

dxN =
L(L−ND)N−1

N !
; (2)

the prefactor L here comes from integrating x1 over the circumference of the ring, while the
factor 1/N delabels that final integral. The Helmholtz free energy in the thermodynamic
limit turns out to be

A(N ,L,T)=−NkT ln
(

L−ND
Nλ

)
−NkT , (3)

where λ is the thermal deBroglie wavelength. The pressure is then given by

P =−
(
∂A
∂L

)
T ,N
=

nkT
1−nD

, (4)

where n (=N/L) is the one-dimensional number density. This is equivalent to the pressure
of an ideal gas of N particles in a free volume L−ND. The isothermal compressibility is

κT =
1
n

(
∂n
∂p

)
T
=
(1−nD)2

nkT
= κ ideal

T (1−nD)2 . (5)

The pair correlation function for the particles on the ring can also be determined exactly
(M. Foss-Feig, unpublished). This is accomplished by integrating over all configurations in
which particle 1 is fixed at the origin and, in succession, each of the other particles is fixed
at position x (if possible). This gives

g(x)=
N−1∑
j=1

gj(x). (6)
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FIGURE 13.1 The pair correlation function for a system of 12 hard disks on a ring. The scaled number density
nD= 0.75. The solid line represents the exact solution from equations (6) and (7), as compared to a Monte Carlo
simulation.

where gj(x) is defined on the range jD≤ x ≤ L− (N − j)D by

gj(x)=
(

L(N − 1)!

N(L−ND)N−1

)(
(x− jD)j−1(L− x− (N − j)D)N−1−j

(j− 1)!(N − 1− j)!

)
; (7)

see Figure 13.1. In the thermodynamic limit, the correlation function becomes

g(x)=
∞∑

j=1

gj(x) , (8)

where gj(x) is defined on the range jD≤ x <∞ by

gj(x)=
(βP(x− jD))j−1 exp

(
−βP(x− jD)

)
(1−nD)(j− 1)!

, (9)

where βP = n/(1−nD); see Sells, Harris, and Guth (1953). Using equation (10.7.12) gives
the correct virial equation of state pressure

P
nkT

= 1+nDg(D+)=
1

1−nD
; (10)

where g(D+) is the pair correlation function at contact; see Problem 13.28.

13.1.B Isobaric ensemble of a one-dimensional fluid

Takahashi (1942) has shown that a one-dimensional system of particles that interact with
nearest neighbors via pair potential u(r) can be analyzed analytically using an isobaric



474 Chapter 13 . Phase Transitions: Exact (or Almost Exact) Results for Various Models

ensemble. The potential energy of the system can be written as

U =
N+1∑
j=1

u(xj − xj−1), (11)

where the left and right walls are treated as particles fixed at x0 = 0 and xN+1 = L. The
isobaric partition function is given by

YN (P,T)=
1
λ

∞∫
0

exp(−βPL)QN (L,T)dL, (12)

where λ is the thermal deBroglie wavelength. Equation (12) can be factorized in terms of
integrals over the distances between nearest neighbors yi (= xi− xi−1):

YN (P,T)=

1
λ

∞∫
0

exp(−βPy−βu(y))dy

N+1

= Y1(p,T)N+1. (13)

The bulk Gibbs free energy is then given by

G(N ,P,T)=−NkT ln(Y1(P,T)), (14)

and the average system size at pressure P by(
∂G
∂P

)
T ,N
= L=N〈y〉, (15)

where

〈y〉 =

∫
∞

0 y exp[−βPy−βu(y)]dy∫
∞

0 exp[−βPy−βu(y)]dy
(16)

is the average nearest-neighbor distance between the particles. The isothermal compress-
ibility,

κT =
−1
L

(
∂L
∂P

)
T ,N
=

N
kTL

(
〈y2
〉− 〈y〉2

)
, (17)

is proportional to the variance of the nearest-neighbor distances. It is now easy to show
that one-dimensional models cannot form a long-range ordered lattice. The average dis-
tance between two particles labeled by i and j is 〈xi− xj〉 = (i− j)〈y〉 but the variance
is given by 〈(xi− xj)

2
〉 = |i− j|(〈y2

〉− 〈y〉2). Therefore, if a chosen particle is located on a
particular lattice site, then a particle m sites away will on average be separated from it by
m lattice spacings, but the variance of this particle’s position from that site location grows
linearly with m.
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In the thermodynamic limit, the structure factor S(k), equation (10.7.18), can be written
in the form

S(k)=

〈
∞∑

j=−∞

eik(xj−x0)

〉
. (18)

Since (xj− x0)=
∑j

i=1 yi, the structure factor can be summed exactly to give

S(k)=−1+
∞∑

j=0

zj
+

∞∑
j=0

(z∗)j =
1− |z|2

1+ |z|2− z− z∗
, (19)

where

z =
〈
eiky

〉
=

∫
∞

0 exp
[
−βPy−βu(y)+ iky

]
dy∫

∞

0 exp
[
−βPy−βu(y)

]
dy

, (20)

and z∗ is the complex conjugate of z. The fluctuation-compressibility relation now gives:
S(k→ 0)= κT/κ

ideal
T =

(
〈y2
〉− 〈y〉2

)
/〈y〉2. For the particular case of hard spheres, the pres-

sure is given by equation (4) and the structure factor is given by

S(k)=
(kD)2

(kD)2+ 2(βPD)2(1− cos(kD))+ 2(βPD)(kD)sin(kD)
; (21)

see Figure 13.2. Equation (10.7.20a), applied to the hard sphere pair correlation function
in equation (9), also gives equation (21).

0
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S
(k

)

20 40 60 80

kD

100

FIGURE 13.2 The structure factor S(k) for a system of hard spheres on a line at density nD= 0.75. The structure
factor at k = 0 is S(0)= (1−nD)2 = κT /κ

ideal
T .
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13.2 The Ising model in one dimension
In this section we present an exact treatment of the Ising model in one dimension. This is
important for several reasons. First of all, there do exist phenomena, such as adsorption
on a linear polymer or on a protein chain, the elastic properties of fibrous proteins, and so
on, that can be looked upon as one-dimensional nearest-neighbor problems. Secondly, it
helps us evolve mathematical techniques for treating lattices in higher dimensions, which
is essential for understanding the critical behavior of a variety of physical systems met
with in nature. Thirdly, it enables us to estimate the status of the Bethe approximation as
a “possible” theory of the Ising model, for it demonstrates mathematically that, at least in
one dimension, this approximation leads to exact results.

In a short paper published in 1925, Ising himself gave an exact solution to this prob-
lem in one dimension. He employed a combinatorial approach that has by now been
superseded by other approaches. Here we shall follow the transfer matrix method, first
introduced by Kramers and Wannier (1941). In the one-dimensional case, this method
worked with immediate success. Three years later, in 1944, it became, through Onsager’s
ingenuity, the first method to treat successfully the field-free Ising model in two dimen-
sions. To apply this method, we replace the actual lattice by one having the topology of
a closed, endless structure; thus, in the one-dimensional case we replace the straight,
open chain by a curved one such that the Nth spin becomes a neighbor of the first
(see Figure 13.3). This replacement eliminates the inconvenient end effects; it does not,
however, alter the thermodynamic properties of the (infinitely long) chain. The impor-
tant advantage of this replacement is that it enables us to write the Hamiltonian of the
system,

HN {σi} = −J
∑
n.n.

σiσj −µB
N∑

i=1

σi, (1)

in a symmetrical form, namely

HN {σi} = −J
N∑

i=1

σiσi+1−
1
2
µB

N∑
i=1

(σi+ σi+1), (2)

N 2 3

N 2 2
N 21

N 1 2 3
4

5

FIGURE 13.3 An Ising chain with a closed, endless structure.
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because σN+1 ≡ σ1. The partition function of the system is then given by

QN (B,T)=
∑
σ1=±1

· · ·

∑
σN=±1

exp

[
β

N∑
i=1

{Jσiσi+1+
1
2
µB(σi+ σi+1)}

]
(3a)

=

∑
σ1=±1

· · ·

∑
σN=±1

〈σ1|P|σ2〉〈σ2|P|σ3〉 · · · 〈σN−1|P|σN 〉〈σN |P|σ1〉, (3b)

where P denotes an operator with matrix elements

〈σi|P|σi+1〉 = exp
[
β

{
Jσiσi+1+

1
2
µB(σi+ σi+1)

}]
,

that is,

(P)=

(
eβ(J+µB) e−βJ

e−βJ eβ(J−µB)

)
. (4)

According to the rules of matrix algebra, the summations over the various σi in equa-
tion (3b) lead to the simple result

QN (B,T)=
∑
σ1=±1

〈σ1|PN
|σ1〉 = Trace (PN )= λN

1 + λ
N
2 , (5)

where λ1 and λ2 are the eigenvalues of the matrix P. These eigenvalues are given by the
equation ∣∣∣∣∣eβ(J+µB)

− λ e−βJ

e−βJ eβ(J−µB)
− λ

∣∣∣∣∣= 0, (6)

that is, by

λ2
− 2λeβJ cosh(βµB)+ 2sinh(2βJ)= 0. (7)

One readily obtains (
λ1

λ2

)
= eβJ cosh(βµB)±{e−2βJ

+ e2βJ sinh2(βµB)}1/2. (8)

Quite generally, λ2 < λ1; so, (λ2/λ1)
N
→ 0 as N→∞. Thus, it is only the larger eigenvalue,

λ1, that determines the major physical properties of the system in the thermodynamic
limit; see equation (5). It follows that

1
N

lnQN (B,T)≈ lnλ1 (9)

= ln[eβJ cosh(βµB)+{e−2βJ
+ e2βJ sinh2(βµB)}1/2]. (10)
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The Helmholtz free energy then turns out to be

A(B,T)=−NJ −NkT ln[cosh(βµB)+{e−4βJ
+ sinh2(βµB)}1/2]. (11)

The various other properties of the system follow readily from equation (11). Thus,

U(B,T)≡−T 2 ∂

∂T

(
A
T

)
=−NJ −

NµB sinh(βµB)

{e−4βJ + sinh2(βµB)}1/2

+
2NJe−4βJ

[cosh(βµB)+{e−4βJ + sinh2(βµB)}1/2]{e−4βJ + sinh2(βµB)}1/2
, (12)

from which the specific heat can be derived, and

M(B,T)≡−
(
∂A
∂B

)
T
=

Nµsinh(βµB)

{e−4βJ + sinh2(βµB)}1/2
, (13)

from which the susceptibility can be derived.
Right away we note that, as B→ 0,M (for all finite β)→0. This rules out the possibility

of spontaneous magnetization, and hence of a phase transition, at any finite temperature
T . Of course, at T = 0, M (for any value of B) is equal to the saturation value Nµ, which
implies perfect order in the system. This means that there is, after all, a phase transition at
a critical temperature Tc, which coincides with absolute zero!

Figure 13.4 shows the degree of magnetization, M , of the lattice as a function of the
parameter (βµB) for different values of (βJ). For J = 0, we have the paramagnetic result
M =Nµ tanh(βµB); compare to equation (3.9.27). A positive J enhances magnetization
and, in turn, leads to a faster approach toward saturation. As βJ→∞, the magnetiza-
tion curve becomes a step function — indicative of a singularity at T = 0. The low-field
susceptibility of the system is given by the initial slope of the magnetization curve; one
obtains

χ0(T)=
Nµ2

kT
e2J/kT , (14)

�2 �1

�1

1

0 1 2
(��B)

M(B, T )/N�

�J  � 0
�J  � 0

FIGURE 13.4 The degree of magnetization of an Ising chain as a function of the parameter (βµB).
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which diverges as T→ 0. It should be noted that the singularity here is not of the power-law
type; it is exponential instead.

The zero-field energy and the zero-field specific heat of the system follow from equa-
tion (12); one gets

U0(T)=−NJ tanh(βJ) (15)

and

C0(T)=Nk(βJ)2sech2(βJ). (16)

Figure 13.5 shows the variation of the specific heat C0 as a function of temperature.
Although it passes through a maximum, C0 is a smooth function of T , vanishing as T→ 0.
Note that equations (15) and (16) are identical to the corresponding equations, (12.6.29)
and (12.6.30), of the Bethe approximation, with coordination number 2, for which Tc = 0.
It turns out that for a one-dimensional chain the Bethe approximation, in fact, yields exact
results; for a fuller demonstration of this, see Problem 13.3.

At this stage it seems instructive to express the free energy of the system, near its crit-
ical point, in a scaled form, as in Section 12.10. Unfortunately, there is a problem here.
Since Tc = 0, the conventional definition, t = (T −Tc)/Tc, does not work. A closer look at
equations (11) and (14), however, suggests that we may adopt instead the definition

t = e−pJ/kT (p> 0) (17)

so that, as T→ Tc, t→ 0 as desired while for temperatures close to Tc, t is much less than
unity. The definition of h remains the same, namely µB/kT . The free energy function
(A+NJ)/NkT then takes the form

ψ (s)(t,h)=− ln[coshh+ (t4/p
+ sinh2 h)1/2] (18a)

≈−(t4/p
+h2)1/2 (t,h� 1), (18b)

which may be written in the scaled form

ψ (s)(t,h)≈ t2/pf (h/t2/p). (19)

0
0
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1 2

kT/J
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0
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FIGURE 13.5 The zero-field specific heat of an Ising chain as a function of temperature.
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At the same time, equation (14) becomes

χ0(T)

(Nµ2/kT)
≈ t−2/p. (20)

Comparing these results with the scaling formulation of Section 12.10, we infer that for this
model

α = 2− 2/p, 1= 2/p, and γ = 2/p, (21)

in conformity with the exponent relation (12.10.14b). Note that the exponents β and δ for
this model cannot be defined in the normal, conventional sense. One may, however, write
equation (13) in the form

m= sinhh/(t4/p
+ sinh2 h)1/2 (22a)

≈ h/(t4/p
+h2)1/2 (t,h� 1) (22b)

=−t0f ′(h/t2/p), (22c)

suggesting that β may formally be taken as zero. At the same time, since

m|t=0 = 1, (23)

which is ∼h0, the exponent δ may formally be taken as infinite.
We now study spin–spin correlations in the Ising chain. For this, we set B= 0 but

at the same time generalize the interaction parameter J to become site-dependent (the
reason for which will become clear soon). The partition function of the system is then
given by

QN (T)=
∑
σ1=±1

· · ·

∑
σN=±1

∏
i

eβJiσiσi+1 ; (24)

compare to equation (3a). With B= 0, it is simpler to work with an open chain, which has
only (N − 1) nearest-neighbor pairs; the advantage of this choice is that in the summand
of (24) the variables σ1 and σN appear only once! A summation over either of these can be
carried out easily; doing this over σN , we have

∑
σN=±1

eβJN−1σN−1σN = 2cosh(βJN−1σN−1)= 2cosh(βJN−1), (25)

regardless of the sign of σN−1. We thus obtain the recurrence relation

QN (T ; J1, . . . , JN−1)= 2cosh(βJN−1)QN−1(T ; J1, . . . , JN−2). (26)
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By iteration, we get

QN (T)=
N−1∏
i=1

{2cosh(βJi)}
∑
σ1=±1

1= 2N
N−1∏
i=1

cosh(βJi), (27)

so that

1
N

lnQN (T)= ln2+
1
N

N−1∑
i=1

lncosh(βJi), (28)

which may be compared with equation (9) — remembering that, in the absence of the
field, λ1 = 2cosh(βJ). We are now ready to calculate the correlation function, g(r), of the
Ising chain.

It is straightforward to see from equation (24) that

σkσk+1 =
1

QN

(
1
β

∂

∂Jk

)
QN =

(
1
β

∂

∂Jk

)
lnQN . (29)

Substituting from equation (28), and remembering that σ k = 0 at all finite temperatures,
we obtain for the nearest-neighbor correlation function

gk(n.n.)= σkσk+1 = tanh(βJk). (30)

For a pair of spins separated by r lattice constants, we get

gk(r)= σkσk+r = (σkσk+1)(σk+1σk+2) . . . (σk+r−1σk+r) (since all σ 2
i = 1)

=
1

QN

(
1
β

∂

∂Jk

)(
1
β

∂

∂Jk+1

)
· · ·

(
1
β

∂

∂Jk+r−1

)
QN

=

k+r−1∏
i=k

tanh(βJi). (31)

Reverting to a common J , we obtain the desired result

g(r)= tanhr(βJ), (32)

which may be written in the standard form

g(r)= e−r/ξ , with ξ =
[
lncoth(βJ)

]−1 . (33a, b)

For βJ � 1,

ξ ≈
1
2

e2βJ , (34)
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which diverges as T→ 0. In terms of the variable t, as defined in equation (17),

ξ ∼ t−2/p (t� 1), (35)

giving ν = 2/p. And since our g(r) does not contain any power of r, we infer that
(d− 2+ η)= 0 — giving η = 1; one may check that the same result follows from equation
(12.12.10) or (12.12.11). In passing, we note that, regardless of the choice of the number p
in defining t, we have for this model

γ = ν = 2−α. (36)

We further note that, since d = 1 here, the hyperscaling relation, dν = 2−α, is also obeyed.
Finally, we observe that expression (33b) for ξ is in conformity with the general result

ξ−1
= ln(λ1/λ2), (37)

where λ1 is the largest eigenvalue of the transfer matrix P of the problem and λ2 the
next largest; for a derivation of this result, see Section 5.3 of Yeomans (1992). In our case,
λ1 = 2cosh(βJ) and λ2 = 2sinh(βJ), see equation (8) with B= 0, and hence expression
(33b) for ξ .

13.3 The n-vector models in one dimension
We now consider a generalization of the Ising chain in which the spin variable σ i is an
n-dimensional vector of magnitude unity, whose components can vary continuously over
the range−1 to+1; in contrast, the Ising spin σi could have only a discrete value,+1 or−1.
We shall see that the vector models (with n≥ 2), while differing quantitatively from one
another, differ rather qualitatively from the scalar models (for which n=1). While some of
these qualitative differences will show up in the present study, more will become evident
in higher dimensions. Here we follow a treatment due to Stanley (1969a,b) who first solved
this problem for general n.

Once again we employ an open chain composed of N spins constituting (N − 1)
nearest-neighbor pairs. The Hamiltonian of the system, in zero field, is given by

HN {σ i} = −

N−1∑
i=1

Jiσ i · σ i+1. (1)

We assume our spins to be classical, so we do not have to worry about the commutation
properties of their components. And since the components σiα(α = 1, . . . ,n) of each spin
vector σ i are now continuous variables, the partition function of the system will involve
integrations, rather than summations, over these variables. Associating equal a priori
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probabilities with solid angles of equal magnitude in the n-dimensional spin-vector space,
we may write

QN =

∫
d�1

�(n)
· · ·

d�N

�(n)

N−1∏
i=1

eβJiσ i·σ i+1, (2)

where �(n) is the total solid angle in an n-dimensional space; see equation (7b) of
Appendix C, which gives

�(n)= 2πn/2/0(n/2). (3)

We first carry out integration over σ N , keeping the other σ i fixed. The relevant integral to
do is

1
�(n)

∫
eβJN−1σN−1·σN d�N . (4)

For σ N we employ spherical polar coordinates, with polar axis in the direction of σ N−1,
while for d�N we use expression (9) of Appendix C. Integration over angles other than the
polar angle θ yields a factor of

2π (n−1)/2/0{(n− 1)/2}. (5)

The integral over the polar angle is

π∫
0

eβJN−1 cosθ sinn−2 θ dθ =
π1/20{(n− 1)/2}

( 1
2βJN−1)

(n−2)/2
I(n−2)/2(βJN−1), (6)

where Iµ(x) is a modified Bessel function; see Abramowitz and Stegun (1964), formula
9.6.18. Combining (3), (5), and (6), we obtain for (4) the expression

0(n/2)

( 1
2βJN−1)

(n−2)/2
I(n−2)/2(βJN−1), (7)

regardless of the direction of σ N−1. By iteration, we get

QN =

N−1∏
i=1

0(n/2)

( 1
2βJi)

(n−2)/2
I(n−2)/2)(βJi); (8)

the last integration, over d�1, gave simply a factor of unity.
Expression (8) is valid for all n — including n= 1, for which it gives: QN =

∏
i cosh(βJi).

This last result differs from expression (13.2.27) by a factor of 2N ; the reason for this dif-
ference lies in the fact that the QN of the present study is normalized to go to unity as the
βJi go to zero [see equation (2)] whereas the QN of the preceding section, being a sum over
2N discrete states [see equation (13.2.24)] goes to 2N instead. This difference is important
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in the evaluation of the entropy of the system; it is of no consequence for the calculations
that follow.

First of all we observe that the partition function QN is analytic at all β — except
possibly at β =∞ where the singularity of the problem is expected to lie. Thus, no long-
range order is expected to appear at any finite temperature T — except at T = 0 where,
of course, perfect order is supposed to prevail. In view of this, the correlation function for
the nearest-neighbor pair (σ k,σ k+1) is simply σ k · σ k+1 and is given by, see equations (2)
and (8),

gk(n.n.)=
1

QN

(
1
β

∂

∂Jk

)
QN =

In/2(βJk)

I(n−2)/2(βJk)
. (9)

The internal energy of the system turns out to be

U0 ≡−
∂

∂β
(lnQN )=−

N−1∑
i=1

Ji
In/2(βJi)

I(n−2)/2(βJi)
; (10)

not surprisingly, U0 is simply a sum of the expectation values of the nearest-neighbor
interaction terms−Jiσ i · σ i+1, which is identical to a sum of the quantities−Jigi(n.n.) over
all nearest-neighbor pairs in the system.

The calculation of gk(r) is somewhat tricky because of the vector character of the spins,
but things are simplified by the fact that we are dealing with a one-dimensional system
only. Let us consider the trio of spins σ k,σ k+1 and σ k+2, and suppose for a moment that our
spins are three-dimensional vectors; our aim is to evaluate σ k · σ k+2. We choose spherical
polar coordinates with polar axis in the direction of σ k+1; let the direction of σ k be defined
by the angles (θ0,φ0) and that of σ k+2 by (θ2,φ2). Then

σ k · σ k+2 = cosθ(k,k+ 2)= cosθ0 cosθ2+ sinθ0 sinθ2 cos(φ0−φ2). (11)

Now, with σ k+1 fixed, spins σ k and σ k+2 will orient themselves independently of one
another because, apart from σ k+1, there is no other channel of interaction between them.
Thus, the pairs of angles (θ0,φ0) and (θ2,φ2) vary independently of one another; this makes
cos(φ0−φ2)= 0 and cosθ0 cosθ2 = cos(θ0) cos(θ2). It follows that

σ k · σ k+2 = σ k · σ k+1 σ k+1 · σ k+2. (12)

Extending this argument to general n and to a segment of length r, we get

gk(r)=
k+r−1∏

i=k

gi(n.n.)=
k+r−1∏

i=k

In/2(βJi)/I(n−2)/2(βJi). (13)
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With a common J , equations (9), (10), and (13) take the form

g(n.n.)= In/2(βJ)/I(n−2)/2(βJ), (14)

U0 =−(N − 1)J In/2(βJ)/I(n−2)/2(βJ) (15)

and

g(r)= {In/2(βJ)/I(n−2)/2(βJ)}r . (16)

The last result here may be written in the standard form e−r/ξ , with

ξ = [ln{I(n−2)/2(βJ)/In/2(βJ)}]−1. (17)

For n= 1, we have: I1/2(x)/I−1/2(x)= tanh x; the results of the preceding section are then
correctly recovered.

For a study of the low-temperature behavior, where βJ � 1, we invoke the asymptotic
expansion

Iµ(x)=
ex

√
(2πx)

[
1−

4µ2
− 1

8x
+ ·· ·

]
(x� 1), (18)

with the result that

g(n.n.)≈ 1−
n− 1
2βJ

, (14a)

U0 ≈−(N − 1)J
[

1−
n− 1
2βJ

]
(15a)

and

ξ ≈
2βJ

n− 1
∼ T−1. (17a)

Clearly, the foregoing results hold only for n≥ 2; for n= 1, the asymptotic expansion (18)
is no good because it yields the same result for µ= 1

2 as for µ=−1
2 . In that case one is

obliged to use the closed form result, g(n.n.)= tanh(βJ), which for βJ � 1 gives

g(n.n.)≈ 1− 2e−2βJ (14b)

U0 ≈−(N − 1)J[1− 2e−2βJ ] (15b)

and

ξ ≈
1
2

e2βJ , (17b)
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in complete agreement with the results of the preceding section. For completeness, we
have for the low-temperature specific heat of the system

C0 ≈ (N − 1)


1
2
(n− 1)k for n≥ 2 (19a)

4k(βJ)2e−2βJ for n= 1. (19b)

The most obvious distinction between one-dimensional models with continuous sym-
metry (n≥ 2) and those with discrete symmetry (n= 1) is in relation to the nature of the
singularity at T = 0. While in the case of the former it is a power-law singularity, with
critical exponents1

α = 1, ν = 1, η = 1, and hence γ = 1, (20)

in the case of the latter it is an exponential singularity. Nevertheless, by introducing the
temperature parameter t = e−pβJ , see equation (13.2.17), we converted this exponential
singularity in T into a power-law singularity in t, with

α = 2− 2/p, γ = ν = 2/p, η = 1. (21)

However, the inherent arbitrariness in the choice of the number p left an ambiguity in the
values of these exponents; we now see that by choosing p= 2 we can bring exponents (21)
in line with (20).

Next we observe that the critical exponents (20) for n≥ 2 turn out to be independent of
n — a feature that seems peculiar to situations where Tc = 0. In higher dimensions, where
Tc is finite, the critical exponents do vary with n; for details, see Section 13.7. In any case,
the amplitudes always depend on n. In this connection we note that, since each of the
N spins comprising the system has n components, the total number of degrees of free-
dom in this problem is Nn. It seems appropriate that the extensive quantities, such as U0

and C0, be divided by Nn, so that they are expressed as per degree of freedom. A look at
equation (15a) then tells us that our parameter J must be of the form nJ ′, so that in the
thermodynamic limit

U0

Nn
≈−J ′+

n− 1
2n

kT (22)

and, accordingly,

C0

Nn
≈

n− 1
2n

k. (23)

1Note that, since Tc = 0 here, the assertion that the free energy functionψ ≡ (A/NkT)∼ (T −Tc)
2−α implies that, near

T = Tc in the present case, A∼ T 3−α ; accordingly, the specific heat C0 ∼ T 2−α . Comparison with expression (19a) would
be inappropriate because C0, in the limit T→ 0, cannot be nonzero; the result quoted in (19a) is an artifice of the model
considered, which must somehow be “subtracted away.” The next approximation yields a result proportional to the first
power in T , giving α = 1. For a parallel situation, see equation (13.5.35) for the spherical model (which pertains to the
case n=∞).
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Equation (17a) then becomes

ξ ≈
2n

n− 1
J ′

kT
. (24)

Note that the amplitudes appearing in equations (22) through (24) are such that the limit
n→∞ exists; this limit pertains to the so-called spherical model, which will be studied in
Section 13.5.

Figure 13.6 shows the normalized energy u0(=U0/NnJ ′) as a function of temperature
for several values of n, including the limiting case n= 1. We note that u0 (which, in the
thermodynamic limit, is equal and opposite to the nearest-neighbor correlation function
g(n.n.)) increases monotonically with n — implying that g(n.n.), and hence g(r), decrease
monotonically as n increases. This is consistent with the fact that the correlation length ξ
also decreases as n increases; see equation (24). The physical reason for this behavior is
that an increase in the number of degrees of freedom available to each spin in the system
effectively diminishes the degree of correlation among any two of them.

Another feature emerges here that distinguishes vector models (n≥ 2) from the scalar
model (n= 1); this is related to the manner in which the quantity u0 approaches its
ground-state value−1. While for n= 1, the approach is quite slow — leading to a vanishing

0.0
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FIGURE 13.6 The normalized energy u0(=U0/NnJ ′) of a one-dimensional chain as a function of the temperature
parameter kT/J ′ for several values of n (after Stanley, 1969a,b). Note that for this classical model, the slopes as
T→ 0 are given by the equipartition theorem for n− 1 degrees of freedom per spin.
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specific heat, see equations (15b) and (19b) — for n≥ 2, the approach is essentially linear
in T , leading to a finite specific heat; see equations (15a) and (19a). This last result violates
the third law of thermodynamics, according to which the specific heat of a real system
must go to zero as T→ 0. The resolution of this dilemma lies in the fact that the low-lying
states of a system with continuous symmetry (n≥ 2) are dominated by long-wavelength
excitations, known as Goldstone modes, which in the case of a magnetic system assume
the form of “spin waves,” characterized by a particle-like spectrum: ω(k)∼ k2. The very
low-temperature behavior of the system is primarily governed by these modes, and the
thermal energy associated with them is given by

Utherma1 ∼

∫ ~ω
exp(~ω/kBT)− 1

kd−1dk ∼ T (d+2)/2; (25)

this results in a specific heat∼T d/2, which indeed is consistent with the third law. For
a general account of the Goldstone excitations, see Huang (1987); for their role as “spin
waves” in a magnetic system, see Plischke and Bergersen (1989).

For further information on one-dimensional models, see Lieb and Mattis (1966) and
Thompson (1972a,b).

13.4 The Ising model in two dimensions
As stated earlier, Ising (1925) himself carried out a combinatorial analysis of the one-
dimensional model and found that there was no phase transition at a finite temperature T .
This led him to conclude, erroneously though, that his model would not exhibit a phase
transition in higher dimensions either. In fact, it was this “supposed failure” of the Ising
model that motivated Heisenberg to develop, in 1928, the theory of ferromagnetism based
on a more sophisticated interaction among the spins; compare the Heisenberg interac-
tion (12.3.6) with the Ising interaction (12.3.7). It was only after some exploitation of the
Heisenberg model that people returned to investigate the properties of the Ising model.

The first exact, quantitative result for the two-dimensional Ising model was obtained
by Kramers and Wannier (1941) who successfully located the critical temperature of the
system. They were followed by Onsager (1944) who derived an explicit expression for the
free energy in zero field and thereby established the precise nature of the specific-heat
singularity. These authors employed the transfer matrix method that was introduced in
Section 13.2 to solve the corresponding one-dimensional problem; its application to the
two-dimensional model, even in the absence of the field, turned out to be an extremely
difficult task. Although some of these difficulties were softened by subsequent treatments
due to Kaufman (1949) and to Kaufman and Onsager (1949), it seemed very natural to look
for other simpler approaches.

One such approach was developed by Kac and Ward (1952), later refined by Potts and
Ward (1955), in which combinatorial arguments were used to express the partition func-
tion of the system as the determinant of a certain matrix A. This method throws special
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light on the “topological conditions” that give rise to an exact solution in two dimensions
but are clearly absent in three dimensions; a particularly lucid account of this method has
been given by Baker (1990). In 1960 Hurst and Green introduced yet another approach
to investigate the Ising problem; this involved the use of “triangular arrays of quantities
closely related to antisymmetric determinants” and became rightly known as the method
of Pfaffians. This method applies rather naturally to the study of “configurations of dimer
molecules on a given lattice” which, in turn, is closely related to the Ising problem; for
details, see Kasteleyn (1963), Montroll (1964), and Green and Hurst (1964). A pedagog-
ical account of the approach through Pfaffians is given in Thompson (1972b), where a
comprehensive treatment of the original, algebraic approach can also be found. Another
combinatorial solution, which is generally regarded as the simplest, was obtained by
Vdovichenko (1965) and by Glasser (1970), and is readily accessible in Stanley (1971). For
an exhaustive account of the two-dimensional Ising model, see McCoy and Wu (1973).

We analyze this problem with the help of a combinatorial approach assisted, from time
to time, by a graphical representation. The zero-field partition function of the system is
given by the familiar expression

Q(N ,T)=
∑
{σi}

∏
n.n.

eKσiσj (K = J/kT). (1)

Our first step consists of carrying out a high-temperature and a low-temperature expan-
sion of the partition function and establishing an intimate relation between the two.

High-temperature expansion
Since the product (σiσj) can only be+1 or−1, we may write

eKσiσj = coshK + σiσj sinhK = coshK (1+ σiσjv), v = tanhK . (2)

The product over all nearest-neighbor pairs then takes the form∏
n.n.

eKσiσj = (coshK )N
∏
n.n.

(1+ σiσjv), (3)

N being the total number of nearest-neighbor pairs on the lattice; for a lattice with peri-
odic boundary conditions, N =

1
2 qN where q is the coordination number. The partition

function may then be written as

Q(N ,T)= (coshK )N
∑
σ1=±1

· · ·

∑
σN=±1

[
1+ v

∑
(i,j)

σiσj + v2
∑
(i,j)
(i,j)6=(k,l)

∑
(k,l)

σiσjσkσl + . . .

]
. (4)

Now we represent each product (σiσj) appearing in (4) by a “bond connecting sites i and
j on the given lattice”; then, each coefficient of vr in the expansion would be represented
by a “graph consisting of r different bonds on the lattice.” Figure 13.7 shows all possible
graphs, with r = 1 and 2, on a square lattice. Notice that in each case we have some of



490 Chapter 13 . Phase Transitions: Exact (or Almost Exact) Results for Various Models

(i) (ii)a (ii)b

FIGURE 13.7 Graphs with r = 1 and r = 2 on a square lattice. Graph (i) is for r = 1. The r = 2 graphs are of two types,
ones that do not include a common site as in (ii)a and ones that do include a common site as in (ii)b.

r 5 4 r 5 6 r 5 8

FIGURE 13.8 Examples of closed graphs with r bonds on a square lattice.

the σi appearing only once in the term, which makes all these terms vanish on summation
over {σi}. The same is true for r = 3. Only when we reach r = 4 do we receive a nonvanish-
ing contribution from terms of the type (σiσjσjσkσkσlσlσi)≡ 1 which, on summation over
{σi}, yield a contribution of 2N each. It is obvious that a nonvanishing term corresponds
to a graph in which each vertex is met by an even number of bonds — making the graph
necessarily a closed one; see Figure 13.8, where some other closed graphs are also shown.
In view of these observations, expression (4) may be written as

Q(N ,T)= 2N (coshK )N
∑

r

n(r)vr [n(0)= 1], (5)

where n(r) is the number of graphs that can be drawn on the given lattice using r bonds
such that each vertex of the graph is met by an even number of bonds. For simplic-
ity, we shall refer to these graphs as closed graphs. Our problem thus reduces to one of
enumerating such graphs on the given lattice.

Since v = tanh( J/kT), the higher the temperature the smaller the v. Expansion (5) is,
therefore, particularly useful at higher temperatures (even though it is exact for all T). As
an illustration, we apply this result to a one-dimensional Ising chain. In the case of an
open chain, no closed graphs are possible, so all we get from (5) is the term with r = 0; with
N =N − 1, this gives

Q(N ,T)= 2N (coshK )N−1, (6)
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which agrees with our previous result (13.2.27). In the case of a closed chain, we do have a
closed graph — the one with r =N ; we now get (with N =N)

Q(N ,T)= 2N (coshK )N [1+ vN ]= 2N [(coshK )N + (sinhK )N ], (7)

which agrees with expression (13.2.5), with (λ1)B=0 = 2coshK and (λ2)B=0 = 2sinhK .

Low-temperature expansion
We start with the observation that the ground state of the system consists of all spins
aligned in the same direction, with the total energy E0 =−JN . As one spin is flipped, q
unlike nearest-neighbor pairs are created at the expense of like ones, and the energy of the
system increases by an amount 2qJ . It seems appropriate, therefore, that the Hamiltonian
of the system be written in terms of the number, N+−, of unlike nearest-neighbor pairs in
the lattice, that is,

H(N+−)=−J(N+++N−−−N+−)=−J(N − 2N+−). (8)

The partition function of the system may then be written as

Q(N ,T)= eKN
∑

r

m(r)e−2Kr [m(0)= 1], (9)

where m(r) denotes the “number of distinct ways in which the N spins of the lattice can be
so arranged as to yield r unlike nearest-neighbor pairs.” It is obvious that the first nonzero
term in (9), after the one with r = 0, would be the one with r = q.

A graphical representation of the number m(r) is straightforward. Referring to
Figure 13.9, which pertains to a square lattice, we see that each term in expansion (9) can
be associated with a closed graph that cordons off region(s) of “up” spins from those of
“down” spins, the perimeter of the graph being precisely the number of unlike nearest-
neighbor pairs in the lattice for that particular configuration. Our problem then reduces
to one of enumerating closed graphs, of appropriate perimeters, that can be drawn on the
given lattice.

r 5 4

1 1 1 1 1

1 1 1 1 1

1 2 1 1 1

1 1 1 1 1

1 1 1 1 1

r 5 6

1 1 1 1 1

1 1

1

1 1

1

2

2 1 1

1 1 1 1 1

1 1 1 1 1

r 5 8

1 1 1 1 1

1 1 1 1

1 2

2

2 1 1

1 1 1 1 1

1 1 1 1 1

FIGURE 13.9 Graphs cordoning off regions of “up” spins from those of “down” spins, with r unlike
nearest-neighbor pairs.
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Now, since expansion (9) is a power series in the variable e−2K that increases as T
increases, this expansion is particularly useful at lower temperatures (even though it is
exact for all T). We shall now establish an important relation between the coefficients
appearing in expansion (5) and the ones appearing in (9).

The duality transformation
To establish the desired relation we construct a lattice dual to the one given. By definition,
we draw right bisectors of all the bonds in the lattice, so that the points of intersection of
these bisectors become the sites of the new lattice. The resulting lattice may not be similar
in structure to the one we started with; for instance, while the dual of a square lattice is
itself a square lattice, the dual of a triangular lattice (q= 6) is, in fact, a honeycomb lattice
(q= 3), and vice versa; see Figures 13.10 and 13.11. The argument now runs as follows:

We start with the given lattice on which one of the n(r) closed graphs, with r bonds,
is drawn and construct the lattice dual to this one, placing spins of one sign on the sites
inside this graph and spins of opposite sign on the sites outside. Then this graph represents
precisely a configuration with r unlike nearest-neighbor pairs in the dual lattice and hence
qualifies to be counted as one of the m(r) graphs on the dual lattice. Conversely, if we start
with one of the m(r) graphs, of perimeter r, representing a configuration with r unlike
nearest-neighbor pairs in the original lattice and go through the process of constructing
the dual lattice, then this graph will qualify to be one of the n(r) closed graphs, with r
bonds, on the dual lattice. In fact, there is a one-to-one correspondence between graphs
of one kind on the given lattice and graphs of the other kind on the dual lattice; compare
Figure 13.8 with Figure 13.9. It follows that

n(r)=mD(r) and m(r)= nD(r), (10a, b)

FIGURE 13.10 A square lattice and its dual (which is also square).
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FIGURE 13.11 A honeycomb lattice (q= 3) and its dual, which is triangular (q= 6).

where the suffix D refers to the dual lattice.
With relations (10) established, we go back to equation (9) and introduce another

temperature variable K ∗(= J/kT∗) such that

tanhK ∗ = e−2K ; (11)

note that equation (11) can also be written in the symmetrical form

sinh(2K )sinh(2K ∗)= 1. (12)

Substituting (10b) and (11) into (9), we get

Q(N ,T)= eKN
∑

r

nD(r)v
∗r , v∗ = tanhK ∗. (13)

At the same time we apply equation (5) to the dual lattice at temperature T∗, to get

QD(ND,T∗)= 2ND (coshK ∗)N
∑

r

nD(r)v
∗r , (14)

where ND = qN/qD; see again Figure 13.11. Comparing (13) and (14), we arrive at the
desired relation

Q(N ,T)= 2−ND (sinhK ∗ coshK ∗)−N /2QD(ND,T∗), (15)
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which relates the partition function of the given lattice at temperature T to that of the dual
lattice at temperature T∗. Equation (15) constitutes the so-called duality transformation.

Location of the critical point
For a square lattice, which is self-dual, there should be no distinction between Q and QD.
With q= 4, and hence N = 2N , equation (15) becomes

Q(N ,T)= [sinh(2K ∗)]−N Q(N ,T∗), (16)

which may also be written as

[sinh(2K )]−N/2Q(N ,T)= [sinh(2K ∗)]−N/2Q(N ,T∗). (17)

It will be noted from equation (11) or (12) that as T→∞, T∗→ 0 and as T→ 0, T∗→
∞; equation (17), therefore, establishes a one-to-one correspondence between the high-
temperature and the low-temperature values of the partition function of the lattice. It then
follows that if there exists a singularity in the partition function at a particular temperature
Tc, there must exist an equivalent singularity at the corresponding temperature T∗c . And in
case we have only one singularity, as indeed follows from one of the theorems of Yang and
Lee (1952), it must exist at a temperature Tc such that T∗c = Tc. The critical temperature of
the square lattice is, therefore, given by the equation, see formula (12),

sinh(2Kc)= 1, (18)

which gives

Kc =
1
2

sinh−1 1=
1
2

ln(
√

2+ 1)=
1
2

lncot(π/8)' 0.4407. (19)

For comparison, we note that for the same lattice the Bragg–Williams approximation gave
Kc = 0.25 while the Bethe approximation gave Kc =

1
2 ln2' 0.3466.

The situation for other lattices such as the triangular or the honeycomb, which are not
self-dual, is complicated by the fact that the functions Q and QD in equation (15) are not
the same. One then needs another trick — the so-called star–triangle transformation —
which was first alluded to by Onsager (1944) in his famous paper on the solution of the
square lattice problem but was written down explicitly by Wannier (1945); for details, see
Baxter (1982). Unlike the duality transformation, this one establishes a relation between
a high-temperature model on the triangular lattice and again a high-temperature model
on the honeycomb lattice, and so on. Combining the two transformations, one can elim-
inate the dual lattice altogether and obtain a relation between a high-temperature and
a low-temperature model on the same lattice. The location of the critical point is then
straightforward; one obtains for the triangular lattice (q= 6)

Kc =
1
2

sinh−1 1
√

3
' 0.2747, (20)
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and for the honeycomb lattice (q= 3)

Kc =
1
2

sinh−1√3' 0.6585. (21)

The numerical values of Kc, given by equations (19) through (21), reinforce the fact that
higher coordination numbers help propagate long-range order in the system more effec-
tively and hence raise the critical temperature Tc.

The partition function and the specific-heat singularity
The partition function of the Ising model on a square lattice is given by, see references cited
at the beginning of this section,

1
N

lnQ(T)= ln{21/2 cosh(2K )}+
1
π

π/2∫
0

dφ ln{1+
√
(1− κ2 sin2φ)}, (22)

where

κ = 2sinh(2K )/cosh2(2K ). (23)

Differentiating (22) with respect to−β, one obtains for the internal energy per spin

1
N

U0(T)=− 2J tanh(2K )+
1
π

(
κ

dκ
dβ

)

×

π/2∫
0

dφ
sin2φ

{1+
√
(1− κ2 sin2φ)}

√
(1− κ2 sin2φ)

. (24)

Rationalizing the integrand, the integral in (24) can be written as

1

κ2

{
−
π

2
+K1(κ)

}
, (25)

where K1(κ) is the complete elliptic integral of the first kind, κ being the modulus of the
integral:

K1(κ)=

π/2∫
0

dφ
√
(1− κ2 sin2φ)

. (26)

Now, a logarithmic differentiation of (23) with respect to β gives

1
κ

dκ
dβ
= 2J{coth(2K )− 2tanh(2K )}. (27)
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Substituting these results into (24), we obtain

1
N

U0(T)=−J coth(2K )
{

1+
2κ ′

π
K1(κ)

}
, (28)

where κ ′ is the complementary modulus:

κ ′ = 2tanh2(2K )− 1 (κ2
+ κ ′2 = 1). (29)

Figure 13.12 shows the variation of the moduli κ and κ ′ with the temperature parame-
ter (kT/J)= K−1. We note that, while κ is always positive, κ ′ can be positive or negative;
actually, κ lies between 0 and 1 while κ ′ lies between −1 and 1. At the critical point, where
sinh(2Kc)= 1 and hence K−1

c ' 2.269, the moduli κ and κ ′ are equal to 1 and 0, respectively.
To determine the specific heat of the lattice, we differentiate (28) with respect to

temperature. In doing so, we make use of the following results:

dκ
dβ
=−

κ ′

κ

dκ ′

dβ
,

dκ ′

dβ
= 8J tanh(2K ){1− tanh2(2K )} (30)

and

dK1(κ)

dκ
=

1

κ ′2κ
{E1(κ)− κ

′2K1(κ)}, (31)

where E1(κ) is the complete elliptic integral of the second kind:

E1(κ)=

π/2∫
0

√
(1− κ2 sin2φ)dφ. (32)

1

�, �9

kT /J
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FIGURE 13.12 Variation of the moduli κ and κ ′ with (kT/J).
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We finally obtain

1
Nk

C0(T)=
2
π
{K coth(2K )}2

[
2{K1(κ)−E1(κ)}− (1− κ

′)
{π

2
+ κ ′K1(κ)

}]
. (33)

Now, the elliptic integral K1(κ) has a singularity at κ = 1 (i.e., at κ ′ = 0), in the neighbor-
hood of which

K1(κ)≈ ln{4/|κ ′|} and E1(κ)≈ 1. (34)

Accordingly, the specific heat of the lattice displays a logarithmic singularity at a tempera-
ture Tc, given by the condition: κc = 1 (or κ ′c = 0), which is identical to (18). In the vicinity
of the critical point, equation (33) reduces to

1
Nk

C0(T)'
8
π

K 2
c

[
ln{4/|κ ′|} −

(
1+

π

4

)]
; (35)

at the same time, the parameter κ ′ reduces to, see equation (30),

κ ′ ' 2
√

2Kc

(
1−

T
Tc

)
. (36)

The specific heat singularity is, therefore, given by

1
Nk

C0(T)'
8
π

K 2
c

[
− ln

∣∣∣∣1− T
Tc

∣∣∣∣+{ln
(√

2
Kc

)
−

(
1+

π

4

)}]
'−0.4945ln

∣∣∣∣1− T
Tc

∣∣∣∣+ const., (37)

signaling a logarithmic divergence at T = Tc.
Figures 13.13 and 13.14 show the temperature dependence of the internal energy and

the specific heat of the square lattice, as given by the Onsager expressions (28) and (33); for
comparison, the results of the Bragg–Williams approximation and of the Bethe approx-
imation (with q= 4) are also included. The specific-heat singularity, given correctly by
the Onsager expression (37), is seen as a (logarithmic) peak in Figure 13.14, which differs
markedly from the jump discontinuity predicted by the mean field theory. We conclude
that the critical exponent α = α′ = 0(log).

In passing, we note that the internal energy of the lattice is continuous at the critical
point, having a value of −

√
2J per spin and an infinite, positive slope; needless to say, the

continuity of the internal energy implies that the transition takes place without any latent
heat.

Other properties
We now consider the temperature dependence of the order parameter (i.e., the sponta-
neous magnetization), of the lattice. An exact expression for this quantity was first derived
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FIGURE 13.13 The internal energy of a square lattice (q= 4) according to (1) the Onsager solution, (2) the Bethe
approximation, and (3) the Bragg–Williams approximation.
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FIGURE 13.14 The specific heat of a square lattice (q= 4) according to (1) the Onsager solution, (2) the Bethe
approximation, and (3) the Bragg–Williams approximation.

by Onsager (1949), though he never published the details of his derivation. The first
published derivation is due to Yang (1952), who showed that

L0(T)≡
1

Nµ
M(0,T)=

{
[1−{sinh(2K )}−4]1/8 for T ≤ Tc (38a)

0 for T ≥ Tc, (38b)

where K , as usual, is J/kT . In the limit T→ 0,

L0(T)' 1− 2exp(−8J/kT), (39)

which implies a very slow variation with T . On the other hand, in the limit T→ Tc−,

L0(T)≈
{

8
√

2Kc

(
1−

T
Tc

)}1/8

' 1.2224
(

1−
T
Tc

)1/8

, (40)
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FIGURE 13.15 The spontaneous magnetization of a square lattice (q= 4) according to (1) the Onsager solution,
(2) the Bethe approximation, and (3) the Bragg–Williams approximation.

which indicates a very fast variation with T . The detailed dependence of L0 on T is shown
in Figure 13.15; for comparison, the results of the Bragg–Williams approximation and the
Bethe approximation are also included. We infer that the critical exponent β for this model
is 1

8 , which is very different from the mean field value of 1
2 .

Onsager also calculated the correlation length ξ of the lattice, which showed that the
critical exponent ν = ν′ = 1 — in sharp contrast to the classical value of 1

2 . Finally, he set up
calculations for the correlation function g(r) from which one could infer that the exponent
η = 1

4 , again in disagreement with the classical value of zero. Precise asymptotic expres-
sions for the correlation function in different regimes of temperature were derived by later
authors (Fisher, 1959; Kadanoff, 1966a; Au-Yang and Perk, 1984):

g(r)≈
{4(Kc −K )}1/4

23/8(πr/ξ)1/2
e−r/ξ , ξ = {4(Kc −K )}−1 (41)

for T > Tc,

g(r)≈
{4(K −Kc)}

1/4

221/8π(r/ξ)2
e−2r/ξ , ξ = {4(K −Kc)}

−1 (42)

for T < Tc, and

g(r)≈
21/12 exp{3ζ ′(−1)}

r1/4
(43)

at T = Tc; in the last expression, ζ ′(x) denotes the derivative of the Riemann zeta function.
We note from expressions (41) and (42) that the correlation length ξ , while diverging at
T = Tc, is finite on both sides of the critical point. This feature is peculiar to the scalar
model (n= 1) only, for in the case of vector models (n≥ 2), ξ turns out to be infinite at
all T ≤ Tc.
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The zero-field susceptibility of this system has also been worked out (see Barouch et al.,
1973; Tracy and McCoy, 1973; Wu et al., 1976); asymptotically, one finds that

χ0 ≈
Nµ2

kTc
×

{
C+t−7/4 for t & 0 (44a)

C−|t|−7/4 for t . 0, (44b)

where t, as usual, is (T −Tc)/Tc while the constants C+ and C− are about 0.96258 and
0.02554, respectively. We see that the critical exponent γ = γ ′ = 7

4 , as opposed to the mean
field value of 1, and the ratio C+/C− ' 37.69, as opposed to the mean field value of 2.
Assembling all the exponents in one place, we have for the two-dimensional Ising model

α = α′ = 0(log), β =
1
8

, γ = γ ′ =
7
4

, ν = ν′ = 1, η =
1
4

. (45)

Since this model has not yet been solved in the presence of a field, a direct evaluation
of the exponent δ has not been possible. Assuming the validity of the scaling relations,
however, we can safely conclude that δ = 15 — again very different from the classical value
of 3. All in all, the results of this section tell us very clearly, and loudly, how inadequate the
mean field theory can be.

Before we close this section, a few remarks seem to be in order. First of all, it may be
mentioned that for the model under consideration one can also calculate the interfacial
tension s, which may be defined as the “free energy associated, per unit area, with the
interfaces between the domains of up spins and those of down spins”; in our analogy with
the gas–liquid systems, this corresponds to the conventional surface tension σ . The corre-
sponding exponentµ, that determines the manner in which s→ 0 as T→ Tc−, turns out to
be 1 for this model; see Baxter (1982). This indeed obeys the scaling relation µ= (d− 1)ν,
as stated in Problem 12.26. Second, we would like to point out that, while the solution
of the two-dimensional Ising model was the first exact treatment that exposed the inade-
quacy of the mean field theory, it was also the first to disclose the underlying universality of
the problem. As discovered by Onsager himself, if the spin–spin interactions were allowed
to have different strengths, J and J ′, in the horizontal and vertical directions of the lattice,
the specific-heat divergence at T = Tc continued to be logarithmic — independently of the
ratio J ′/J — even though the value of Tc itself and of the various amplitudes appearing in
the final expressions were modified. A similar result for the spontaneous magnetization
was obtained by Chang (1952) who showed that, regardless of the value of J ′/J , the expo-
nent β continued to be 1

8 . Further corroborative evidence for universality came from the
analysis of two-dimensional lattices other than the square one which, despite structural
differences, led to the same critical exponents as the ones listed in equation (45).

13.4.A The two-dimensional Ising model on a finite lattice

Phase transitions, viewed as critical phenomena, cannot occur in a finite system since
a statistical mechanical model with a finite number of degrees of freedom cannot have
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a nonanalytic partition function or free energy. Criticality occurs only in the thermody-
namic limit. Since real physical systems are of finite size, the manner in which finite-
size effects manifest themselves as the correlation length ξ approaches the system size
is of considerable importance in understanding how critical singularities get rounded
off in real systems. In this regard, the two-dimensional nearest-neighbor Ising model
on a square lattice in zero field can be solved on a finite square lattice with periodic
boundary conditions (Kaufman, 1949), which allows for a detailed exploration of finite-
size effects, especially near the bulk critical point; see Ferdinand and Fisher (1969).
Kaufman’s solution is based on a determination of all the eigenvalues of the transfer
matrix.

Onsager (1944) only required the largest eigenvalue since his solution was based on
a strip geometry with the length of one side taken to infinity. We here consider the Ising
model on a lattice with n rows and m columns with periodic boundary conditions; see
Figure 13.16. Each column of n spins has 2n possible configurations, so the transfer matrix
P that couples nearest-neighbor columns is a 2n

× 2n matrix of Boltzmann factors with
eigenvalues λα , with α = 1,2, . . . ,2n. Just as in the case of the one-dimensional Ising model
studied in Section 13.2, the partition function of a system with n rows and m columns can
be written as the trace of a transfer matrix P:

Qn,m(K )= Trace(Pm)=

2n∑
α=1

λm
α , (46)

where the eigenvalues of the transfer matrix fall into two classes:

λα =


(
2sinh(2K )

)n/2∑exp
(

1
2

(
±γ0± γ2± ...± γ2n−2

))
,(

2sinh(2K )
)n/2∑exp

(
1
2

(
±γ1± γ3± ...± γ2n−1

))
.

(47)

FIGURE 13.16 A finite square lattice with n= 4 rows and m= 6 columns. In view of the periodic boundary
conditions, sites on the leftmost column interact with sites on the rightmost column and the bottom row interacts
with the top row.
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The quantity γq for 0< q< 2n is the positive root of the equation

cosh(γq)=
cosh2(2K )
sinh(2K )

− cos
(πq

n

)
, (48)

while the q= 0 case is given by

eγ0 = e2K tanh(K ). (49)

Only terms with an even number of minus signs inside the exponentials appear in the
sums in equation (47), so the partition function can be written as

Qn,m(K )=
1
2
(2sinh(2K ))nm/2 (Y1+Y2+Y3+Y4), (50)

where

Y1 =

n−1∏
q=0

(
2cosh

(m
2
γ2q+1

))
, (51a)

Y2 =

n−1∏
q=0

(
2sinh

(m
2
γ2q+1

))
, (51b)

Y3 =

n−1∏
q=0

(
2cosh

(m
2
γ2q

))
, (51c)

Y4 =

n−1∏
q=0

(
2sinh

(m
2
γ2q

))
; (51d)

see Kaufman (1949). This form of the partition function allows for an exact calculation
of the free energy, internal energy, and specific heat on finite lattices; see Figure 13.17.
The logarithmic singularity in the specific heat at the bulk critical point evolves from a
specific heat peak that grows logarithmically with the system size, that is Cnm(Kc)/nmk ≈
(8K 2

c /π) ln(n)' 0.4945ln(n); see Ferdinand and Fisher (1969). Note also that the coeffi-
cient of ln(n) here is the same as the coefficient of the ln(|1−T/Tc|) term in the bulk
specific heat, as given in equation (37).

The low-temperature series expansion for the partition function can be written as
Qn,m(K )= e2nmK Q̃n,m(K ), where

Q̃n,m(K )=
nm∑
q=0

gqx2q, (52)

x = e−2K is the Boltzmann factor for a single excitation, and the coefficients gq denote
the number of configurations with energy 4qJ above the ground state. The sum of the
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FIGURE 13.17 Specific heat of the two-dimensional Ising model for finite 2×2, 4×4, . . . , 64×64 lattices. The
specific heat is analytic for all finite lattices. The maximum value of the specific heat grows proportional to the
logarithm of the linear dimension of the lattice and the location of the maximum approaches the bulk critical
temperature (denoted by the vertical line) proportional to the inverse of the linear dimension of the lattice. From
Ferdinand and Fisher (1969). Reprinted with permission; copyright © 1969, American Physical Society.

coefficients counts all the microstates in the system; therefore

lim
K→0

Q̃n,m(K )=
nm∑
q=0

gq = 2nm .

The coefficients gq represent the number of microstates pertaining to energy (−2nmJ +
4qJ), with the corresponding entropy being k lngq.

The first term in the series is g0 = 2 since there are two degenerate ground states,
namely all spins up or all spins down. It is straightforward to see that only even orders in
x appear in this expansion. Examples of the low-order graphs that contribute to the series
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FIGURE 13.18 The lowest few excited states of the lattice. The q= 2 states (a), have a single down spin in a sea of
up spins or a single up spin in a sea of down spins; these states have energy 8J above the ground state and there
are g2 = 2nm configurations. The q= 3 states (b), have a pair of down spins in a sea of up spins, or vice versa; these
states have energy 12J above the ground state and g3 = 4nm configurations. The q= 4 states (c) and (d), can have a
single grouping of opposite spins, or a pair of isolated flipped spins; these states have energy 16J above the ground
state and the total number of configurations g4 = (nm)2+ 9nm.

are shown in Figure 13.18. The first few terms in the series are

Q̃n,m(K )= 2+ (2nm)x4
+ (4nm)x6

+

(
(nm)2+ 9nm

)
x8

+

(
4(nm)2+ 24nm

)
x10
+ . . . . (53)

If both n and m are even, the model’s ferromagnetic/antiferromagnetic symmetry
( J→−J and si→−si on one sublattice) gives: gq = gnm−q. Due to the self-duality of
the two-dimensional square lattice, exactly the same coefficients gq also appear in the
high-temperature series expansion where the expansion variable is tanhK .

The probability Pq of finding an equilibrium state with energy 4qJ above the ground
state is given by

Pq =
gqx2q

Q̃n,m(K )
, (54)

and the internal energy and the heat capacity per spin are given by

U
NJ
=−2+

4
N

N∑
q=0

qPq (N = nm), (55a)

C
Nk
=

16
N

(
J

kT

)2

 N∑
q=0

q2Pq−

 N∑
q=0

qPq

2
 . (55b)

One can cast Kaufman’s solution, equation (50) and equation (51), in the form of a
low-temperature expansion of the form shown in (52), thereby giving an exact determi-
nation of the partition function and the equilibrium energy distribution; see Beale (1996).



13.4 The Ising model in two dimensions 505

The low-temperature series (52) can be written as

Q̃n,m(K )=
nm∑
q=0

gqx2q
= (Z1+Z2+Z3+Z4), (56)

where if n is even, then

Z1 =
1
2

n/2−1∏
q=0

c2
2q+1, (57a)

Z2 =
1
2

n/2−1∏
q=0

s2
2q+1, (57b)

Z3 =
1
2

c0cn

n/2−1∏
q=1

c2
2q, (57c)

Z4 =
1
2

s0sn

n/2−1∏
q=1

s2
2q; (57d)

while if n is odd, then

Z1 =
1
2

cn

(n−3)/2∏
q=0

c2
2q+1, (58a)

Z2 =
1
2

sn

(n−3)/2∏
q=0

s2
2q+1, (58b)

Z3 =
1
2

c0

(n−1)/2∏
q=1

c2
2q, (58c)

Z4 =
1
2

s0

(n−1)/2∏
q=1

s2
2q. (58d)

The factors in equations (57) and (58) are

c0 = (1− x)m+ (x(1+ x))m , (59a)

s0 = (1− x)m− (x(1+ x))m , (59b)

cn = (1+ x)m+ (x(1− x))m , (59c)

sn = (1+ x)m− (x(1− x))m , (59d)

c2
q =

1

2m−1


b

m
2 c∑

j=0

m!
(
α2

q −β
2
)j
α

m−2j
q

(2j)!(m− 2j)!

+βm

, (59e)
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s2
q =

1

2m−1


b

m
2 c∑

j=0

m!
(
α2

q −β
2
)j
α

m−2j
q

(2j)!(m− 2j)!

−βm

, (59f)

β = 2x(1− x2), (59g)

αq = (1+ x2)2−β cos
(πq

n

)
. (59h)

The function bzc denotes the largest integer less than or equal to z. The quantities c2
q and s2

q
were expanded using the binomial series in order to explicitly remove all square roots that
would hide the polynomial nature of the final result. A symbolic programming language
can be used to numerically expand the partition function as a polynomial in the variable
x in the form (52). One must set the numerical precision in the calculation to somewhat
more than nm ln2/ ln10 decimal digits in order to determine the exact values of the integer
coefficients {gq}. The numerical calculation can be checked against the low-order result
(53) or with an exact enumeration of energies on small lattices.

The low-temperature series for the Ising model on a 32× 32 lattice is

Q̃32,32(K )= 2+ 2048x4
+ 4096x6

+ 1057792x8
+ 4218880x10

+ 371621888x12
+ 2191790080x14

+ 100903637504x16
+ 768629792768x18

+ 22748079183872x20
+ ·· ·+ 4096x2042

+ 2048x2044
+ 2x2048, (60)

where the largest coefficient is

g512 = 6,342,873,169,001,916,568,766,443,273,025,000,331,593,063,

924,436,135,196,680,443,689,656,478,072,741,300,511,612,

123,900,652,711,596,311,283,701,724,071,226,144,241,851,

411,641,714,893,727,789,741,510,169,213,344,005,116,385,

197,594,692,089,556,614,547,788,150,860,200,720,413,211,

442,412,355,672,291,841,364,265,145,274,980,444,405,423,

129,672,679,584,959,498,234,944,801,613,246,300,853,599,

317,229,362,316 , (61)

that is, there are about 6.342× 10306 configurations with energy halfway between the
ferromagnetic and antiferromagnetic ordered states. This single microstate comprises
3.5 percent of the 21024 total configurations of the model. The exact results for the micro-
canonical entropy and the energy distribution for the 128× 128 lattice are shown in
Figures 13.19 and 13.20. These results provide excellent tests of Monte Carlo simulation
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methods, including broad histogram methods; see Beale (1996), Wang and Landau (2001),
and Landau and Binder (2009).2
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FIGURE 13.19 Microcanonical entropy per spin S/Nk = ln(gq)/nm for the two dimensional Ising model on a
128×128 lattice as calculated from equations (56), (57), and (59). The slope of the curve is proportional to the
inverse temperature, so the state with q/nm= 1/2 represents the infinite temperature state with energy halfway
between the ordered ferromagnetic and antiferromagnetic states; the largest coefficient g8192 ' 1.049× 104930 is
the number of configurations with q= nm/2= 8192. Likewise, the states at q= 0 and q= nm represent the
ferromagnetic and antiferromagnetic ground states, so the slopes of the curve diverge logarithmically in the
thermodynamic limit.
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FIGURE 13.20 The exact energy distribution Pq for the two-dimensional Ising model on a 128×128 lattice for
K = 0.4, K = Kc ' 0.4407, and K = 0.5. The variance of the energy distribution is proportional to the specific heat, so
is largest near K = Kc . Refer to Figure 13.17.

2Mathematica code for calculating the low-temperature series coefficients for a two-dimensional Ising model, as
well as the microcanonical entropies, internal energies, and specific heats for several lattice sizes can be found at
www.elsevierdirect.com.
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13.5 The spherical model in arbitrary dimensions
In the wake of Onsager’s solution to the two-dimensional Ising problem in zero field, sev-
eral attempts were made to go beyond Onsager — by solving either the three-dimensional
problem in zero field or the two-dimensional problem with field. None of these attempts
succeeded; the best one could accomplish was to rederive the Onsager solution by newer
means. This led to the suggestion that one may instead consider certain “adaptations”
of the Ising model, which may turn out to be mathematically tractable in more than two
dimensions and hopefully throw some light on the problem of phase transitions in more
realistic situations (where d is usually 3). One such adaptation was devised by Kac who, in
1947, considered a model in which the spin variable σi, instead of being restricted to the
discrete choices−1 or+1, could vary continuously, from−∞ to+∞, subject to a Gaussian
probability distribution law,

p(σi)dσi = (A/π)
1/2e−Aσ2

i dσi (i= 1, . . . ,N), (1)

so that σ 2
i , on an average, = 1/(2A). Clearly, for conformity with the standard practice,

namely σ 2
i = 1, the constant A here should be equal to 1

2 ; we may, however, leave it arbi-
trary for the time being. The resulting model is generally referred to as the Gaussian model,
and its partition function in the presence of the field is given by the multiple integral

QN =

+∞∫
−∞

· · ·

+∞∫
−∞

(
A
π

)N/2

e
−A

∑
i
σ2

i +K
∑

n.n.
σiσj+h

∑
i
σi ∏

i

dσi (K = βJ ,h= βµB). (2)

The exponent in the integrand is a symmetric, quadratic function in the σi; using standard
techniques, it can be diagonalized. Integrations over the (transformed) σj can then be car-
ried out straightforwardly — and in any number of dimensions; for details, see Berlin and
Kac (1952) or Baker (1990).

One finds that for d > 2 the Gaussian model undergoes a phase transition at a finite
temperature Tc which, for a simple hypercubic lattice, is determined by the condition
Kc = A/d; note that, with A= 1

2 , this result is precisely the one predicted by the mean field
theory (with q= 2d). There are differences, though. First of all, the present model does not
exhibit a phase transition at a finite temperature for d ≤ 2. Secondly, the critical exponents
for 2< d < 4 are nonclassical, in the sense that some of them are d-dependent, though
for d > 4 they do become classical. More importantly, at temperatures below Tc, where K
exceeds A/d, the integral in (2) diverges and the model breaks down! This led Kac to aban-
don this model and invent a new one in which the spins were again continuous variables
but subject to an overall constraint,

∑
i

σ 2
i =N , (3)
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rather than to individual constraints, σ 2
i = 1 for each i, or to an arbitrary probability

distribution law. Constraint (3) allows individual spins to vary over a rather wide range,
−N1/2 to+N1/2, but restricts the super spin vector {σi} to the “surface of an N-dimensional
hypersphere of radius N1/2”; in the Ising model, the same vector is restricted to the “cor-
ners of a hypercube inscribed within the above hypersphere.” The resulting model is
generally referred to as the spherical model.

Constraint (3) can be taken care of by inserting an appropriate delta function in the
integrand of the partition function. Using the representation

δ

(
N −

∑
i

σ 2
i

)
=

1
2π i

x+i∞∫
x−i∞

e
z(N−

∑
i
σ2

i )

dz, (4)

the partition function of the spherical model is given by

QN =
1

2π i

x+i∞∫
x−i∞

dz e zN

+∞∫
−∞

· · ·

+∞∫
−∞

e
−z
∑
i
σ2

i +K
∑

n.n.
σiσj+h

∑
i
σi ∏

i

dσi. (5)

For a fixed z, the integral over the σi can be carried out in the same manner as in the Gaus-
sian model; see equation (2). Let the result of that calculation be denoted by the symbol
ZN (K ,h;z). The partition function QN of the spherical model is then given by the complex
integral

QN =
1

2π i

x+i∞∫
x−i∞

dz e zN ZN (K ,h;z), (6)

which can be evaluated by the saddle-point method — also known as the method of steep-
est descent; see Section 3.2. One finds that the saddle point of the integrand in (6) lies at the
point z = x0, where x0 is determined by the condition

∂

∂z
{zN + lnZN (K ,h;z)}

∣∣∣∣
z=x0

= 0, (7)

with the result that, asymptotically,

1
N

lnQN ≈ x0+
1
N

lnZN (K ,h;x0). (8)

The thermodynamic properties of the system can then be worked out in detail.
It turned out that many physicists felt uncomfortable at the necessity of using the

method of steepest descent, so a search for an alternative approach seemed desirable. In
this connection Lewis and Wannier (1952) pointed out that while the ensemble underlying
the model of Berlin and Kac was canonical in the variable E it was microcanonical in the
variable

∑
i σ

2
i . They proposed that one consider instead an ensemble that is canonical in
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both E and
∑

i σ
2
i ; the method of steepest descent could then be avoided. All one requires

now is that the constraint (3) be obeyed only in the sense of an ensemble average,〈∑
i

σ 2
i

〉
=N , (9)

rather than in the original sense that was comparatively more rigid. The resulting model is
referred to as the mean spherical model.

Constraint (9) can easily be taken care of by modifying the Hamiltonian of the system
by including a term proportional to

∑
i σ

2
i , that is, by writing

H =−J
∑
n.n.

σiσj −µB
∑

i

σi+ λ
∑

i

σ 2
i , (10)

where λ is the so-called spherical field, and requiring that

〈(∂H/∂λ)〉 =N . (11)

The partition function of the revised model is thus given by

QN =

+∞∫
−∞

· · ·

+∞∫
−∞

e
−βλ

∑
i
σ2

i +K
∑

n.n.
σiσj+h

∑
i
σi ∏

i

dσi (12a)

= ZN (K ,h;βλ), (12b)

with the constraint

1
β

∂ lnZN (K ,h;βλ)
∂λ

=−N . (13)

Comparing (13) with (7), we readily see that the parameter x0 of the spherical model is
precisely equal to the parameter βλ of the mean spherical model. The free energy result-
ing from (12), however, differs a little from the one given by equation (8), which is not
surprising because the transition from a model that was microcanonical in the variable
S 2(≡

∑
i σ

2
i ) to one that is canonical modifies the nature of the free energy — it goes from

“being at constant S ” to “being at constant λ.” The two free energies are connected by the
Legendre transformation

Aλ = AS + λ〈S
2
〉 = AS + λN , (14)

so that

1
N

AS =
1
N

Aλ− λ. (15)

This is precisely the difference that arises from the use of expression (8) or expression (12).
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We now proceed to examine the thermodynamic properties of the mean spherical
model, especially the nature of its critical behavior in arbitrary dimensions. The impor-
tance of these results will be discussed toward the end of this section.

The thermodynamic functions
We consider a simple hypercubic lattice, of dimensions L1× ·· ·×Ld, subject to periodic
boundary conditions. The partition function of the system, as given by equation (12a),
then turns out to be (see Joyce, 1972; Barber and Fisher, 1973)

ZN (K ,h;βλ)=
∏

k

[
π

β(λ−µk)

]1/2

eNh2/4β(λ−µ0), (16)

where µk are the eigenvalues of the problem,

µk = J
d∑

j=1

cos(kja), kj =
2πnj

Lj
{nj = 0,1, . . . ,(Nj − 1)}, (17a)

Nj = Lj/a, N =
∏

j

Nj, (17b)

and a the lattice constant of the system. The free energy Aλ is then given by

Aλ =
1

2β

∑
k

ln
β(λ−µk)

π
−

Nµ2B2

4(λ−µ0)
, (18)

while the parameter λ is determined by the constraint equation, see equation (13),

1
2β

∑
k

1
(λ−µk)

+
Nµ2B2

4(λ−µ0)
2
=N . (19)

The magnetization M and the low-field susceptibility χ0 follow readily from equa-
tion (18):3

M =
Nµ2B

2(λ−µ0)
, χ0 =

Nµ2

2(λ−µ0)
. (20a, b)

Introducing the variable m(≡M/Nµ), the constraint equation (19) may be written in the
form ∑

k

1
(λ−µk)

= 2Nβ(1−m2). (21)

3Note, however, that to calculate the field-dependent susceptibility, (∂M/∂B)T ,S , subject to the spherical constraint
(19), one must keep in mind the field dependence of λwhile differentiating (20a).
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Next, the entropy of the system in zero field is given by4

S0 =−(∂A/∂T)µk ,B=0 =
1
2

kB

∑
k

[1− ln{β(λ−µk)}] (22)

and the corresponding specific heat by

C0 = T
(
∂S0

∂T

)
=

1
2

kB

∑
k

[
1−

T(∂λ/∂T)0
(λ−µk)

]
=N

[
1
2

kB−

(
∂λ

∂T

)
0

]
; (23)

here, use has been made of equation (19), with B= 0.
To make further progress we need to determine λ, as a function of B and T , from the

constraint equation (19). But first note, from equation (18), that for the free energy of the
system to be well-behaved, λ must be larger than the largest eigenvalue µ0 — which, by
(17a), is equal to Jd. At the same time, equation (20b) tells us that the singularity of the
problem presumably lies at λ= µ0. We may thus infer that, as T decreases from higher
values downward, λ also decreases and eventually reaches its lowest possible value, µ0,
at some critical temperature, Tc, where the system undergoes a phase transition. The
condition for criticality, therefore, is

λc = µ0 = Jd, (24)

which suggests that we may introduce a “reduced field,” φ, by the definition

φ = (λ− λc)/J = (λ/J)−d; (25)

the condition for criticality then becomes

φc = 0. (26)

It follows that, as we approach the critical point from above, the parameter φ becomes
much smaller than unity; ultimately, it becomes zero as Tc is reached and stays so for all
T < Tc.

Now, substituting for the eigenvalues µk into the sum appearing in equations (19) and
(21), and making use of the representation

1
z
=

∞∫
0

e−zxdx, (27)

4We denote Boltzmann’s constant by the symbol kB here so as to avoid confusion with the wavenumber k.
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we have

∑
k

1
(λ−µk)

=
1
J

∑
{nj}

∞∫
0

exp

−
φ+ d∑

j=1

{
1− cos

(
2πnj

Nj

)}x

dx

=
1
J

∞∫
0

e−φx
∏

j

Nj−1∑
nj=0

exp

{
−x+ x cos

(
2πnj

Nj

)}dx. (28)

For Nj� 1, the summation over nj may be replaced by integration; writing θj = 2πnj/Nj,
one gets

∑
nj

exp{· · · } ≈

2π∫
0

e−x+x cosθj
Nj

2π
dθj =Nje

−xI0(x), (29)

where I0(x) is a modified Bessel function. Multiplying over j, one finally gets

∑
k

1
λ−µk

=
N
J

Wd(φ), (30)

where Wd(φ) is the so-called Watson function, defined by5

Wd(φ)=

∞∫
0

e−φx[e−xI0(x)]
ddx. (31)

Equations (19) and (21) now take the form

Wd(φ)= 2K −
(βµB)2

2Kφ2
(32a)

= 2K (1−m2). (32b)

The asymptotic behavior of the functions Wd(φ), for φ� 1, is examined in Appendix G.

The critical behavior
We now analyze the various physical properties of the mean spherical model in different
regimes of d.

(a) d < 2. For this regime we take expression (7a) of Appendix G and substitute it into
equation (32a), with B= 0. We obtain

φ|B=0 ≈

[
0{(2−d)/2}

2(2π)d/2K

]2/(2−d)

∼

(
kBT

J

)2/(2−d)

. (33)

5Note that our definition of the function Wd(φ) differs slightly from the one adopted by Barber and Fisher (1973); this
difference arises from the fact that our J is twice, and our φ is one-half, of theirs.
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We see that φ in this case goes to zero only as T→ 0. The phase transition, therefore,
takes place at Tc = 0. Equations (20b), (23), (24), and (25) then give the following for
the low-temperature susceptibility

χ0 =
Nµ2

2Jφ
∼

Nµ2

J

(
kBT

J

)−2/(2−d)

(34)

and for the low-temperature specific heat

C0−
1
2

NkB =−NJ
(
∂φ

∂T

)
0
∼−NkB

(
kBT

J

)d/(2−d)

. (35)

(b) d = 2. We now use expression (7b) of Appendix G and obtain

φ|B=0 ∼ exp(−4πJ/kBT), (36)

so that once again Tc = 0 but now, at low temperatures,

χ0 ∼ (Nµ
2/J)exp(4πJ/kBT) (37)

and

C0−
1
2

NkB ∼−NkB( J/kBT)2 exp(−4πJ/kBT). (38)

(c) 2< d < 4. We now substitute expression (7c) of Appendix G into equation (32a), with
the result

Wd(0)−
|0{(2−d)/2}|

(2π)d/2
φ(d−2)/2

= 2K −
(βµB)2

2Kφ2
. (39)

The critical point is now determined by setting B= 0 and letting φ→ 0; the condition
for criticality then turns out to be

Kc =
1
2

Wd(0). (40)

The variation of φ with T as one approaches the critical point is given by

φ|B=0 ≈

[
2(2π)d/2(Kc −K )
|0{(2−d)/2}|

]2/(d−2)

(K . Kc). (41a)

We also note that once φ becomes zero it stays so for all temperatures below, that is,

φ|B=0 = 0 (K ≥ Kc). (41b)

It then follows that

χ0 ∼ (Kc −K )−2/(d−2)
∼ (T −Tc)

−2/(d−2) (T & Tc) (42)
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and is infinite for T ≤ Tc. At the same time

C0−
1
2

NkB ∼ (T −Tc)
(4−d)/(d−2) (T & Tc) (43)

and it vanishes for T ≤ Tc. The spontaneous magnetization is determined by
equations (32b), (40), and (41b); we obtain a remarkably simple result

m0 = (1−Kc/K )1/2
= (1−T/Tc)

1/2 (T ≤ Tc). (44)

Finally, if in equation (39) we retain B but set T = Tc, we get

φc ∼ B4/(d+2) (T = Tc); (45)

equation (20a) then gives

mc =
µB

2Jφc
∼ B(d−2)/(d+2) (T = Tc). (46)

The foregoing results give, for the critical exponents of the system,

α =
d− 4
d− 2

, β =
1
2

, γ =
2

d− 2
, δ =

d+ 2
d− 2

(2< d < 4). (47)

(d) d > 4. In this regime we employ expression (8) of Appendix G. The condition for
criticality remains the same as in (40); the variation of φ with T as we approach the
critical point is, however, different. We now have, for all d > 4,

φ|B=0 ∼ (Kc −K )1 (K . Kc). (48)

The subsequent results are modified accordingly:

χ0 ∼ (T −Tc)
−1, C0−

1
2

NkB ∼ (T −Tc)
0 (T & Tc) (49)

φc ∼ B2/3, mc ∼ B1/3 (T = Tc). (50)

Equations (41b) and (44) continue to apply as such. We, therefore, conclude that

α = 0, β =
1
2

, γ = 1, δ = 3 (d > 4). (51)

(e) d = 4. For this borderline case, we use expression (12) of Appendix G. Once again, the
condition for criticality remains the same; however, the variation of φ with T as one
approaches the critical point is now determined by the implicit relation

φ ln(1/φ)≈ 8π2(Kc −K ) (K . Kc). (52)
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Introducing the conventional parameter

t = (T −Tc)/Tc = (Kc −K )/K , (53)

we get, to leading order in t,

φ|B=0 ∼ t/ ln(1/t) (0< t� 1). (54)

It follows that

χ0 ∼ t−1 ln(1/t), C0 ∼ 1/ ln(1/t) (0< t� 1) (55)

φc ∼ B2/3/{ln(1/B)}1/3, mc ∼ {B ln(1/B)}1/3 (t = 0). (56)

Spin–spin correlations
Following the procedure that led to equations (16) through (19), we obtain in the absence
of the field

G(r, r′)≡ σ(r)σ (r′)=
1

2Nβ

∑
k

exp{i(k ·R)}
λ−µk

(R = r− r′); (57)

compare to equation (19), with B= 0. The summation over k in (57) can be handled in the
same manner as was done in (28); however, the resulting summation over nj now turns out
to be

∑
nj

{· · · } ≈

2π∫
0

exp{iRjθj/a}e−x+x cosθj
Nj

2π
dθj

=Nje
−xIRj/a(x); (58)

compare to (29). This leads to the result

G(R)=
1

2K

∞∫
0

e−φx
∏

j

[e−xIRj/a(x)]dx; (59)

compare to equation (32a), with B= 0. For the functions In(x) we may use the asymptotic
expression (see Singh and Pathria, 1985a)

In(x)≈
ex−n2/2x
√
(2πx)

(x� 1), (60)
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so that, for φ� 1,

G(R)≈
1

2(2π)d/2K

∞∫
0

e−φx−R2/(2a2x)x−d/2dx

=
1

(2π)d/2K

(
a2

ξR

)(d−2)/2

K(d−2)/2

(
R
ξ

)
, (61)

where Kµ(x) is the other modified Bessel function while

ξ = a/(2φ)1/2. (62)

For R� ξ , we may use the asymptotic result Kµ(x)≈ (π/2x)1/2e−x; equation (61) then
becomes

G(R)≈
ad−2

2K ξ (d−3)/2(2πR)(d−1)/2
e−R/ξ , (63)

which identifies ξ as the correlation length of the system.
Now, comparing equation (62) with equation (20b), we find that

χ0 =
Nµ2

2Jφ
=

Nµ2

Ja2
ξ2. (64)

In view of the fact that ξ ∼ χ1/2
0 , we infer that, in all regimes of d, the exponent ν = 1

2γ and
hence, by relations (12.12.10) and (12.12.11), the exponent η = 0. To obtain this last result
directly from equation (61), we observe that, as T→ Tc from above, the parameter φ→ 0
and hence ξ →∞. We may then use the approximation R/ξ � 1 and employ the formula

Kµ(x)≈
1
2
0(µ)

(
1
2

x
)−µ

(µ > 0), (65)

to obtain

G(R)|T=Tc ≈
0{(d− 2)/2}

4πd/2Kc

ad−2

Rd−2
(d > 2). (66)

The power of R appearing here clearly shows that η = 0. Finally, substituting equation (41a)
into equation (62), we get

ξ ≈
1
2

a
[
|0{(2−d)/2}|

4πd/2(Kc −K )

]1/(d−2)

(K . Kc), (67)

which shows that for 2< d < 4 the critical exponent ν = 1/(d− 2).
For T < Tc we expect the function G(R) to affirm the presence of long-range order in

the system, that is, in the limit R→∞, it should tend to a limit, σ 2, that is nonzero. To



518 Chapter 13 . Phase Transitions: Exact (or Almost Exact) Results for Various Models

demonstrate this property of G(R), we need to take a closer look at the derivations of this
subsection that were carried out with the express purpose of obtaining results valid in the
thermodynamic limit (N→∞). This resulted in “errors” that were negligible in the region
T & Tc but are not so when T < Tc. The first such error crept in when we replaced the sum-
mations over {nj} in equation (28) by integrations; that suppressed contribution from the
term with n= 0. Equation (30), therefore, accounts for only the (k 6= 0)-terms of the orig-
inal sum in (28), and the missing term, 1/Jφ, may be added to it ad hoc.6 Equation (19),
with B= 0, then becomes

1
2β

[
1

Jφ
+

N
J

Wd(φ)

]
=N . (68)

Now, when φ becomes very very small, Wd(φ) may be approximated by Wd(0), which is
precisely equal to 2Kc; equation (68) then gives

φ ≈ [2N(K −Kc)]−1 (K > Kc), (69)

rather than zero! The correlation length then turns out to be

ξ = a/(2φ)1/2
≈ a[N(K −Kc)]1/2 (K > Kc), (70)

rather than infinite! Now, the same error was committed once again in going from
equation (57) to (59); so, the primary result for G(R), as given in equation (61), may be
similarly amended by adding the missing term 1/(2NβJφ) which, by (69), is exactly equal
to (1−Kc/K ). Thus, for R� ξ , we obtain, instead of (66),

G(R)≈
(

1−
Kc

K

)
+
0{(d− 2)/2}

4πd/2K

ad−2

Rd−2
(K > Kc). (71)

Now if we let R→∞,G(R) does approach a nonzero value σ 2, which is precisely the same
as m2

0 given by equation (44). It is remarkable, though, that in the present derivation the
magnetic field B has not been introduced at any stage of the calculation, which under-
scores the fundamental role played by correlations in bringing about long-range order in
the system.

In the preceding paragraph we outlined the essential argument that led to the desired
expression, (71), for G(R). For a more rigorous analysis of this problem, see Singh and
Pathria (1985b, 1987a).

Physical significance of the spherical model
With a constraint as relaxed as in equation (3), or even more so in (9), one wonders how
meaningful the spherical model is from a physical point of view. Relief comes from the
fact, first established by Stanley (1968, 1969a,b), that the spherical model provides a correct

6This is reminiscent of a similar problem, and a similar ad hoc solution, encountered in the study of Bose–Einstein
condensation in Section 7.1; see also Section 13.6.
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representation of the (n→∞)-limit of an n-vector model with nearest-neighbor interac-
tions; see also Kac and Thompson (1971). This connection arises from the very nature of
the constraint imposed on the model, which introduces a super spin vector S with N
degrees of freedom; it is not surprising that, in the limit N→∞, the model in some sense
acquires the same sort of freedom that an n-vector model has in the limit n→∞.

In any case, this connection brings the spherical model in line with, and actually makes
it a good guide for, all models with continuous symmetry, namely the ones with n≥ 2. And
since it can be solved exactly in arbitrary dimensions, this model gives us some idea as to
what to expect of models for which n is finite. For instance, we have seen that, for d > 4,
the critical exponents of the spherical model are the same as the ones obtained from the
mean field theory. Now, fluctuations are neglected in the mean field theory but, among the
variety of models we are considering, fluctuations should be largest in the spherical model,
for it has the largest number of degrees of freedom. If, for d > 4, fluctuations turn out to be
negligible in the spherical model, they would be even more so in models with finite n. It
thus follows that, regardless of the actual value of n, mean field theory should be valid for
all these models when d > 4. See, in this connection, Section 14.4 as well.

For d < 4, the final results depend significantly on n. The spherical model now provides
a starting point from which one may carry out the so-called (1/n)-expansions to determine
how models with finite n might behave in this regime. Such an approach was initiated
by Abe and collaborators (1972, 1973) and independently by Ma (1973); for a detailed
account of this approach, along with the results following from it, see Ma (1976c). Finally,
for a comprehensive discussion of the spherical model, including the one with long-range
interactions, see the review article by Joyce (1972).

13.6 The ideal Bose gas in arbitrary dimensions
In this section we propose to examine the problem of Bose–Einstein condensation in an
ideal Bose gas in arbitrary dimensions. As was first shown by Gunton and Buckingham
(1968), the phenomenon of Bose–Einstein condensation falls in the same universality class
as the phase transition in the spherical model; accordingly, the ideal Bose gas too corre-
sponds to the (n→∞)-limit of an n-vector model. It must, however, be borne in mind
that liquid He4, whose transition from a normal to a superfluid state is often regarded as a
manifestation of the “Bose–Einstein condensation in an interacting Bose liquid,” actually
pertains to the case n= 2. Now, just as the spherical model turns out to be a good guide
for all models with continuous symmetry including the X Y model (for which n= 2), in the
same way the ideal Bose gas has also been a good guide for liquid He4.

We consider a Bose gas composed of N noninteracting particles confined to a box of
volume V (= L1× ·· ·×Ld) at temperature T . Following the procedure of Section 7.1, we
obtain for the pressure P of the gas

P =−
kBT

V

∑
ε

ln(1− ze−βε)=
kBT

λd
g(d+2)/2(z), (1)
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where λ[= h/
√
(2πmkBT)] is the mean thermal wavelength of the particles, z is the fugacity

of the gas, which is related to the chemical potential µ through the formula

z = exp(βµ) < 1 (β = 1/kBT), (2)

while gν(z) are Bose–Einstein functions whose main properties are discussed in Appen-
dix D. The quantity z is determined by the equation

N =
∑
ε

(z−1eβε − 1)−1
=N0+Ne, (3)

where N0 is the mean number of particles in the ground state (ε = 0),

N0 = z/(1− z), (4)

while Ne is the mean number of particles in the excited states (ε > 0):

Ne =
V

λd
gd/2(z). (5)

At high temperatures, where z is significantly below the limiting value 1, N0 is negligible
in comparison with N ; the quantity z is then determined by the simplified equation

N =
V

λd
gd/2(z), (6)

and the pressure P in turn is given by the expression

P =
NkBT

V

g(d+2)/2(z)

gd/2(z)
. (7)

The internal energy of the gas may be obtained from the relationship

U =
1
2

d(PV ); (8)

see the corresponding derivation of equation (7.1.12) as well as of equation (6.4.4).
Now, making use of the recurrence relation (D.10) and remembering that the mean

thermal wavelength λ∝ T−1/2, we get from equation (6)

1
z

(
∂z
∂T

)
v
=−

d
2T

gd/2(z)

g(d−2)/2(z)

(
v =

V
N

)
, (9)

and from equation (1)

1
z

(
∂z
∂T

)
P
=−

d+ 2
2T

g(d+2)/2(z)

gd/2(z)
. (10)
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It is now straightforward to show that the specific heats CV and CP of the gas are given by
the formulae

CV

NkB
=

d(d+ 2)
4

g(d+2)/2(z)

gd/2(z)
−

d2

4

gd/2(z)

g(d−2)/2(z)
(11)

and

CP

NkB
=
(d+ 2)2

4

{g(d+2)/2(z)}
2g(d−2)/2(z)

{gd/2(z)}3
−

d(d+ 2)
4

g(d+2)/2(z)

gd/2(z)
, (12)

respectively; it follows that the ratio

CP

CV
=
(d+ 2)

d

g(d+2)/2(z)g(d−2)/2(z)

{gd/2(z)}2
. (13)

The isothermal compressibility κT and the adiabatic compressibility κS turn out to be

κT =−
1
v

(
∂v
∂P

)
T
=−

1
v
(∂v/∂z)T
(∂P/∂z)T

=
g(d+2)/2(z)g(d−2)/2(z)

{gd/2(z)}2
1
P

(14)

and

κS =−
1
v

(
∂v
∂P

)
S
=−

1
v
(∂v/∂T)z
(∂P/∂T)z

=
d

d+ 2
1
P

, (15)

respectively; note that the ratio κT/κS is precisely equal to the ratio CP/CV , as is expected
thermodynamically.

As the temperature of the gas is reduced, keeping v constant, the fugacity z increases
and ultimately approaches its limiting value 1 — marking the end of the regime where N0

was negligible in comparison with N . Whether this limit is reached at a finite T or at T = 0
depends entirely on the value of d; see equation (6), which tells us that if the function
gd/2(z), as z→ 1−, is bounded then the limit in question will be reached at a finite T . On
the other hand, if gd/2(z), as z→ 1−, is unbounded then the desired limit will be reached at
T = 0 instead. To settle this question, we refer to equations (D.9) and (D.11), which
summarize the behavior of the function gν(z) as z→ 1− (or as α→ 0+, where α =− lnz);
we thus have

gd/2(e
−α)≈



0

(
2−d

2

)
α−(2−d)/2

+ const. for d < 2 (16a)

ln(1/α)+
1
2
α for d = 2 (16b)

ζ

(
d
2

)
−

∣∣∣∣0(2−d
2

)∣∣∣∣α(d−2)/2 for 2< d < 4 (16c)

ζ(2)−{ln(1/α)+ 1}α for d = 4 (16d)

ζ

(
d
2

)
− ζ

(
d− 2

2

)
α for d > 4, (16e)
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ζ(ν) being the Riemann zeta function. Similarity of this system with the spherical model
is quite transparent.

We readily see from equation (6) that, for d > 2, α→ 0 at a finite temperature Tc,
given by

λd
c = vζ(d/2), (17)

with the result that

Tc =
h2

2πmkB

[
1

vζ(d/2)

]2/d

; (18)

for d ≤ 2, α→ 0 only as λ→∞, so Tc = 0. For brevity, we confine our further discussion
only to d > 2.

The critical behavior
As T approaches Tc from above, the manner in which α→ 0 is determined by substitut-
ing the appropriate expression (16) into (6) and utilizing the criticality condition (17). For
2< d < 4, one gets asymptotically∣∣∣∣0(2−d

2

)∣∣∣∣α(d−2)/2
≈

1
v
(λd

c − λ
d)'

d
2
ζ

(
d
2

)[
T
Tc
− 1

]
. (19)

For T & Tc, this gives

α ∼ t2/(d−2) [t = (T −Tc)/Tc,0< t� 1]. (20)

As T→ Tc, the specific heat CP and the isothermal compressibility κT diverge because the
function g(d−2)/2(z) appearing in equations (12) and (14), being∼α−(4−d)/2 [see equation
(D.9)], becomes divergent; for small t,

CP ∼ κT ∼ t−(4−d)/(d−2). (21)

The specific heat CV , on the other hand, approaches a finite value,(
CV

NkB

)
T→TC+

=
d(d+ 2)

4
ζ {(d+ 2)/2}
ζ(d/2)

, (22)

with a derivative that, depending on the actual value of d, might diverge:

1
NkB

(
∂CV

∂T

)
V
=

1
T

[
d2(d+ 2)

8

g(d+2)/2(z)

gd/2(z)
−

d2

4

gd/2(z)

g(d−2)/2(z)

−
d3

8

{gd/2(z)}
2g(d−4)/2(z)

{g(d−2)/2(z)}3

]
(23a)

∼−α−(d−3)
∼−t−2(d−3)/(d−2) (3< d < 4). (23b)
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Equating the exponent appearing here with (1+α), we conclude7 that the critical expo-
nent α for this system is (d− 4)/(d− 2); compare to equation (13.5.47). For a proper
appreciation of the critical behavior of CV , we must as well examine the region T < Tc,
along with the limit T→ Tc−.

For T < Tc, the fugacity z is essentially equal to 1; equations (5) and (17) then give

Ne =
V

λd
ζ

(
d
2

)
=N

(
λc

λ

)d

=N
(

T
Tc

)d/2

. (24)

It follows that

N0 =N −Ne =N

[
1−

(
T
Tc

)d/2
]

. (25)

Equation (4) then tells us that the precise value of z in this region is given by

z =N0/(N0+ 1)' 1− 1/N0, (26)

which gives

α =− lnz ' 1/N0, (27)

rather than zero. Disregarding this subtlety, equation (1) gives

P =
kBT

λd
ζ

(
d+ 2

2

)
∝ T (d+2)/2. (28)

Since P here is a function of T only, the quantities κT and CP in this region are infinite; see,
however, Problem 13.26. From equations (8) and (28), we get

U =
1
2

d
kBTV

λd
ζ

(
d+ 2

2

)
, (29)

which gives

CV

NkB
=

d(d+ 2)
4

v

λd
ζ

(
d+ 2

2

)
=

d(d+ 2)
4

ζ {(d+ 2)/2}
ζ(d/2)

(
T
Tc

)d/2

. (30)

As T→ Tc−, we obtain precisely the same limit as in (22) — showing that CV is continuous
at the critical point. Its derivative, however, turns out to be different from the one given in

7We equate this exponent with (1+α) because if CV ∼ t−α , then ∂CV /∂t ∼ t−α−1. We hasten to add that the critical
exponent α should not be confused with the physical quantity denoted by the same symbol, namely α(=− lnz), which
was introduced just before equations (16) and has been used throughout this section.
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(23), for now

1
NkB

(
∂CV

∂T

)
V
=

1
Tc

d2(d+ 2)
8

ζ {(d+ 2)/2}
ζ(d/2)

(
T
Tc

)(d−2)/2

(31a)

→
1

Tc

d2(d+ 2)
8

ζ {(d+ 2)/2}
ζ(d/2)

(31b)

as T→ Tc−.
As for the condensate fraction, N0/N , equation (25) gives

N0

N
= 1−

(
T
Tc

)d/2

≈
d
2
|t| [t < 0, |t| � 1]. (32)

Now, the order parameter in the present problem is a complex number, 90, such that
|90|

2
=N0/V , the condensate particle density in the system; see Gunton and Buckingham

(1968). We therefore, expect that, for |t| � 1,N0 would be∼ t2β ; equation (32) then tells us
that the critical exponent β in this case has the classical value 1

2 for all d > 2. To determine
the exponents γ and δ, we must introduce a “complex Bose field, conjugate to the order
parameter 90” and examine quantities such as the “Bose susceptibility” χ as well as the
variation of 90 with the Bose field at T = Tc. Proceeding that way, one obtains: γ = 2/(d−
2) and δ = (d+ 2)/(d− 2), just as for the spherical model.

The pair correlations
We now examine the pair correlation function of the ideal Bose gas

G(R)=
1
V

∑
k

eik·R

eα+βε(k)− 1
. (33)

As usual, we replace the summation over k by integration (mindful of the fact that this
replacement suppresses the (k = 0)-term which may, therefore, be kept aside). Making use
of equation (C.11) in Appendix C, we get

G(R)=
N0

V
+

1

(2π)d

∫
eik·R

eα+β~2k2/2m− 1
ddk

=
N0

V
+

1

(2π)d/2R(d−2)/2

∞∫
0

 ∞∑
j=1

e−jα−jβ~2k2/2m

 J(d−2)/2(kR)kd/2dk

=
N0

V
+

1

λd

∞∑
j=1

e−jα−πR2/jλ2
j−d/2

[
λ= ~

(
2πβ
m

)1/2
]

; (34)

compare to equations (3) through (5), which pertain to the case R= 0. For R> 0, one may
extend the summation over j from j = 0 to j =∞, for the term so added is identically zero.



13.6 The ideal Bose gas in arbitrary dimensions 525

At the same time, the summation over j may be replaced by integration — committing
errors O(e−R/λ), which are negligible so long as R� λ; for details, see Zasada and Pathria
(1976). We thus obtain

G(R)=
N0

V
+

1

λd

∞∫
0

e−jα−πR2/jλ2
j−d/2dj

=
N0

V
+

2

λ2(2πξR)(d−2)/2
K(d−2)/2

(
R
ξ

)
, (35)

where Kµ(x) is a modified Bessel function while

ξ = λ/(2π1/2α1/2). (36)

For T & Tc, we may use expression (20) for α; equation (36) then gives

ξ ∼ λt−1/(d−2) (0< t� 1), (37)

which means that ξ � λ. Now, if R� ξ , equation (35) reduces to

G(R)≈
1

λ2(2πξ)(d−3)/2R(d−1)/2
e−R/ξ , (38)

which identifies ξ as the correlation length of the system. Equation (37) then tells us that
for, 2< d < 4, the critical exponent ν of the ideal Bose gas is 1/(d− 2). At T = Tc,ξ is
infinite; equation (35) now gives

G(R)≈
0{(d− 2)/2}

π (d−2)/2λ2
c Rd−2

, (39)

which shows that the critical exponent η = 0. For T < Tc, ξ continues to be infinite but
now the condensate fraction, which is a measure of the long-range order in the system, is
nonzero. The correlation function then assumes the form

G(R)= |90|
2
+

A(T)

Rd−2
, (40)

where

A(T)=
0{(d− 2)/2}

π (d−2)/2λ2
∝ T ; (41)

compare this result to the corresponding equation (13.5.7) of the spherical model.
In the paper quoted earlier, Gunton and Buckingham also generalized the study of

Bose–Einstein condensation to the single-particle energy spectrum ε ∼ kσ , where σ is a
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positive number not necessarily equal to 2. They found that the phase transition, at a
finite temperature Tc, now took place for all d > σ , and the critical exponents in the regime
σ < d < 2σ turned out to be

α =
d− 2σ
d− σ

, β =
1
2

, γ =
σ

d− σ
, δ =

d+ σ
d− σ

, ν =
1

d− σ
, η = 2− σ . (42)

While mathematically correct, these results left one with the awkward conclusion that the
Bose gas in its extreme relativistic state (σ = 1)was in a different universality class than the
one in the nonrelativistic state (σ = 2). It was shown later by Singh and Pandita (1983) that,
if one employs the appropriate energy spectrum ε = c

√
(m2

0c2
+ ~2k2) and, at the same

time, allows for the possibility of particle–antiparticle pair production in the system, as
had been suggested earlier by Haber and Weldon (1981, 1982), then the relativistic Bose
gas falls in the same universality class as the nonrelativistic one; see Problem (13.27).

13.7 Other models
In Section 13.4 we saw that a two-dimensional lattice model characterized by a discrete
order parameter (n= 1) underwent a phase transition, accompanied by a spontaneous
magnetization m0, at a finite temperature Tc; naturally, one would expect the same if d
were greater than 2. On the other hand, the spherical model, which is characterized by
a continuous order parameter (with n=∞), undergoes such a transition only if d > 2.
The question then arises whether intermediate models, with n= 2,3, . . ., would undergo
a phase transition at a finite Tc if d were equal to 2. The answer to this important question
was provided by Mermin and Wagner (1966) who, making use of a well-known inequality
due to Bogoliubov (1962), established the following theorem:8

Systems composed of spins with continuous symmetry (n≥ 2) and short-range inter-
actions do not acquire spontaneous magnetization at any finite temperature T if the
space dimensionality d ≤ 2.

In this sense, systems with n≥ 2 behave in a manner similar to the spherical model — and
quite unlike the Ising model!

The marginal case (n= 2, d = 2), however, deserves a special mention. Clearly, this
refers to an XY model in two dimensions, which has a direct relevance to superfluid He4

adsorbed on a substrate. As shown by Kosterlitz and Thouless (1972, 1973), this model
exhibits a curious phase transition in that, while no long-range order develops at any
finite temperature T , various physical quantities such as the susceptibility, the correla-
tion length, the specific heat, and the superfluid density do become singular at a finite
temperature Tc, whose precise value is determined by point defects, such as vortices or

8For a review of this theorem and other allied questions, see (Griffiths, 1972, pp. 84–89).
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dislocations, in the system. The correlation length ξ , as T→ Tc+, displays an essential
singularity,

ξ ∼ eb′/(T−Tc)
1/2

, (1)

where b′ is a nonuniversal constant; of course, the critical temperature itself is nonuni-
versal and, for a square lattice, is given by

Kc = J/kTc ' 1.12 ; (2)

see Hasenbusch and Pinn (1997) and Dukovski, Machta, and Chayes (2002). The singular
part of the specific heat shows a somewhat similar behavior, namely

c(s) ∼ ξ−2 (3)

which, measured against a regular background, is rather indetectable since every deriva-
tive of the specific heat is finite at the critical point, yet the function is nonanalytic. The
superfluid density behaves rather strangely; it approaches a finite value, as T→ Tc−, pre-
ceded by a square-root cusp. The correlation function is no different; at T = Tc, Kosterlitz
(1974) found a logarithmic factor along with a power law, namely

g(r)∼
[ln(r/a)]1/8

r1/4
, (4)

while for T < Tc we encounter a temperature-dependent exponent η such that

g(r)∼
1

rη(T)
, (5)

where η(T)≈ kT/2πJ , for kT � J , as shown by Berezinskii (1970) and η(Tc)= 1/4, as shown
by Kosterlitz (1974); see Berche, Sanchez, and Paredes (2002) for a numerical determi-
nation of η(T). This phase, with a power-law decay of correlations, is said to display
quasi-long-range order. For further details of this transition, see Kosterlitz and Thouless
(1978) and Nelson (1983); for a pedagogical account, see Plischke and Bergersen (1989),
Section 5.E.

For other exactly soluble models in two dimensions, see Baxter (1982), Wu (1982),
Nienhuis (1987), and Cardy (1987), where references to other relevant literature on the
subject can also be found.

We now proceed to consider the situation in three dimensions. Here, no exact solutions
exist except for the extreme case n=∞, which has been discussed in Section 13.5. However,
an enormous amount of effort has been spent in obtaining approximate solutions which,
over the years, have become accurate enough to be regarded as “almost exact.” Irrespective
of the model under study, the problem has generally been attacked along three different
lines which, after some refinements, have led to almost identical results. In summary, these
approaches may be described as follows.
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The method of series expansions
In this approach, the partition function or other relevant properties of the system
are expanded as a high-temperature series such as (13.4.5), with expansion parameter
v = tanh(βJ), or as a low-temperature series such as (13.4.9), with expansion parameter
w = exp(−2βJ); in the presence of an external field, one would have series with two expan-
sion parameters instead of one. In either case, the first major task involves the numerical
computation of coefficients, such as n(r) and m(r), on the basis of graph theory and other
allied techniques, while the second major task involves analysis of these coefficients with
a view to determining the location and the nature of the singularity governing the prop-
erty in question. The latter task is generally accomplished by employing the ratio method,
which examines the trend of the ratio of two consecutive coefficients, such as n(r) and
n(r− 1), as r→∞, or by constructing Padé approximants which, in a sense, provide a con-
tinuation of the known (finite) series beyond its normal range of validity up to its radius of
convergence — thus locating and examining the nature of the relevant singularity. Since
their inception (in the mid-1950s for the ratio method and the early 1960s for the Padé
approximants), these techniques have been expanded, refined, and enriched in so many
ways that it would be hopeless to attempt a proper review of them here. Suffice it to say that
the reader may refer to Volume 3 of the Domb–Green series, which is devoted solely to the
method of series expansions — in particular, to the articles by Gaunt and Guttmann (1974)
on the asymptotic analysis of the various coefficients, by Domb (1974) on the Ising model,
by Rushbrooke, Baker, and Wood (1974) on the Heisenberg model, by Stanley (1974) on
the n-vector models, and by Betts (1974) on the X Y model. For more recent reviews, see
Guttmann (1989) and Baker (1990), where references to other relevant work on the subject
are also available.

The renormalization group method
This method is based on the crucial observation (Wilson, 1971) that, as the critical point
is approached, the correlation length of the system becomes exceedingly large — with the
result that the sensitivity of the system to a length transformation (or renormalization)
gets exceedingly diminished. At the critical point itself, the correlation length becomes
infinite and, with it, the system becomes totally insensitive to such a transformation! The
fixed point of the transformation is then identified with the critical point of the system,
and the behavior of the system parameters such as K and h, see equation (13.5.2), in the
neighborhood of the fixed point determines the critical exponents, and so on. Since very
few systems could be solved exactly, approximation procedures had to be developed to
handle most of the cases under study.

One such procedure starts with known results for the upper critical dimension d =
4 and carries out expansions in terms of the (small) parameter ε = 4−d, while the
other starts with known results for the spherical model (n=∞) and carries out expan-
sions in terms of the (small) parameter 1/n; in the former case, the coefficients of the
expansion would be n-dependent, while in the latter case they would be d-dependent.
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Highly sophisticated manipulations enable one to obtain reliable results for ε that are
as large as 1 (which corresponds to the most practical dimension d = 3) and for n as
small as 1 (which corresponds to a large variety of systems that can be described through
an order parameter that is scalar). We propose to discuss this method at length in
Chapter 14; for the present, suffice it to say that the reader interested in further details
may refer to Volume 6 of the Domb–Green series, which is devoted entirely to this topic.

Monte Carlo methods
As the name implies, these methods employ pseudorandom numbers to simulate statis-
tical fluctuations for carrying out numerical integrations and computer simulations of
systems with large numbers of degrees of freedom. Such methods have been in vogue for
quite some time and, fortunately, have kept pace with developments along other lines of
approach — so much so that they have adapted themselves to the ideas of the renormaliza-
tion group as well (see Ma, 1976b). The interested reader may refer to Binder (1986, 1987,
1992), Frenkel and Smit (2002), Binder and Heermann (2002), and Landau and Binder
(2009). We propose to discuss computer simulation methods further in Chapter 16.

As mentioned earlier, the aforementioned methods lead to results that are mutually
compatible and, within the stated margins of error, essentially identical. Table 13.1 lists
the generally accepted values of the critical exponents of a three-dimensional system with
n= 0,1,2,3, and ∞. It includes all the major exponents except α, which can be deter-
mined by using the scaling relation α+ 2β + γ = 2 (or the hyperscaling relation dν = 2−α);
we thus obtain, for n= 0,1,2,3, and∞, α = 0.235, 0.111,−0.008,−0.114, and −1, respec-
tively — of course, with appropriate margins of error. The theoretical results assem-
bled here may be compared with the corresponding experimental ones listed earlier in
Table 12.1, remembering that, while all other entries there are Ising-like (n= 1), the case
of superfluid He4 pertains to n= 2.

Table 13.1 includes exponents for the case n= 0 as well. This relates to the fact that if
the spin dimensionality n is treated as a continuously varying parameter then the limit
n→ 0 corresponds to the statistical behavior of self-avoiding random walks and hence of
polymers (de Gennes, 1972; des Cloizeaux, 1974). The role of t in that case is played by the
parameter 1/N , where N is the number of steps constituting the walk or the number of

Table 13.1 Theoretical Values of the Critical Exponents in Three Dimensions

n = 0 n = 1 n = 2 n = 3 n = ∞

β 0.302± 0.004 0.324± 0.006 0.346± 0.009 0.362± 0.012 0.5
γ 1.161± 0.003 1.241± 0.004 1.316± 0.009 1.39± 0.01 2.0
δ 4.85± 0.08 4.82± 0.06 4.81± 0.08 4.82± 0.12 5.0
ν 0.588± 0.001 0.630± 0.002 0.669± 0.003 0.705± 0.005 1.0
η 0.026± 0.014 0.031± 0.011 0.032± 0.015 0.031± 0.022 0.0

Source: After Baker (1990).
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monomers constituting the polymer chain; thus, the limit N→∞ corresponds to t→ 0,
whereby one approaches the critical point of the system. Concepts such as the correlation
function, the correlation length, the susceptibility, the free energy, and so on, can all be
introduced systematically into the problem and one obtains a well-defined model that
fits neatly with the rest of the family. For details, see de Gennes (1979) and des Cloizeaux
(1982).9

Finally, we look at the situation with d ≥ 4. As mentioned earlier, especially toward the
end of Section 13.5, critical exponents for d > 4 are independent of n and have values as
predicted by the mean field theory. To recapitulate, they are:

α = 0, β =
1
2

, γ = 1, δ = 3, ν =
1
2

, η = 0. (6)

At the borderline dimensionality d = 4, two nonclassical features appear. First, the nature
of the singularity is such that it cannot be represented by a power law alone; logarithmic
factors are also present. Second, the dependence on n shows up in a striking fashion. In
this context, we simply quote the results; for details, see Brézin et al. (1976):

c(s) ∼ | ln t|(4−n)/(n+8) (h= 0, t & 0) (7)

m0 ∼ |t|
1/2
| ln |t||3/(n+8) (h= 0, t . 0) (8)

χ ∼ t−1
| ln t|(n+2)/(n+8) (h= 0, t & 0) (9)

h∼m3
| lnm|−1 (t = 0,h & 0), (10)

along with the fact that η = 0 and hence ξ ∼ χ1/2. In the limit n→∞, these results go over
to the ones pertaining to the spherical model; see Section 13.5.

Problems
13.1. Making use of expressions (12.3.17) through (12.3.19), (13.2.12), and (13.2.13), show that the

expectation values of the numbers N+,N−,N++,N−−, and N+− in the case of an Ising chain are

N± =N
P(β,B)± sinh(βµB)

2P(β,B)
,

N++ =
N

2D(β,B)
eβµB[P(β,B)+ sinh(βµB)],

N−− =
N

2D(β,B)
e−βµB[P(β,B)− sinh(βµB)]

9Values of n other than the ones appearing in Table 13.1 are sometimes encountered. For instance, certain antiferro-
magnetic order–disorder transitions require for their description an order parameter with n= 4,6, 8, or 12; see Mukamel
(1975), and Bak, Krinsky, and Mukamel (1976). Another example of this is provided by the superfluidity of liquid He3,
which seems to require an order parameter with n= 18; see, for instance, Anderson (1984), and Vollhardt and Wölfle
(1990). Even negative values of n have been investigated; see Balian and Toulouse (1973) and Fisher (1973).
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and

N+− =
N

D(β,B)
e−4βJ ,

where

P(β,B)= {e−4βJ
+ sinh2

(βµB)}1/2

and

D(β,B)= P(β,B)[P(β,B)+ cosh(βµB)].

Check that (i) the preceding expressions satisfy the requirement that N+++N−−+N+− =N and
(ii) they agree with the quasichemical approximation (12.6.22), regardless of the value of B.

13.2. (a) Show that the partition function of an Ising lattice can be written as

QN (B,T)=
∑′

N+,N+−
gN (N+,N+−)exp{−βHN (N+,N+−)},

where

HN (N+,N+−)=−J
(

1
2

qN − 2N+−

)
−µB(2N+−N),

while other symbols have their usual meanings; compare these results to equations (12.3.19)
and (12.3.20).

(b) Next, determine the combinatorial factor gN (N+,N+−) for an Ising chain (q= 2) and show
that, asymptotically,

lngN (N+,N+−)≈N+ lnN++ (N −N+) ln(N −N+)

−

(
N+−

1
2

N+−

)
ln
(

N+−
1
2

N+−

)
−

(
N −N+−

1
2

N+−

)
ln
(

N −N+−
1
2

N+−

)
− 2

(
1
2

N+−

)
ln
(

1
2

N+−

)
.

Now, assuming that lnQN ≈ (the logarithm of the largest term in the sum
∑
′), evaluate the

Helmholtz free energy A(B,T) of the system and show that this leads to precisely the same
results as the ones quoted in the preceding problem as well as the ones obtained in
Section 13.2.

13.3. Using the approximate expression, see Fowler and Guggenheim (1940),

gN (N1,N12)'

(
1
2 qN

)
!

N11!N22!
[(

1
2 N12

)
!
]2

(
N1!N2!

N !

)q−1

,

for evaluating the partition function of an Ising lattice, show that one is led to the same results as
the ones following from the Bethe approximation.

[Note that, for q= 2, the quantity lng here is asymptotically exact; see Problem 13.2(b). No
wonder that the Bethe approximation gives exact results in the case of an Ising chain.]

13.4. Making use of relation (13.2.37), along with expressions (13.2.8) for the eigenvalues λ1 and λ2 of
the transfer matrix P, determine the correlation length ξ(B,T) of the Ising chain in the presence of
a magnetic field. Evaluate the critical exponent νc, as defined in Problem 12.25, and check that
νc
= ν/1, where ν and1 are standard exponents defined in Sections 12.10 and 12.12.
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13.5. Consider a one-dimensional Ising system in a fluctuating magnetic field B, so that

QN (s,T)∼

∞∫
−∞

dB
∑
{σi}

exp

{
−
βNB2

2s
+

N∑
i=1

[βµBσi+βJσiσi+1]

}
,

with σN+1 = σ1. Note that when the system is very large (i.e., N � 1) the typical value of B is
very small; nevertheless, the presence of this small fluctuating field leads to an order–disorder
transition in this one-dimensional system! Determine the critical temperature of this transition.

13.6. Solve exactly the problem of a field-free Ising chain with nearest-neighbor and
next-nearest-neighbor interactions, so that

H{σi} = −J1

∑
i

σiσi+1− J2

∑
i

σiσi+2,

and examine the various properties of interest of this model.
[Hint: Introduce a new variable τi = σiσi+1 =±1, with the result that

H{τi} = −J1

∑
i

τi− J2

∑
i

τiτi+1,

which is formally similar to expression (13.2.1)].
13.7. Consider a double Ising chain such that the nearest-neighbor coupling constant along either

chain is J1 while the one linking adjacent spins in the two chains is J2. Then, in the absence of the
field,

H{σi,σ
′

i } = −J1

∑
i

(σiσi+1+ σ
′

iσ
′

i+1)− J2

∑
i

σiσ
′

i .

Show that the partition function of this system is given by

1
2N

lnQ≈
1
2

ln[2coshK2{cosh2K1+
√

(1+ sinh2 2K1 tanh2 K2)}],

where K1 = βJ1 and K2 = βJ2. Examine the various thermodynamic properties of this system.
[Hint: Express the Hamiltonian H in a symmetric form by writing the last term as

−
1
2 J26i(σiσ

′

i + σi+1σ
′

i+1) and use the transfer matrix method.]
13.8. Write down the transfer matrix P for a one-dimensional spin-1 Ising model in zero field, described

by the Hamiltonian

HN {σi} = −J
∑

i

σiσi+1 σi =−1,0,+1.

Show that the free energy of this model is given by

1
N

A(T)=−kT ln
{

1
2

[
(1+ 2coshβJ)+

√

{8+ (2coshβJ − 1)2}
]}

.

Examine the limiting behavior of this quantity in the limits T→ 0 and T→∞.
13.9. (a) Apply the theory of Section 13.2 to a one-dimensional lattice gas and show that the pressure P

and the volume per particle v are given by

P
kT
= ln

[
1
2

{
(y+ 1)+

√

[(y− 1)2+ 4yη2]
}]

and

1
v
=

1
2

[
1+

y− 1
√

[(y− 1)2+ 4yη2]

]
,
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where y = z exp(4βJ) and η = exp(−2βJ),z being the fugacity of the gas. Examine the high and
the low temperature limits of these expressions.

(b) A hard-core lattice gas pertains to the limit J→−∞; this makes y→ 0 and η→∞ such that
the quantity yη2, which is equal to z, stays finite. Show that this leads to the equation of state

P
kT
= ln

(
1− ρ

1− 2ρ

) (
ρ =

1
v

)
.

13.10. For a one-dimensional system, such as the ones discussed in Sections 13.2 and 13.3, the
correlation function g(r) at all temperatures is of the form exp(−ra/ξ), where a is the lattice
constant of the system. Using the fluctuation-susceptibility relation (12.11.11), show that the
low-field susceptibility of such a system is given by

χ0 =Nβµ2 coth(a/2ξ).

Note that as T→ 0 and, along with it, ξ →∞,χ0 becomes directly proportional to ξ — consistent
with the fact that the critical exponent η = 1.

For an n-vector model (including the scalar case n= 1), ξ is given by equation (13.3.17), which
leads to the result

χ0 =Nβµ2 I(n−2)/2(βJ)+ In/2(βJ)

I(n−2)/2(βJ)− In/2(βJ)
.

Check that for the special case n= 1 this result reduces to equation (13.2.14).
13.11. Show that for a one-dimensional, field-free Ising model

σkσlσmσn = {tanhβJ}n−m+l−k,

where k ≤ l ≤m≤ n.
13.12. Recall the symbol n(r), of equation (13.4.5), which denotes the number of closed graphs that can

be drawn on a given lattice using exactly r bonds. Show that for a square lattice wrapped on a
torus (which is equivalent to imposing periodic boundary conditions)

n(4)=N , n(6)= 2N , n(8)=
1
2

N2
+

9
2

N , . . . .

Substituting these numbers into equation (13.4.5) and taking logs, one gets

lnQ(N ,T)=N
{

ln(2cosh2 K )+ v4
+ 2v6

+
9
2

v8
+ ·· ·

}
,v = tanhK .

Note that the term in N2 has disappeared — in fact, all higher powers of N do the same. Why?
13.13. According to Onsager, the field-free partition function of a rectangular lattice (with interaction

parameters J and J ′ in the two perpendicular directions) is given by

1
N

lnQ(T)= ln2+
1

2π2

π∫
0

π∫
0

ln{cosh(2γ )cosh(2γ ′)− sinh(2γ )cosω− sinh(2γ ′)cosω′}dωdω′,

where γ = J/kT and γ ′ = J ′/kT . Show that if J ′ = 0, this leads to expression (13.2.9) for the
linear chain with B= 0 while if J ′ = J , one is led to expression (13.4.22) for the square net.
Locate the critical point of the rectangular lattice and study its thermodynamic behavior
in the neighborhood of that point.

13.14. Write the elliptic integral K1(κ) in the form

K1(κ)=

π/2∫
0

1− κ sinφ
√
(1− κ2 sin2φ)

dφ+

π/2∫
0

κ sinφ
√
(1− κ2 sin2φ)

dφ,
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and show that, as κ→ 1−, the first integral→ ln2 while the second≈ ln[2/(1− κ2)1/2]. Hence
K1(κ)≈ ln(4/|κ ′|), as in equation (13.4.34).

[Hint: In the second integral, substitute cosφ = x.]
13.15. Using equations (13.4.22) and (13.4.28) at T = Tc, show that the entropy of the two-dimensional

Ising model on a square lattice at its critical point is given by

Sc

Nk
=

2G
π
+

1
2

ln2−
√

2Kc ' 0.3065;

here, G is Catalan’s constant, which is approximately equal to 0.915966. Compare this result with
the ones following from the Bragg–Williams approximation and from the Bethe approximation;
see Problem 12.15.

13.16. The spontaneous magnetization of a two-dimensional Ising model on a square lattice at T < Tc
is given by equation (13.4.38a). Express this result in the form B|t|β {1+b|t| + · · · }, where B and β
are stated in equation (13.4.40) while b= (1− 9Kc/

√
2)/8. As usual, t = (T −Tc)/Tc < 0 and |t| � 1.

13.17. Apply the theory of Section 13.4 to a two-dimensional lattice gas and show that, at T = Tc, the
quantity kTc/Pcvc ' 10.35.

13.18. Show that for the spherical model in one dimension the free energy at constant λ is given by

βAλ
N
=

1
2

ln

[
β{λ+

√
(λ2
− J2)}

2π

]
−
βµ2B2

4(λ− J)
,

while λ is determined by the constraint equation

1

2β
√
(λ2− J2)

+
µ2B2

4(λ− J)2
= 1.

In the absence of the field (B=0),λ=
√

1+ 4β2J2/2β; the free energy at constant S is then given by

βAS

N
=

1
2

ln

[√
(1+ 4β2J2)+ 1

4π

]
−

1
2

√

(1+ 4β2J2).

13.19. Starting with expression (13.3.8) for the partition function of a one-dimensional n-vector model,
with Ji = nJ ′, show that

Lim
n,N→∞

1
nN

lnQN (nK )=
1
2

[
√

(4K 2
+ 1)− 1− ln

{√
(4K 2

+ 1)+ 1
2

}]
,

where K = βJ ′. Note that, apart from a constant term, this result is exactly the same as for the
spherical model; the difference arises from the fact that the present result is normalized to give
QN = 1 when K = 0.

[Hint: Use the asymptotic formulae (for ν� 1)

0(ν)≈ (2π/ν)1/2(ν/e)ν

and

Iν(νz)≈ (2πν)−1/2(z2
+ 1)−1/4eνη,

where

η =
√

(z2
+ 1)− ln[{

√

(z2
+ 1)+ 1}/z].]

13.20. Show that the low-field susceptibility, χ0, of the spherical model at T < Tc is given by the
asymptotic expression

χ0 ≈ (Nµ2/kBT) ·Nm2
0(T),

where m0(T) is the spontaneous magnetization of the system; note that in the thermodynamic
limit the reduced susceptibility, kBTχ0/Nµ2, is infinite at all T < Tc. Compare to Problem 13.26.
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13.21. In view of the fact that only those fluctuations whose length scale is large play a dominant role
in determining the nature of a phase transition, the quantity (λ−µk) in the expression for the
correlation function of the spherical model, see equation (13.5.57), may be replaced by

λ−µk = λ− J
d∑

j=1

cos(kja)' J

[
φ+

k2a2

2

]
,

where φ = (λ/J)−d. Show that this approximation leads to the same result for G(R) as we have in
equation (13.5.61), with the same ξ as in equation (13.5.62).

For a similar reason, the quantity [exp(α+βε)− 1] in the correlation function (13.6.33) of the
ideal Bose gas may be replaced by

eα+βε − 1' α+βε = α+ (β~2/2m)k2,

leading to the same G(R) as in equation (13.6.35), with the same ξ as in equation (13.6.36).10

13.22. Consider a spherical model whose spins interact through a long-range potential varying as
(a/r)d+σ (σ > 0),r being the distance between two spins. This replaces the quantity (λ−µk) of
equations (13.5.16) and (13.5.57) by an expression approximating J[φ+ 1

2 (ka)σ ] for σ < 2 and
J[φ+ 1

2 (ka)2] for σ > 2; note that the nearest-neighbor interaction corresponds to the limit
σ →∞ and hence to the latter case.

Assuming σ to be less than 2, show that the above system undergoes a phase transition at a
finite temperature Tc for all d > σ . Further show that the critical exponents for this model are

α =
d− 2σ
d− σ

, β =
1
2

, γ =
σ

d− σ
, δ =

d+ σ
d− σ

,

ν =
1

d− σ
, η = 2− σ

for σ < d < 2σ , and

α = 0, β =
1
2

, γ = 1, δ = 3, ν =
1
σ

, η = 2− σ

for d > 2σ .
13.23. Refer to Section 13.6 on the ideal Bose gas in d dimensions, and complete the steps leading to

equations (13.6.9) through (13.6.15) and (13.6.23).
13.24. Show that for an ideal Bose gas in d dimensions and at T > Tc

V

(
∂2P
∂T 2

)
v

=
NkB

T

[
d(d+ 2)

4

g(d+2)/2(z)

gd/2(z)
−

d
2

gd/2(z)

g(d−2)/2(z)
−

d2

4

{gd/2(z)}2g(d−4)/2(z)

{g(d−2)/2(z)}3

]
and (

∂2µ

∂T 2

)
v

=
kB

T

[
d(d− 2)

4

gd/2(z)

g(d−2)/2(z)
−

d2

4

{gd/2(z)}2g(d−4)/2(z)

{g(d−2)/2(z)}3

]
,

where µ(= kT lnz) is the chemical potential of the gas while other symbols have the same
meanings as in Section 13.6. Note that these quantities satisfy the thermodynamic relationship

VT

(
∂2P
∂T 2

)
v

−NT

(
∂2µ

∂T 2

)
v

= CV .

10A comparison with the mean field results (12.11.25) and (12.11.26) brings out a close similarity that exists between
these models and the mean field picture of a phase transition; for instance, they all share a common critical exponent η,
which is zero. There are, however, significant differences; for one, the correlation length ξ for these models is character-
ized by a critical exponent ν which is nonclassical — in the sense that it is d-dependent whereas in the mean field case it
is independent of d.
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Also note that, since P here equals (2U/dV ), the quantities (∂P/∂T)v and (∂2P/∂T 2)v are directly
proportional to CV and (∂CV /∂T)V , respectively. Finally, examine the singular behavior of these
quantities as T→ Tc from above.

13.25. Show that for any given fluid

CP = VT(∂P/∂T)S(∂P/∂T)V κT

and

CV = VT(∂P/∂T)S(∂P/∂T)V κS,

where the various symbols have their usual meanings. In the two-phase region, these formulae
take the form

CP = VT(dP/dT)2κT and CV = VT(dP/dT)2κS,

respectively. Using the last of these results, rederive equation (13.6.30) for CV at T < Tc.
13.26. Show that for any given fluid

κT = ρ
−2(∂ρ/∂µ)T ,

where ρ(=N/V ) is the particle density and µ the chemical potential of the fluid. For the ideal
Bose gas at T < Tc,

ρ = ρ0+ ρe ≈−
kBT
Vµ
+
ζ(d/2)

λd
.

Using these results, show that11

κT ≈ (V /kBT)(ρ0/ρ)
2 (T < Tc);

note that in the thermodynamic limit the reduced compressibility, kBTκT/v, is infinite at all
T < Tc. Compare Problem 13.20.

13.27. Consider an ideal relativistic Bose gas composed of N1 particles and N2 antiparticles, each of rest
mass m0, with occupation numbers

1
exp[β(ε−µ1)]− 1

and
1

exp[β(ε−µ2)]− 1
,

respectively, and the energy spectrum ε = c
√
(p2
+m2

0c2). Since particles and antiparticles are
supposed to be created in pairs, the system is constrained by the conservation of the number
Q (=N1−N2), rather than of N1 and N2 separately; accordingly, µ1 =−µ2 = µ, say.

Set up the thermodynamic functions of this system in three dimensions and examine the
onset of Bose–Einstein condensation as T approaches a critical value, Tc, determined by the
“number density” Q/V . Show that the nature of the singularity at T = Tc is such that, regardless
of the severity of the relativistic effects, this system falls in the same universality class as the
nonrelativistic one.

13.28. Derive equation (13.1.9) for hard spheres in one dimension from equation (13.1.7). Plot the pair
correlation function for nD= 0.25, 0.50, 0.75, and 0.90. Determine the structure factor S(k)
numerically and plot it for the same densities. Compare your results with equation (13.1.21).

13.29. Use the pair correlation function (13.1.8) and (13.1.9) to determine analytically the structure
factor for hard spheres in one dimension. Show that S(k) is given by equation (13.1.21). Plot g(x)
and S(k) for nD= 0.25, 0.50, 0.75, and 0.90.

13.30. Use the Takahashi method of Section 13.1 for a system of point masses and harmonic springs of
length a. Allow the particles to pass through each other, so that the partition function can be
evaluated in a closed form. Show that the system is stable at zero pressure. Determine the average

11This remarkable relationship between the isothermal compressibility of a finite-sized Bose gas and the condensate
density in the corresponding bulk system was first noticed by Singh and Pathria (1987b).
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distance between particles that are far apart on the chain and the variance of that distance.
Determine the structure factor and plot it for several values of the parameter mω2a2/kT , where
m is the mass and mω2 is the spring constant. Show that the specific heat of this system is
independent of temperature, as given by the equipartition theorem.

13.31. Confirm the first few coefficients in the low-temperature series for the two-dimensional Ising
model in equation (13.4.53). Write a program to calculate the energies of all 216 states for a 4× 4
periodic lattice. Show that the coefficients here are

gq = {2,0,32,64,424,1728,6688,13568,20524,13568,6688,1728,424,64,32,0,2}.

Extend your code to calculate the partition function for a 6× 6 lattice, which has 236 states.
13.32. Calculate the exact zero field partition function of the one-dimensional Ising model on a periodic

chain of n spins using equation (13.2.5) and write QN (0,T) in the form of equation (13.4.52). Show
that for x→ 1, the partition function→ 2n. Evaluate the microcanonical entropy S(q)/k = lngq
and plot it for the case n= 16.

13.33. Use the code posted at www.elsevierdirect.com to evaluate equations (13.4.56) through (13.4.59)
to determine the low-temperature series coefficients for the two-dimensional Ising model for an
8× 8 lattice. Plot the internal energy and the specific heat as a function of temperature. Repeat
your calculation for 16× 16 and 32× 32 lattices.

13.34. Use the data posted at www.elsevierdirect.com to evaluate equations (13.4.56) through (13.4.59)
to plot the two-dimensional Ising model internal energy and specific heat as a function of
temperature for an L×L lattice, where L= 64. Compare your results with the ones displayed in
Figure 13.17.



14
Phase Transitions: The

Renormalization Group Approach

In this chapter we propose to discuss what has turned out to be the most successful
approach to the problem of phase transitions. This approach is based on ideas first pro-
pounded by Kadanoff (1966b) and subsequently developed by Wilson (1971) and others
into a powerful calculational tool. The main point of Kadanoff’s argument is that, as
the critical point of a system is approached, its correlation length becomes exceedingly
large — with the result that the sensitivity of the system to a length transformation (or
a change of scale, as one may call it) gets exceedingly diminished. At the critical point
itself, the correlation length becomes infinitely large and with it the system becomes totally
insensitive to such a transformation. It is then conceivable that, if one is not too far from
the critical point (i.e., |t|,h� 1), the given system (with lattice constant a) may bear a
close resemblance to a transformed system (with lattice constant a′ = la, where l > 1, and
presumably modified parameters t ′ and h′), renormalized so that all distances in it are
measured in terms of the new lattice constant a′; clearly, the rescaled correlation length
ξ ′ (in units of a′) would be one-lth of the original correlation length ξ (in units of a). This
resemblance in respect of critical behavior is expected only if ξ ′ is also much larger than a′,
just as ξ was in comparison with a, which in turn requires that l� (ξ/a); by implication,
|t ′| and h′ would also be� 1.

These considerations lead to a formulation similar to the one presented in
Section 12.10, with the difference that, while there we had to rely on a scaling hypothe-
sis, here we have a convincing argument based on the role played by correlations among
the microscopic constituents of the system which, in the vicinity of the critical point, are
so large-scale that they make all other length scales, including the one that determines the
structure of the lattice, essentially irrelevant. Unfortunately, Kadanoff’s approach did not
provide a systematic means of deriving the critical exponents or of constructing the scal-
ing functions that appear in the formulation. Those deficiencies were remedied by Wilson
by introducing the concept of a renormalization group (RG) into the theory.

We propose to discuss Wilson’s approach in Sections 14.3 and 14.4, but first we present
a formulation of scaling along the lines indicated above and follow it with an exploration of
simple examples of renormalization that pave way for establishing Wilson’s theory. Finally,
in Section 14.5, we outline the theory of finite-sizing scaling that too has benefited greatly
from the RG approach.

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00014-1
© 2011 Elsevier Ltd. All rights reserved.
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14.1 The conceptual basis of scaling
The scale change in a given system can be effected in several different ways, the earliest
one being due to Kadanoff who suggested that, when large-scale correlations prevail, the
individual spins in the system may be grouped into “blocks of spins,” each block consisting
of ld original spins, and let each block play the role of a “single spin” in the transformed
system; see Figure 14.1, where a block–spin transformation with l = 2 and d = 2 is shown.
The spin variable of a block may be denoted by the symbol σ ′, which arises from the values
of the individual spins in the block, but a rule has to be established so that σ ′ too is either
+1 or−1, just as the original σi were.1 The transformed system then consists of N ′ “spins,”
where

N ′ = l−dN , (1)

occupying a lattice structure with lattice constant a′ = la. To preserve the spatial density of
the degrees of freedom in the system, all spatial distances must be rescaled by the factor l,
so that for any two “spins” in the transformed system

r′ = l−1r. (2)

A second way of effecting a scale change is to write down the partition function of the
system,

Q=
∑
{σi}

exp[−βHN {σi}], (3)

(a) (b)

FIGURE 14.1 A block–spin transformation, with l = 2 and d = 2. The original lattice (a) has N (= 36) spins, the
transformed one (b) has N ′ (= 9); after rescaling, the latter looks very much the same as the former, especially in
the limit N ,N ′→∞.

1For simplicity, we employ the language of the scalar model here.



14.1 The conceptual basis of scaling 541

and carry out summation over a subset of (N −N ′) spins, such that one is left with a
summation, over the remaining N ′ spins, which can (hopefully) be expressed in a form
similar to (3), namely

Q=
∑
{σ ′i }

exp[−βHN ′ {σ
′

i }]. (4)

If the desired passage, from expression (3) to (4), can be accomplished with some degree
of accuracy, we should expect a close resemblance between the critical behavior of the
original system represented by equation (3) and the transformed one represented by (4);
see Figure 14.2, where an example of this procedure with l =

√
2 and d = 2 is shown. We

note that this procedure forms the very backbone of the Wilson approach and is generally
referred to as “decimation,” although the fraction of the spins removed, (N −N ′)/N , is
rarely equal to 1/10. Other ways of effecting a scale change will be mentioned later.

It is quite natural to expect that the free energy of the transformed system (or, at least,
that part of it that determines the critical behavior) is the same as that of the original sys-
tem. The singular parts of the free energy per spin of the two systems should, therefore, be
related as

N ′ψ (s)(t ′,h′)=Nψ (s)(t,h), (5)

so that

ψ (s)(t,h)= l−dψ (s)(t ′,h′). (6)

(a) (b)

Spins summed over
Spins that remain

FIGURE 14.2 A scale transformation by “decimation,” with l =
√

2 and d = 2. The original lattice (a) has N (= 36)
spins, the transformed one (b) has N ′ (= 18); the latter is yet to be rescaled (and rotated through an angle π/4) so
that it looks very much the same as the former, especially in the limit N ,N ′→∞.
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Now, since both t and t ′ are small in magnitude, one may assume that they are linearly
related, that is,

t ′ = l yt t, (7)

where yt , as yet, is an unknown number. Similarly, one may assume that

h′ = l yh h, (8)

with the result that

ψ (s)(t,h)= l−dψ (s)(l yt t, l yh h); (9)

like yt , the number yh is also unknown at this stage of the game.
We now assert that the function ψ (s), which governs much of the critical behavior of

the system, is essentially insensitive to a change of scale; we should, therefore, be able to
eliminate the scale factor l from expression (9). This essentially forces us to replace the
variables t ′ and h′ by a single, l-independent variable, namely

h′

|t ′|yh/yt
=

h

|t|yh/yt
=

h
|t|1

, say
(
1=

yh

yt

)
; (10)

at the same time, it requires us to write

ψ (s)(t ′,h′)= |t ′|d/yt ψ̃(h′/|t ′|1), (11)

leading to the identical result

ψ (s)(t,h)= |t|d/yt ψ̃(h/|t|1); (12)

note that, as of now, the function ψ̃ is also unknown.2 Comparing (12) with equation
(12.10.7), we readily identify the critical exponent α as

α = 2− (d/yt); (13)

more importantly, the present considerations have led to the same scaled form for the free
energy density of the system as was hypothesized in Section 12.10. We have thus raised the
status of expression (12.10.7) from being a mere hypothesis to being a well-founded result
whose conceptual basis lies in the prevalence of large-scale correlations in the system. As
in Section 12.10, we infer that the exponents β,γ , and δ are now given by

β = 2−α−1= (d− yh)/yt , (14)

γ =−(2−α− 21)= (2yh−d)/yt , (15)

2Some authors derive equation (12) from (9) by choosing l to be t−1/yt . As will be seen shortly, see equation (19), this
amounts to letting l be O(ξ/a), which violates the requirement, l� ξ/a, mentioned earlier.
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and

δ =1/β = yh/(d− yh). (16)

As remarked earlier, the rescaled correlation length ξ ′ of the transformed system and
the original correlation length ξ of the given system are related as

ξ ′ = l−1ξ . (17)

At the same time, we expect ξ ′ to be∼ |t ′|−ν , just as ξ ∼ |t|−ν . It follows that(
ξ ′

ξ

)
=

(
t′

t

)−ν
= l−νyt . (18)

Comparing (17) and (18), we conclude that

ν = 1/yt (19)

and hence, by (13),

dν = 2−α. (20)

We thus obtain not only a useful expression for the critical exponent ν but also the hyper-
scaling relation (12.12.15) on a basis far sounder than the one employed in Section 12.12.

Finally we look at the correlation functions of the two systems. At the critical point we
expect that for the transformed system

g(r′1, r′2)= 〈σ
′(r′1)σ

′(r′2)〉 ∼ (r
′)−(d−2+η), (21)

just as for the original system

g(r1, r2)= 〈σ(r1)σ (r2)〉 ∼ r−(d−2+η). (22)

In order that equations (21) and (22) be mutually compatible, we must rescale the spin
variables such that

σ ′(r′)= l(d−2+η)/2σ(r). (23)

As for η, we may use the scaling relation γ = (2− η)ν, to get

η = d+ 2− 2yh. (24)

14.2 Some simple examples of renormalization
14.2.A The Ising model in one dimension

We start with the partition function (13.2.3a) of a closed Ising chain consisting of N
spins, namely

QN (B,T)=
∑
{σi}

exp

[ N∑
i=1

{
K0+K1σiσi+1+

1
2 K2(σi+ σi+1)

}]

(K0 = 0,K1 = βJ ,K2 = βµB); (1)
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N 2 3

N 2 2

N 21
N 1 2

3

4

5

FIGURE 14.3 A closed Ising chain to be “decimated” by carrying out summations over σ2,σ4, . . ..

the parameter K0 has been introduced here for reasons that will become clear in the sequel.
For simplicity, we assume N to be even and carry out summation in (1) over all σi for which
i is even, that is, over σ2,σ4, . . .; see Figure 14.3. Writing the summand in (1) as

N∏
i=1

exp{K0+K1σiσi+1+
1
2 K2(σi+ σi+1)} =

1
2 N∏
j=1

exp
{

2K0+K1(σ2j−1σ2j + σ2jσ2j+1)

+
1
2 K2(σ2j−1+ 2σ2j + σ2j+1)

}
, (2)

the summations over σ2j (=+1 or −1) can be carried out straightforwardly, with the result

1
2 N∏
j=1

exp(2K0) · 2cosh{K1(σ2j−1+ σ2j+1)+K2} · exp
{

1
2 K2(σ2j−1+ σ2j+1)

}
. (3)

Denoting σ2j−1 by σ ′j , the partition function QN assumes the form

QN (B,T)=
∑
{σ ′j }

1
2 N∏
j=1

exp(2K0) · 2cosh{K1(σ
′

j + σ
′

j+1)+K2} · exp
{

1
2

K2(σ
′

j + σ
′

j+1)

}
. (4)

The crucial step now consists in expressing (4) in a form similar to (1), namely

QN (B,T)=
∑
{σ ′j }

exp

 N ′∑
j=1

{
K ′0+K ′1σ

′

jσ
′

j+1+
1
2 K ′2(σ

′

j + σ
′

j+1)
}. (5)
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This requires that, for all choices of the variables σ ′j and σ ′j+1,

exp
{

K ′0+K ′1σ
′

jσ
′

j+1+
1
2 K ′2(σ

′

j + σ
′

j+1)
}

= exp(2K0) · 2cosh{K1(σ
′

j + σ
′

j+1)+K2} · exp
{

1
2 K2(σ

′

j + σ
′

j+1)
}

. (6)

The various choices being σ ′j = σ
′

j+1 =+1,σ ′j = σ
′

j+1 =−1 and σ ′j =−σ
′

j+1 =±1, we obtain
from (6)

exp(K ′0+K ′1+K ′2)= exp(2K0+K2) · 2cosh(2K1+K2), (7a)

exp(K ′0+K ′1−K ′2)= exp(2K0−K2) · 2cosh(2K1−K2), (7b)

and

exp(K ′0−K ′1)= exp(2K0) · 2coshK2. (7c)

Solving for K ′0,K ′1, and K ′2, we get

e K ′0 = 2e2K0 {cosh(2K1+K2)cosh(2K1−K2)cosh2 K2}
1/4, (8a)

e K ′1 = {cosh(2K1+K2)cosh(2K1−K2)/cosh2 K2}
1/4, (8b)

and

e K ′2 = eK2 {cosh(2K1+K2)/cosh(2K1−K2)}
1/2. (8c)

We may now remark on the need to have the parameter K0 included in expression (1)
and, accordingly, K ′0 in (5). Since we end up having three equations (7a), (7b), and (7c), to
determine the parameters appropriate to the transformed system, the problem could not
be solved with K1 and K2 only; thus, even if K0 were set equal to zero, a K ′0 6= 0 is essential
for a proper representation of the transformed system. To highlight the role played by this
parameter in determining the free energy of the given system, we observe on the basis of
equations (1) and (5) that, with K0 = 0,

QN (K1,K2)= eN ′K ′0 QN ′(K
′

1,K ′2) (9)

and hence for the free energy we have (in units of kT)

AN (K1,K2)=−N ′K ′0+AN ′(K
′

1,K ′2). (10)

Since N ′ = 1
2 N , we obtain for the free energy per spin the recurrence relation

f (K1,K2)=−
1
2 K ′0+

1
2 f (K ′1,K ′2), (11)
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which relates the free energy per spin of the given system with that of the transformed
system; the role played by K ′0 is clearly significant. For example, in the limit T→∞, when
(K1,K2) and along with them (K ′1,K ′2) tend to zero, equations (8a) and (11) give

f (0,0)=−K ′0 =− ln2, (12)

which is indeed the correct result (arising from the limiting value of the entropy, Nk ln2, of
the system).

We note that the parameter K0 does not appear in equations (8b) and (8c), which deter-
mine K ′1 and K ′2 in terms of K1 and K2. As will be seen in Sections 14.3 and 14.4, it is these
two relations that determine the singular part of the free energy of the system and hence
its critical behavior; the parameters K0 and K ′0 affect only the regular part of the free energy
and hence play no direct role in determining the critical behavior of the system. We might
hasten to add that, while renormalization is generally used as a technique for studying the
properties of a given system in the vicinity of its critical point, it can be useful over a much
broader range of the variables K1 and K2. For instance, in the absence of the field (K2 = 0),
equations (8) and (11) give

K ′0 = ln{2
√

[cosh(2K1)]}, K ′1 = ln
√

[cosh(2K1)], K ′2 = 0 (13)

and hence

f (K1,0)=− 1
2 ln{2

√
[cosh(2K1)]}+ 1

2 f (ln
√

[cosh(2K1)],0); (14)

the functional equation (14) has the solution

f (K1,0)=− ln(2coshK1), (15)

valid at all K1. On the other hand, in the paramagnetic case (K1 = 0), we get

K ′0 = ln(2coshK2), K ′1 = 0, K ′2 = K2 (16)

and hence

f (0,K2)=−
1
2 ln(2coshK2)+

1
2 f (0,K2), (17)

with the solution

f (0,K2)=− ln(2coshK2), (18)

valid at all K2. The case when both K1 and K2 are present is left as an exercise for the reader;
see Problem 14.2. The critical behavior of this system will be studied in Section 14.4.



14.2 Some simple examples of renormalization 547

14.2.B The spherical model in one dimension

We adopt the same topology as in Figure 14.3 and write down the partition function of the
one-dimensional spherical model consisting of N spins, see equation (13.5.12a),

QN =

∞∫
−∞

. . .

∞∫
−∞

exp

[ N∑
i=1

{
K0+K1σiσi+1+K2σi−3σ

2
i

}]
dσ1 . . .dσN

(K0 = 0,K1 = βJ ,K2 = βµB,3= βλ), (19)

where3 is chosen so that

〈 N∑
i=1

σ 2
i

〉
=−

∂

∂3
lnQN =N ; (20)

see equations (13.5.9) and (13.5.13). Assuming N to be even, we carry out integrations over
σ2,σ4, . . .. For this, we write our integrand as

N∏
i=1

exp
{

K0+K1σiσi+1+K2σi−3σ
2
i

}
=

1
2 N∏
j=1

exp
{

2K0+K1(σ2j−1σ2j + σ2jσ2j+1)

+ K2(σ2j−1+ σ2j)−3
(
σ 2

2j−1+ σ
2
2j

)}
(21)

and integrate over σ2j, using the formula

∞∫
−∞

e−px2
+qxdx =

(
π

p

)1/2

e q2/4p (p> 0). (22)

After simplification, we get

1
2 N∏
j=1

( π
3

)1/2
exp

{(
2K0+

K 2
2

43

)
+

K 2
1

23
σ2j−1σ2j+1+

(
K2+

K1K2

3

)
σ2j−1−

(
3−

K 2
1

23

)
σ 2

2j−1

}
. (23)

Denoting σ2j−1 by σ ′j , expression (19) may now be written in the renormalized form

QN =

∞∫
−∞

. . .

∞∫
−∞

exp

 N ′∑
j=1

{
K ′0+K ′1σ

′

jσ
′

j+1+K ′2σ
′

j −3
′σ ′

2
j

}dσ ′1 . . .dσ
′

N ′ , (24)
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where

K ′0 =
1
2

ln
( π
3

)
+ 2K0+

K 2
2

43
, K ′1 =

K 2
1

23
, (25a, b)

K ′2 = K2

(
1+

K1

3

)
, 3′ =3−

K 2
1

23
(25c, d)

and, of course, N ′ = 1
2 N . It follows that, with K0 = 0,

QN (K1,K2,3)= eN ′K ′0 QN ′(K
′

1,K ′2,3′) (26)

and hence for the free energy per spin (in units of kT) we have the recurrence relation

f (K1,K2,3)=− 1
2 K ′0+

1
2 f (K ′1,K ′2,3′). (27)

The critical behavior of this system will be studied in Section 14.4. Presently we would
like to demonstrate how the free energy of the system, over a broad range of the vari-
ables K1 and K2, can be determined by using the recurrence relation (27) along with the
transformation equations (25).

First of all we identify two invariants of the transformation, namely

3′2−K ′21 =3
2
−K 2

1 (28a)

and

(3′−K ′1)/K ′2 = (3−K1)/K2. (28b)

It turns out that it is precisely these combinations that appear in the constraint equation
of the system as well; see Problem 13.18. It follows that the constraint equation (20) is RG-
invariant, that is, once it is satisfied in the original system, its counterpart〈 N ′∑

j=1

σ ′2j

〉
=N ′ (29)

is automatically satisfied in the transformed system — without any need to rescale the spin
variables.3 Now, in the absence of the field (K2 = 0), equations (25) and (27) give

K ′0 =
1
2

ln
( π
3

)
, K ′1 =

K 2
1

23
, K ′2 = 0, 3′ =3−

K 2
1

23
(30)

and hence

f (K1,3)=−
1
4

ln
( π
3

)
+

1
2

f

(
K 2

1

23
,3−

K 2
1

23

)
. (31)

3This is further related to the fact that the critical exponent η in this case is equal to 1; see equation (14.1.23) which,
with d = 1, gives: σ ′(r′)= σ(r).
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The functional equation (31) has the solution

f (K1,3)=
1
2

ln

[
3+
√
(32
−K 2

1)

2π

]
, (32)

valid at all K1; the appropriate value of3 is given by the constraint equation

∂f
∂3
=

1

2
√
(32−K 2

1)
= 1, that is 3=

1
2
√
(1+ 4K 2

1). (33)

Note that the invariant (28a) in this case is equal to 1
4 . On the other hand, in the

paramagnetic case (K1 = 0), we get

K ′0 =
1
2

ln
( π
3

)
+

K 2
2

43
, K ′1 = 0, K ′2 = K2, 3′ =3 (34)

and hence

f (K2,3)=−
1
4

ln
( π
3

)
−

K 2
2

83
+

1
2

f(K2,3), (35)

with the solution

f (K2,3)=−
1
2

ln
( π
3

)
−

K 2
2

43
, (36)

valid at all K2; the appropriate value of3 is now given by

∂f
∂3
=

1
23
+

K 2
2

432
= 1, that is 3=

√
(1+ 4K 2

2)+ 1

4
. (37)

The case when both K1 and K2 are present is left as an exercise for the reader; see
Problem 14.3.

14.2.C The Ising model in two dimensions

As our third example of renormalization, we consider an Ising model on a square
lattice in two dimensions. In the field-free case, the partition function of this system is
given by

QN (T)=
∑
{σi}

exp

{∑
n.n.

Kσiσj

}
(K = βJ), (38)

where the summation in the exponent goes over all nearest-neighbor pairs of spins in the
lattice. Writing the summand in (38) as a product of factors pertaining to different pairs of
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7 8 9

4 5 6

1 2 3

FIGURE 14.4 A section of the two-dimensional Ising lattice. The summed-over spins are denoted by open circles, the
remaining ones by solid dots. To begin with, we concentrate on the summation over σ5.

spins, we may highlight those factors that contain a particular spin, say σ5, and carry out
summation over this spin (see Figure 14.4):∑

σ5=±1

∏
n.n.

. . .eKσ2σ5 · eKσ4σ5 · eKσ5σ6 · eKσ5σ8 . . . (39)

=

∏
n.n.

′

. . . [2coshK (σ2+ σ4+ σ6+ σ8)] . . . , (40)

where the primed product goes over the remaining nearest-neighbor pairs in the lattice.
This procedure of summation is supposed to be continued until one-half of the spins,
shown as open circles in Figure 14.4, are all summed over. Clearly, this will generate a host
of factors of the type shown in expression (40) but the real task now is to express these fac-
tors in a form similar, or at least as close as possible, to the factors appearing in the original
expression (38); moreover, this mode of expression should be valid for all possible values
of the remaining spins, namely σ2,σ4, . . .=±1.

For the factor explicitly displayed in (40), there are 16 possible values for the spins
involved, of which only four turn out to be nonequivalent; they are

(i) σ2 = σ4 = σ6 = σ8, (41a)

(ii) σ2 = σ4 = σ6 =−σ8, (41b)

(iii) σ2 = σ4 =−σ6 =−σ8, (41c)

(iv) σ2 =−σ4 =−σ6 = σ8. (41d)

However, even four values are too many to accommodate by a factor of the form

exp{A+B(σ2σ4+ σ2σ6+ σ4σ8+ σ6σ8)},
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which contains only nearest-neighbor interactions in the transformed lattice and hence
only two parameters to choose. Clearly, we need two more degrees of freedom, and it turns
out that these are provided by the next-nearest-neighbor interactions and by interactions
among a quartet of spins sitting on the corners of an elementary square in the new lattice.
Thus, we are obliged to set

2coshK (σ2+ σ4+ σ6+ σ8)= exp{K ′0+
1
2 K ′(σ2σ4+ σ2σ6+ σ4σ8+ σ6σ8)

+L′(σ2σ8+ σ4σ6)+M ′σ2σ4σ6σ8}; (42)

the reason why we have written 1
2 K ′, rather than K ′, will become clear shortly. Now, the

four possibilities listed above require that

2cosh4K = exp(K ′0+ 2K ′+ 2L′+M ′), (43a)

2cosh2K = exp(K ′0−M ′), (43b)

2= exp(K ′0− 2L′+M ′), (43c)

2= exp(K ′0− 2K ′+ 2L′+M ′), (43d)

with the result that

K ′0 = ln2+ 1
2 lncosh2K + 1

8 lncosh4K , (44)

K ′ = 1
4 lncosh4K , (45)

L′ = 1
8 lncosh4K , (46)

M ′ = 1
8 lncosh4K − 1

2 lncosh2K . (47)

Continuing this process, we find that the factor exp
(1

2 K ′σ2σ4
)

appears once again when
summation over σ1 is carried out, the factor exp

(1
2 K ′σ2σ6

)
appears once again when sum-

mation over σ3 is carried out, and so on; no further factors involving the products σ2σ8,σ4σ6

and σ2σ4σ6σ8 appear. The net result is that the partition function (38) assumes the form

QN = eN ′K ′0
∑
{σ ′j }

exp

K ′
∑
n.n.

σ ′jσ
′

k +L′
∑

n.n.n.

σ ′jσ
′

k +M ′
∑
sq.

σ ′jσ
′

kσ
′

lσ
′
m

 , (48)

where N ′ = 1
2 N .

Clearly, we have not been able to establish an exact correspondence between the
transformed system and the original one (in which no interactions other than the nearest-
neighbor ones were present). It seems more reasonable now that we redefine the original
system as one having all the interactions appearing in expression (48), but with L=M = 0.
We may then write

QN (K ,0,0)= eN ′K ′0 QN ′(K
′,L′,M ′) (49)
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and hence for the free energy per spin (in units of kT)

f (K ,0,0)=− 1
2 K ′0+

1
2 f (K ′,L′,M ′), (50)

where K ′0,K ′,L′, and M ′ are given by equations (44) through (47). In view of the appear-
ance of new parameters, L′ and M ′, in the recurrence relation (50), no further progress can
be made without introducing some sort of an approximation, for which see Section 14.4.
But one thing is clear: when renormalization is carried out in two dimensions or more, the
connectivity of the lattice requires that the Hamiltonian of the decimated system contain
some higher-order interactions not present in the original system, in order that the lat-
ter be represented correctly on transformation. It is obvious that further renormalizations
would require more and more such interactions, and hence the need for more and more
parameters would grow without limit. It may then be advisable that the Hamiltonian of
the given system be regarded as a function of an “infinitely large number of parameters”
(all but a few of which are zero to begin with), such that the number of parameters with
a nonzero value grows indefinitely as renormalization transformations are carried out in
succession and the number of degrees of freedom of the system steadily reduced.

We now present a formulation of the renormalization group approach to the study of
critical phenomena.

14.3 The renormalization group: general formulation
We start with a system whose Hamiltonian depends on a large number of parameters
K1,K2, . . . (all but a few of which are zero to begin with) and on the spin configuration {σi}

of the lattice. The free energy of the system is then given by

exp(−βA)=
∑
{σi}

exp[−βH{σi}({Kα})] α = 1,2, . . . . (1)

We now effect a “decimation” of the system, which reduces the number of degrees of
freedom from N to N ′ and the correlation length from ξ to ξ ′, such that

N ′ = l−dN , ξ ′ = l−1ξ (l > 1). (2a, b)

Expressing the Hamiltonian of the transformed system in a form similar to the one for the
original system, except that we now have new parameters K ′α , along with the additional K ′0,
and new spins σ ′j , equation (1) takes the form

exp(−βA)= exp(N ′K ′0)
∑
{σ ′j }

exp
[
−βH{σ ′j }

({K ′α})
]

, (3)

so that the free energy per spin (in units of β−1) is given by

f ({Kα})= l−d[−K ′0+ f ({K ′α})]. (4)
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We now look closely at the transformation {Kα} → {K ′α} by introducing a vector space K

in which the set of parameters Kα is represented by the tip of a position vector K ; on trans-
formation, K changes to K ′, which may be looked upon as a kind of “flow from one position
in the vector space to another.” This flow may be represented by the transformation
equation

K ′ =Rl(K ) (5)

where Rl is the renormalization-group operator appropriate to the case under considera-
tion. A repeated application of this process leads to a sequence of vectors K ′, K ′′, . . ., such
that

K (n)
=Rl(K

(n−1))= . . .=Rn
l (K

(0)) n= 0,1,2, . . . , (6)

where K (0) denotes the original K . At the end of this sequence, the correlation length ξ and
the singular part of the free energy fs are given by

ξ (n) = l−nξ (0), f (n)s = lnd f (0)s ; (7a, b)

see equations (2b) and (4).
Now, the transformation (5) may have a fixed point, K ∗, so that

Rl(K
∗)= K ∗. (8)

Equation (2b) then tells us that ξ(K ∗)= l−1ξ(K ∗), which means that ξ(K ∗) is either zero or
infinite! The former possibility is of little interest to us, so let us dwell only on the latter
(which makes the system with parameters K = K ∗ critical); in simple situations, the fixed
point, K ∗, will correspond to the critical point, K c, of the given system. Conceivably, an
arbitrary point K , on successive transformations such as (6), may end up at the fixed point
K ∗. Since the correlation length ξ can only decrease on transformation, see equation (7a),
and is infinite at the end of this sequence of transformations, it must be infinite at K as well
(the same being true for all points intermediate between K and K ∗). The collection of all
those points which, on successive transformations, flow into the fixed point, constitutes a
surface over which ξ is infinite; this surface is generally referred to as the critical surface. All
flow lines in this surface are directed toward, and terminate at, the fixed point, while points
off this surface may initially move toward the fixed point but eventually their flow lines will
veer away from it; see Figure 14.5. Reasons behind this pattern of flow will become clear
soon.

For the analysis of the critical behavior we examine the pattern of flow in the neighbor-
hood of the fixed point K ∗.4 Setting

K = K ∗+k, (9)

4In general, the vector K ∗ will contain components not present in the original problem. In such a case, one has to
locate, on the critical surface, a point K c that is free of these “unnecessary” components; since ξ is infinite at K = K c

as well, the latter may be identified as the critical point of the given system. As will be seen in the sequel, the critical
behavior of the system is still determined by the flow pattern in the neighborhood of the fixed point.
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Fixed point
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critical
point

h
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FIGURE 14.5 The parameter space of a physical system, showing critical trajectories (solid lines) flowing into the
fixed point. The subspace of the relevant variables, t and h, is everywhere “orthogonal” to these trajectories (on all
of which t = h= 0); the critical trajectories differ from one another only in respect of irrelevant variables that
vanish as the fixed point is approached. The dashed lines depict that part of the flow in which the relevant
variables play a decisive role.

we have by equations (5) and (8)

K ′ = K ∗+k′ =Rl(K
∗
+k) (10)

so that

k′ =Rl
(
K ∗+k

)
−K ∗ (11)

Assuming {kα}, and hence {k′α}, to be small, we may linearize equation (11) to write

k′ ≈
dRl

dK

∣∣∣∣
K=K ∗

k =A∗l k (12)

where A∗l is a matrix arising from the linearization of the operator Rl around the fixed
point K ∗. The eigenvalues λi and the eigenvectors φi of the matrix A∗l play a vital role in
determining the critical behavior of the system.

If the vectors φi form a complete set, we may expand k and k′ in terms of φi,

k =
∑

i

uiφi, k′ =
∑

i

u′iφi, (13a, b)

with the result that

u′i = λiui i= 1,2, . . . ; (14)
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the coefficients ui appearing here are generally referred to as the scaling fields of the prob-
lem. Under successive transformations (all in the neighborhood of the fixed point), these
fields are given by

u(n)i = λ
n
i u(0)i . (15)

It is obvious that the fields ui are certain linear combinations of the original parameters kα ;
they may, therefore, be looked upon as the “generalized coordinates” of the problem. The
relative influence of these coordinates in determining the critical behavior of the system
depends crucially on the respective eigenvalues λi. With u(n)i given by (15), we have three
possible courses for a given coordinate ui.

(a) If λi > 1, the coordinate ui grows with n and, with successive transformations,
becomes more and more significant. Clearly, ui in this case is a relevant variable
which, by itself, drives the system away from the fixed point — thus making the
fixed point unstable. By experience, we know that the temperature parameter
t [= (T −Tc)/Tc] and the magnetic field parameter h [= µB/kTc] are two basic
quantities that vanish at the critical point and are clearly relevant to the problem of
phase transitions. We, therefore, expect that our analysis will produce at least two
relevant variables, u1 and u2 say, which could be identified with t and h, respectively,
so that

u1 = at+O(t2), u2 = bh+O(h2), (16, 17)

with both λ1 and λ2 greater than unity.
(b) If λi < 1, the coordinate ui decays with n and, with successive transformations,

becomes less and less significant. Clearly, ui in this case is an irrelevant variable
which, by itself, drives the system toward the fixed point. Now, if all the relevant
variables are set at zero, then successive transformations (by virtue of the irrelevant
variables) will drive the system to the fixed point. We must then be cruising on the
critical surface itself (where all trajectories are known to flow into the fixed point).
It follows that on the critical surface all relevant variables of the problem are zero;
furthermore, the divergence of the correlation length is also tied to the same fact.

(c) If λi = 1, the coordinate ui, in the linear approximation, stays constant; it neither
grows nor decays very rapidly unless one enters the nonlinear, beyond-scaling,
regime of the variable ui. Quite appropriately, ui in this case is termed a marginal
variable; it does not affect the critical behavior of the system as significantly as a
relevant variable does, but it may throw in logarithmic factors along with the
conventional power laws. The ability to identify such variables and to predict the
consequent departures from simple power-law scaling is one of the added virtues
of the RG approach.

The above considerations enable us to understand the pattern of flow shown in
Figure 14.5. While the points on the critical surface flow into the fixed point, those off this
surface flow toward the fixed point by virtue of the irrelevant variables and, at the same
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time, away from it by virtue of the relevant variables; the net result is an initial approach
toward but a final recession away from the fixed point. Points close to the fixed point and
in directions “orthogonal” to the critical surface have only relevant variables to contend
with, so right away they move away from the fixed point. It is this part of the flow that
determines the critical behavior of the given system.

Disregarding the irrelevant variables, we now examine the manner in which the corre-
lation length, ξ , and the (singular part of the) free energy, fs, of the system are affected by
the transformation (15). In view of equations (7a,b), we have

ξ(u1,u2, . . .)= lnξ(λn
1 u1,λn

2 u2, . . .) (18)

and

fs(u1,u2, . . .)= l−ndfs(λ
n
1 u1,λn

2 u2, . . .). (19)

Identifying u1 with t, as in (16), and remembering the definition of the critical exponent ν,
we obtain from (18)

u−ν1 = ln(λn
1 u1)

−ν , (20)

with the result that

ν = ln l/ lnλ1. (21)

At first sight one might wonder why ν should depend on l. In fact, it doesn’t because of the
following argument. On physical grounds we expect that two successive transformations
with scale factors l1 and l2 would be equivalent to a single transformation with scale factor
l1l2, that is,5

A∗l1
A∗l2
=A∗l1l2

. (22)

This forces the eigenvalues λi to be of the form l yi , for

lyi
1 lyi

2 = (l1l2)
yi . (23)

Relation (21) then becomes

ν = 1/y1, (24)

manifestly independent of l.
Equation (19) may now be written as

fs(t,h, . . .)= l−ndfs(lny1 t, lny2 h, . . .). (25)

5This requirement makes the set of operators Rl a semigroup — not a group because the inverse of Rl does not exist.
The reason for the nonexistence of R−1

l is that once a number of degrees of freedom of the system are summed over
there is no definitive way of recreating them.
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To ensure that the above relationship is independent of the choice of l, we follow the same
line of argument as in Section 14.1, after equation (14.1.9), with the result

fs(t,h, . . .)= |t|dν f̃s(h/|t|1, . . .), (26)

where

1= y2/y1. (27)

Equation (26) is formally the same as the scaling relationship postulated in Section 12.10
and, one might say, argued out in Section 14.1. The big difference here is that not only has
this relationship been derived on a firmer basis but now we also have a recipe for evaluat-
ing the critical exponents ν,1, and so on, from first principles. What one has to do here is
to determine the RG operator Rl for the given problem, linearize it around the appropri-
ate fixed point K ∗, determine the eigenvalues λi (= l yi) and use equations (24) and (27) to
evaluate ν and 1. At the same time, recalling the definition of the critical exponent α, we
infer from (26) that

2−α = dν; (28)

the remaining exponents follow with the help of the scaling relations

β = (2−α)−1, γ = 21− (2−α), δ =1/β, η = 2− (γ /ν). (29)

We find that the hyperscaling relation (28) is an integral part of the RG formulation;
it comes out naturally — with no external imposition whatsoever. It is, however, dis-
concerting that, according to the above argument, this relation should hold for all d —
notwithstanding the fact that, for d > 4, all critical exponents are “stuck” at the mean field
values and relation (28) gets replaced by

2−α = 4ν (d > 4), (30)

with α = 0 and ν = 1
2 . The reason for this peculiar behavior is somewhat subtle; it

arises from the fact that in certain situations an “irrelevant variable” may well raise its
“dangerous” head and affect the outcome of the calculation in a rather significant manner.

To see how this happens, we may consider a continuous spin model, very much like the
one considered in Section 13.5, with the probability distribution law

p(σ i)dσ i = const. e−
1
2 σ

2
i −ũσ4

i dσ i (ũ> 0); (31)

compared with equation (13.5.1). The free energy of the system then depends on the
parameter ũ as well as on t and h, and we obtain instead of (25)

fs(t,h, ũ)= l−ndfs
(
lny1 t, lny2 h, lny3 ũ, . . .

)
. (32)
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Now, using the RG approach, one finds (see Appendix D of Fisher, 1983) that, for d > 4,

y1 = 2, y2 =
1
2

d+ 1, y3 = 4−d, (33)

showing very clearly that, for d > 4, the parameter ũ is an irrelevant variable. One is,
therefore, tempted to ignore ũ and arrive at equation (26), with

ν =
1
2

and 1= (d+ 2)/4. (34)

The very fact that 1 turns out to be d-dependent shows that there is something wrong
here. It turns out that though, on successive transformations, the variable ũ does tend to
zero, its influence on the function fs does not. It may, therefore, be prudent to write

fs(t,h, ũ)= |t|dν f̃s(h/|t|1, ũ/|t|φ), (35)

where

φ =
y3

y1
=

4−d
2

. (36)

Now, by analysis, one finds that

Lim
w→0

f̃s(v,w)≈
1
w

F(vw1/2), (37)

where F(vw1/2) is a perfectly well-behaved function. The singularity of f̃s in w changes the
picture altogether, and we get in the desired limit

fs(t,h, ũ)≈ |t|dν+φF
(

h/|t|1+
1
2φ
)

. (38)

The “revised” value of4 now is

1rev =
d+ 2

4
+

4−d
4
=

3
2

, (39)

which is indeed independent of d and agrees with the corresponding mean field value. At
the same time, the “revised” form of the hyperscaling relation now is

2−α =
d
2
+

4−d
2
= 2, (40)

as stated in (30).
The lesson to be learnt here is that the standard derivations of the scaling relations

rest on certain assumptions, often left unstated, about the nonsingular or nonvanishing
behavior of various scaling functions and their arguments. In many cases these assump-
tions are valid and may even be confirmed by explicit calculations or otherwise; in certain
circumstances, however, they fail — in which case a scaling relation may change its form.
Fortunately, such circumstances are not that common.
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14.4 Applications of the renormalization group
We start our considerations with the models examined in Section 14.2.

14.4.A The Ising model in one dimension

The renormalization group transformation in this case is given by equations (14.2.8b and
c), namely

K ′1 =
1
4 ln[cosh(2K1+K2)cosh(2K1−K2)]− 1

2 lncoshK2 (1a)

and

K ′2 = K2+
1
2 ln[cosh(2K1+K2)/cosh(2K1−K2)], (1b)

where K1 = J/kT and K2 = µB/kT . It is straightforward to see that this transformation has
a “line of trivial fixed points,” with K1 = 0 and K2 arbitrary. These fixed points pertain to
either J = 0 or T =∞; in either case, one has a correlation length that vanishes. There is
also a nontrivial fixed point at K1 =∞ and K2 = 0, which may be realized by first setting
B= 0 and then letting T→ 0; the correlation length at this fixed point will be infinite. In
the vicinity of this point, we have

K ′1 ' K1−
1
2 ln2, K ′2 ' 2K2. (2a, b)

Now, since K ∗1 =∞,K1 is not an appropriate variable to carry out an expansion around the
fixed point. We may adopt instead a new variable, see equation (13.2.17), namely

t = exp(−pK1) (p> 0), (3)

so that t∗ = 0; now, in the vicinity of the fixed point, we have

t′ ' 2p/2t. (4)

Identifying K2 as the variable h, and remembering that the scale factor l here is 2, we readily
obtain from equations (2b) and (4)

y1 = p/2, y2 = 1. (5)

The critical exponents of the model now follow straightforwardly from (5); we get

ν = 2/p, 1= 2/p, (6)

from which, by equations (14.3.28) and (14.3.29),

α = 2− 2/p, β = 0, γ = 2/p, δ =∞, η = 1, (7)
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in complete agreement with the results found in Section 13.2. As for the choice of p, see
remarks following equation (13.3.21).

14.4.B The spherical model in one dimension

The RG transformation in this case is given by equations (14.2.25b, c, and d), namely

K ′1 =
K 2

1

23
, K ′2 = K2

(
1+

K1

3

)
, 3′ =3−

K 2
1

23
, (8a, b, c)

where K1 = J/kT ,K2 = µB/kT , and 3= λ/kT ,λ being the “spherical field” that was
employed to take care of the constraint on the model. The nontrivial fixed point is again
at T = 0, where λ= J [see equation (13.5.24), with d = 1] and hence 3= K1. Equations (8)
then reduce to the linearized form (valid for small T)

K ′1 '
1
2 K1, K ′2 ' 2K2, 3′ ' 1

23. (9a, b, c)

Equations (9a) and (9c) contain essentially the same information, namely T ′ ' 2T . Clearly,
T itself is a good variable for expansion in this case — giving y1 = 1. Equation (9b), just like
(2b), gives y2 = 1, and we obtain

ν = 1, 1= 1, (10)

whereby

α = 1, β = 0, γ = 1, δ =∞, η = 1, (11)

in complete agreement with the results for one-dimensional models with n≥ 2, as quoted
in equation (13.3.20).

14.4.C The Ising model in two dimensions

The RG transformation in this case is given by equations (14.2.45) through (14.2.47),
namely

K ′ =
1
4

lncosh4K , (12)

L′ =
1
8

lncosh4K , (13)

and

M ′ =
1
8

lncosh4K −
1
2

lncosh2K . (14)

It will be recalled that, while effecting this transformation, we started only with nearest-
neighbor interactions (characterized by a single parameter K = βJ) but, due to the
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connectivity of the lattice, ended up with more — namely, the next-nearest-neighbor
interactions (characterized by L′) and the four-spin interactions (characterized by M ′) —
in addition to the nearest-neighbor interactions (characterized by K ′). On subsequent
transformations, still higher-order interactions come into play and the problem becomes
formidable unless some approximations are introduced.

In one such approximation, due originally to Wilson (1975), we discard all interactions
other than the ones represented by the parameters K and L, and at the same time assume
K and L to be small enough so that equations (12) and (13) reduce to

K ′ = 2K 2, L′ = K 2. (15a, b)

Now, if the parameter L had been introduced right in the beginning, the transformation
equations, in this very approximation, would have been

K ′ = 2K 2
+L, L′ = K 2. (16a, b)

We shall treat equations (16) as if they were the exact transformation equations of the
problem and see what they lead to.

It is straightforward to see that the transformation (16) has a nontrivial fixed point at

K ∗ =
1
3

, L∗ =
1
9

. (17)

Linearizing around this fixed point, we get

k′1 =
4
3

k1+ k2, k′2 =
2
3

k1, (18)

where k1 and k2 represent deviations of the parameters K and L from the fixed-point val-
ues K ∗ and L∗, respectively. The transformation matrix A∗l of equation (14.3.12) is then
given by

A∗√2 =


4
3

1

2
3

0

, (19)

whose eigenvalues are

λ1 =
1
3
(2+
√

10), λ2 =
1
3
(2−
√

10) (20a, b)

and whose eigenvectors are

φ1 ∼

(
2+
√

10
2

)
, φ2 ∼

(
2−
√

10
2

)
. (21a, b)

The scaling fields ui are then determined by equation (14.3.13a) which, on inversion, gives

u1 ∼ {2k1+ (
√

10− 2)k2}, u2 ∼ {2k1− (
√

10+ 2)k2}. (22a, b)
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Clearly, the field u1, with λ1 > 1, is the relevant variable of the problem, while the field u2

is irrelevant. The “critical curve” in the (K ,L)-plane is determined by the condition u1 = 0,
while the linear part of this curve, in the vicinity of the fixed point (u= 0), is mapped by
the relation (22a). In terms of the variables k1 and k2, this segment of the critical curve is
given by the equation

k2 ≈−

√
10+ 2

3
k1, (23)

which represents a straight line of slope−1.7208; see Figure 14.6.
To determine the physical critical point of this model, we have to locate on the criti-

cal curve a point with L= 0, for the original problem had no interactions other than the
one represented by the parameter K ; the corresponding value of K would be our Kc.6 This
requires a mapping of the critical curve right up to the K -axis. While this has been done
numerically (Wilson, 1975), a crude estimate of Kc can be made by simply extending the
straight-line segment (23) down to the desired limit. One thus obtains7

Kc =
1
3
+

1
9

3
√

10+ 2
=

4+
√

10
18

= 0.3979, (24)

which may be compared with the exact result found in Section 13.4, namely 0.4407.

0.2

L

0.1

0.0 0.1 0.2 0.3 0.4 0.5 K

Kc

(K∗, L∗)

FIGURE 14.6 A section of the critical curve for the two-dimensional Ising model near the nontrivial fixed point(
K ∗ = 1

3 ,L∗ = 1
9

)
. Points on the critical curve flow into the fixed point, while those off it flow away toward the

trivial fixed point (K ∗ = L∗ = 0) or (K ∗ = L∗ =∞).

6Remember that at each and every point on the critical surface — in this case, the critical curve — the correlation
length is infinite; accordingly, each and every such point is qualified to be a critical point. The physical critical point is
the one that is free of unnecessary parameters.

7The result obtained through numerical analysis was 0.3921.
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Another quantity that can be estimated here is the critical exponent ν. From equa-
tions (14.3.21) and (14.3.20a),one obtains

ν =
ln l

lnλ1
=

ln
√

2
ln[(2+

√
10)/3]

= 0.6385, (25)

which may be compared with the exact value 1. Even though a comparison of the results
obtained here with the ones following from exact analysis is not very flattering, the basic
merits of the RG approach are quite obvious.

One important aspect of critical phenomena, namely their universality over a large
class of systems, is manifest even in this simple example. Imagine, for instance, that in
the case of the given system a next-nearest-neighbor interaction L0 were indeed present.
Our approximate treatment would then lead to the same fixed point and the same criti-
cal curve as above, but our physical critical point would now be given by that “point on
the critical curve whose L-value is L0”; we may denote this critical point by Kc(L0). As for
the critical behavior, it will still be determined by an expansion around the fixed point,
for that is where the “relevant part” of the flow is; see again Figure 14.6. Clearly, the crit-
ical behavior of the given system, insofar as exponents are concerned, will be the same,
regardless of the actual value of L0. And, by extension, the same will be true of any two
systems which have the same basic topology but differ only in the details of the spin–spin
interactions.

As for the accuracy of the results obtained here, improvements are needed in several
important respects. First of all, the exclusion of all interaction parameters other than K and
L constitutes a rather inadequate approximation; one should at least include the four-spin
interaction, represented by the parameter M , and may possibly ignore the ones that appear
on successive transformations. Next, the assumption that the parameters K and L are small
is also unjustified, especially for K ; this makes a numerical approach to the problem rather
essential. Thirdly, we disregarded the renormalization of the spins, from the original σ(r)
to σ ′(r′), as required by equation (14.1.23); in the present problem, this would amount to
introducing a factor of (

√
2)η/2, that is, 21/16, for η here is 1

4 . In the actual treatment, one
may have to introduce an unknown parameter, ρ, and determine its “true” value by theo-
retical analysis (see Wilson, 1975). Highly sophisticated procedures have been developed
over the years to accommodate (or circumvent) these problems, leading to very accurate —
in fact, almost exact — results for the model under considerations. For details, see the
review article by Niemeijer and van Leeuwen (1976), where references to other pertinent
literature on the subject can also be found.8

14.4.D The ε-expansion

Application of the RG approach to systems in higher dimensions, namely with d > 2,
presents serious mathematical difficulties. One is then forced to resort to approximation
procedures such as the ε-expansion, first introduced by Wilson (1972); see also Wilson

8In this reference one can also find a systematic method of constructing the scaling function fs(u1,u2, . . .) from a
knowledge of the regular function f (K ′0) of equation (14.3.4).
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and Fisher (1972). This procedure was inspired by the observation that the field-theoretic
calculations of the RG formulation become especially simple as the upper critical dimen-
sion, d = 4, is approached; it, therefore, seemed desirable to introduce a parameter
ε(= 4−d) and carry out expansions of the various quantities of interest around ε = 0. The
model adopted for these calculations was the same as the one referred to in Section 14.3,
namely the continuous, n-vector spin model, with the probability distribution given by
equation (14.3.31).9 An important advantage of using continuous spins σ (r){= σ (µ)(r),
µ= 1, . . . ,n}, with −∞< σ (µ) <∞, is that one can introduce Fourier transforms σ (q)
and make use of the “momentum shell integration” technique of Wilson (1971). The
parameters of interest now are (see Fisher, 1983)

r =
T −T0

T0R2
0

=
t0

R2
0

, u= ũ
T 2ad

T 2
0 R4

0

(26a, b)

and, of course, the magnetic field parameter h; here, T0 denotes the mean-field critical
temperature qJ/k (q being the coordination number), R0 is a measure of the range of
interactions, a is the lattice constant, whereas ũ is the real-space parameter appearing in
equation (14.3.31). The transformation equations, with a scale factor l, turn out to be

r′ = l2r+ 4(l2
− 1)c(n+ 2)u− l2 ln l(n+ 2)(2π2)−1ru, (27a)

u′ = (1+ ε ln l)u− (n+ 8) ln l(2π2)−1u2, (27b)

and

h′ = l3
(

1−
1
2
ε ln l

)
h, (27c)

correct to the orders displayed; the parameter c in equation (27a) is related to a cutoff in
the momentum space which, in turn, is a reflection of the underlying lattice structure.

Transformation (27) has two fixed points — the so-called Gaussian fixed point, with

r∗ = u∗ = h∗ = 0, (28)

and a non-Gaussian fixed point, with

r∗ =−
8π2c(n+ 2)
(n+ 8)

ε, u∗ =
2π2

(n+ 8)
ε, h∗ = 0. (29)

We now examine two distinct situations.

9It can be shown that, by a suitable transformation, the Ising model (n= 1), which is a discrete (rather than a con-
tinuous) model, can also be rendered “continuous” with a probability distribution similar to (14.3.31). For details,
see Appendix A in Fisher (1983).



14.4 Applications of the renormalization group 565

Dimension d & 4, so that ε is a small negative number
One readily sees from equation (27b) that the parameter u in this case decreases on trans-
formation, so on successive transformations it will tend to zero. Clearly, only the Gaussian
fixed point is the one appropriate to this case. Linearizing around this point, we obtain for
the transformation matrix A∗l

A∗l =

(
l2 4(l2

− 1)c(n+ 2)

0 1+ ε ln l

)
, (30)

with eigenvalues

λr = l2, λu = (1+ ε ln l) < 1 (31)

and, of course,

λh = l3
(

1−
1
2
ε ln l

)
. (32)

It follows that

y1 = 2, y2 ≈ 3−
1
2
ε, y3 ≈ ε, (33)

as in equation (14.3.33). Note that the parameter u in this case is an irrelevant variable
but, as discussed at the end of Section 14.3, it is a dangerously irrelevant variable that does
eventually affect the results of the calculation in hand.

Dimension d . 4, so that ε is a small positive number
The parameter u now behaves very differently. If it is already zero, it stays so; otherwise, it
moves away from that value, carrying the system to some other fixed point — possibly the
non-Gaussian one, with coordinates given in (29). The resulting pattern of flow in the (r,u)-
plane is shown in Figure 14.7; clearly, the Gaussian fixed point is no longer appropriate
and the problem now revolves around the non-Gaussian fixed point instead. Linearizing
around the latter, we obtain

A∗l =

l2
{

1−
n+ 2
n+ 8

ε ln l
}

4(l2
− 1)c(n+ 2)

0 1− ε ln l

, (34)

with eigenvalues

l2
{

1−
n+ 2
n+ 8

ε ln l
}

and (1− ε ln l) < 1. (35)

We note that of the “generalized coordinates” u1 and u2, which are certain linear combi-
nations of the parameters 1r(= r− r∗) and 1u(= u−u∗), only u1 is a relevant variable of
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r ∗

(r ∗, u ∗)

r(0, 0)

u ∗

u

FIGURE 14.7 A section of the critical curve and a sketch of the RG flows in the (r,u)-plane for 0< ε� 1. Note that
the critical curve is straight only to order ε.

the problem.10 Identifying u1 with the temperature parameter t, we obtain

yt ≈ 2−
n+ 2
n+ 8

ε. (36)

Combining this with expression (33) for yh, namely

yh ≈ 3−
1
2
ε, (37)

we obtain, see equations (14.3.24), (14.3.27), (14.3.28), and (14.3.29),

ν ≈
1
2
+

n+ 2
4(n+ 8)

ε, 1≈
3
2
+

n− 1
2(n+ 8)

ε, (38)

which gives

α ≈
4−n

2(n+ 8)
ε, β ≈

1
2
−

3
2(n+ 8)

ε, γ ≈ 1+
n+ 2

2(n+ 8)
ε, (39)

δ ≈ 3+ ε, η ≈ 0, (40)

correct to the first power in ε.
For obvious reasons the value of ε of greatest interest to us is ε = 1, for which the above

results are totally inadequate; they do show the correct trends, though. For better numeri-
cal accuracy it is essential to extend these calculations to higher orders in ε. Considerable

10It can be seen quite easily that the generalized coordinate u2 is directly proportional to 1u, making u an irrelevant
variable of the problem; see Problem 14.6, with a21 = 0.
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progress has been made in this direction, so that we now have expressions available that
include terms up to ε3 and, in some cases, even ε4; for details, see Wallace (1976). One
wonders if that degree of extension would be good enough for obtaining reliable results
for ε as large as 1. The answer is yes, and we will illustrate it with an example.

For the spherical model we know exact values of the various critical exponents which
may, for the purpose of illustration, be expressed as power series in ε. Thus, for instance,

γ =
2

d− 2
=

(
1−

1
2
ε

)−1

= 1+
1
2
ε+

1
4
ε2
+

1
8
ε3
+

1
16
ε4
+ ·· · . (41)

Since the radius of convergence of this series is 2, the value 1 of ε is not really as large as
it seems. In fact, the terms displayed in (41) already give, for ε = 1, γ = 1.9375, as opposed
to the correct value 2. The situation is clearly encouraging and, with better methods of
summing up diagrams, the convergence of the ε-expansions can be improved greatly. In
fact, some of the entries in Table 13.1 were originally obtained (or at least rechecked) with
the help of this method.

Before closing this subsection we would like to point out a somewhat unusual piece of
information contained in the first-order results obtained above. This refers to the exponent
α, for which we note the prediction that for large n it is negative and hence the (singular
part of the) specific heat vanishes at T = Tc (which we know to be the case with the spher-
ical model) whereas for small n it is positive and hence the specific heat diverges (which
we know to be the case with Ising-like systems). The inversion, from one case to the other,
takes place at n= 4 where α, according to the first-order expression (39), vanishes. The
inclusion of the second-order term in ε upholds this prediction qualitatively but changes
it quantitatively. We now have

α ≈
4−n

2(n+ 8)
ε−

(n+ 2)2(n+ 28)

4(n+ 8)3
ε2, (42)

so that, with ε = 1, the inversion takes place between n= 1 and n= 2 — in agreement with
the more accurate results quoted in Section 13.7.

14.4.E The 1/n expansion

Another approach to the problem of determining critical exponents, as functions of d and
n, is to adopt the limiting case n=∞ as the starting point and carry out expansions in
powers of the small quantity 1/n. Clearly, the leading terms in these expansions would
pertain to the spherical model, which has been studied in Section 13.5, and the correction
terms would enable us to get some useful information on models with finite n. We quote
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some first-order results here:11

η =
4(4−d)Sd

d
1
n
+O

(
1

n2

)
, (43)

γ =
2

d− 2

{
1−

6Sd

n
+O

(
1

n2

)}
, (44)

and

α =−
4−d
d− 2

{
1−

8(d− 1)Sd

4−d
1
n
+O

(
1

n2

)}
, (45)

where

Sd =
sin{π(d− 2)/2}0(d− 1)

2π{0(d/2)}2
(2< d < 4). (46)

We note that the coefficients of expansion in this approach are functions of d just as the
coefficients of expansion in the preceding approach were functions of n; in this sense, the
two expansions are complementary to one another. Unfortunately, there has not been
much progress in the evaluation of further terms of these expansions (except for the
one mentioned in the note); accordingly, the usefulness of this approach has been rather
limited.

14.4.F Other topics

As mentioned earlier, the renormalization group approach has provided a very clear expla-
nation of the concept of universality, in that it arises when several physical systems,
despite their microscopic structural differences, are governed by a common fixed point
and hence display a common critical behavior. Typically, this behavior is linked to the
dimensionality d of the physical space, the dimensionality n of the spin vector σ and the
range of the spin–spin interaction. Now, depending on the precise nature of the Hamil-
tonian and the relative importance of the various parameters therein, it is quite possible
that under certain circumstances the critical behavior of the system may “cross over” from
being characteristic of one fixed point to being characteristic of another fixed point. For
instance, we may write for the spin–spin interaction in the lattice

Hint =−
1
2

∑
r,r′

∑
α,β

Jαβ(r− r′)σα(r)σβ(r′) α,β = 1, . . . ,n. (47)

11In the special case d = 3, the expansion for η is known to a higher order, namely

η =
8

3π2n
−

(
8
3

)3 1
π4n2 +O

(
1

n3

)
.
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If the given interaction is isotropic in the physical space but anisotropic in the spin com-
ponents (assumed three in number), so that Jαβ = Jαδαβ , then the system is ordinarily
supposed to be a Heisenberg ferromagnet; however, the anisotropy of the interaction may
finally drive the system toward an Ising fixed point (if one of the Jα dominates over the
other two) or toward an XY fixed point (if two of the Jα are equally strong and dominate
over the third one). In either case, we encounter what is generally referred to as a crossover
phenomenon.

Similarly, anisotropy in the physical space, J(R)= J(Ri)δij or K (R)RiRj, may result in a
crossover from a d-dimensional behavior to a d′-dimensional behavior (where d′ < d). In
the same vein, one may consider a long-range interaction, J(R)∼ R−d−σ δij, leading to a
critical behavior which, for σ < 2, is quite seriously σ -dependent; see, for instance, Prob-
lem 13.22. However, as σ goes over from the value 2− to 2+, the system crosses over to the
universality class characterized by a short-range interaction and remains in that class for
all σ > 2. Crossover phenomena constitute a very fascinating topic in the subject of phase
transitions but we cannot pursue them here any more; the interested reader may refer to
an excellent review by Aharony (1976).

Another topic of considerable interest deals with the so-called interfacial phase tran-
sitions in both magnets and fluids. In his seminal paper of 1944, Onsager included in his
model a row of “mismatched spins,” calculated the boundary tension (or what is more
commonly referred to as the interfacial free energy) of this row and examined how this
quantity vanished as T approached Tc. In the case of a fluid system, this corresponds to
the disappearance of the meniscus between the liquid and the vapor and hence to the
vanishing of the conventional surface tension as T→ Tc−; see, in this connection, Prob-
lem 12.27. A theoretical study of such interfacial layers involves consideration of the free
energy of an inhomogeneous system, which has been a subject of considerable research
for quite some time. We refer the interested reader to two review articles — by Abraham
(1986) and by Jasnow (1986) — for further reading on this topic.

A major ingredient employed by the RG approach is the fact that the critical behav-
ior of a system is invariant under a scale transformation. It did not take very long to realize
that an important connection exists between this transformation and the well-known con-
formal transformation in a complex plane, for the latter too is, roughly speaking, a scale
transformation in which the scale factor l varies continuously with position. Though, in
principle, this connection could be relevant in all dimensions, the most fruitful applica-
tions have been in the realm of two dimensions (where the conformal group consists of
analytic functions of a complex variable). Among the important results emerging from the
conformal transformation approach, one may mention the form of the many-point cor-
relation functions, the critical behavior of finite-sized strips of different sizes and shapes,
and the nature of the surface critical effects. For details, see the review article by Cardy
(1987).

Another area of interest pertains to the so-called multicritical points, for which refer-
ence may be made to Lawrie and Sarbach (1984) for theoretical studies and to Knobler and
Scott (1984) for experimental results.



570 Chapter 14 . Phase Transitions: The Renormalization Group Approach

14.5 Finite-size scaling
In our study of phase transitions so far, we generally worked in the thermodynamic limit,
that is, we started with a lattice of size L1× . . .×Ld, containing N1× . . .×Nd spins (where
Nj = Lj/a, a being the lattice constant), but at some appropriate stage of the calculation
resorted to the limit Lj→∞. This limiting process is crucial in some important respects;
while it simplifies subsequent calculations, it also generates singularities which, as we
know, are a hallmark of systems undergoing phase transitions. It is of considerable inter-
est, both theoretically and experimentally, to find out what happens (or does not happen)
if some of the Lj are allowed to stay finite. The resulting analysis is quite complicated,
but considerable progress has been made in this direction during the last 25 years or so.
Accordingly, a whole new subject entitled “finite-size scaling” has emerged, of which only
a brief summary will be presented here. The reader interested in further details may refer
to Barber (1983), Cardy (1988), and Privman (1990).

To fix ideas, we start with a d-dimensional bulk system (“bulk” in the sense that it is infi-
nite in all its dimensions) that undergoes a phase transition at a finite critical temperature
Tc(∞); clearly, the dimensionality d must be greater than the “lower critical dimension”
d<. We also assume that d is less than the “upper critical dimension” d>, so that the critical
exponents of the system are d-dependent and obey the hyperscaling relation

dν = 2−α = 2β + γ . (1)

We now consider a similar system that is infinite in only d′ dimensions, where d′ < d,
and finite in the remaining dimensions; the geometry of this system may be expressed as
Ld−d′

×∞
d′ , where L� a and, for simplicity, is taken to be the same in all finite dimen-

sions. We may expect this system to be critical at a finite temperature Tc(L), not very
different from Tc(∞). In reality, this is so only if d′ too is greater than d<; otherwise, the
system continues to be regular at all finite temperatures and the criticality sets in only at
T = 0.12 The cases d′ > d< and d′ ≤ d<, therefore, merit separate treatments.

Our primary goal here is to determine the L-dependence of the various physical quan-
tities pertaining to the system when the system is undergoing a phase transition. We attain
this goal by setting up a finite-size scaling law that generalizes equation (12.10.7) or equa-
tion (14.3.26) to systems with a finite L. Now, since the only relevant length in the region of
a phase transition is the correlation length ξ of the system, it is natural that we scale L with
ξ — leading to the combination

(L/ξ)∼ Ltν = (L1/νt)ν . (2)

At the same time, the combination (h/t1) appearing in the bulk scaling law may be
written as

(h/t1)= (hL1/ν)/(L1/νt)1. (3)

12For the special case d′ = 0, when the system is fully finite, this point has already been emphasized in Section 12.1.
Here we assert that, even when some of the system dimensions are infinite (and hence the total number of spins is
infinite), a finite-temperature singularity does not arise unless the number of those infinite dimensions exceeds d<.
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The appropriate combinations of L with t and h, therefore, are L1/νt and L1/νh, respec-
tively. The “singular” part of the free energy density of the system may then be written in
the form (see Privman and Fisher, 1984)

f (s)(t,h;L)≡
A(s)

VkT
≈ L−dY (x1,x2), (4)

where x1 and x2 are the scaled variables of the system, namely

x1 = C1L1/ν t, x2 = C2L1/νh, (5a, b)

with

t =
T −Tc(∞)

Tc(∞)
, h=

µB
kT

|t|,h� 1, (6a, b)

while C1 and C2 are certain nonuniversal scale factors peculiar to the system under study.
Expressed in terms of the variables x1 and x2, the function Y is expected to be a univer-
sal function — common to all systems in the same universality class as the system under
study. Of course, the definition of the universality class will now include (apart from the
conventional parameters d,n, and the range of the spin–spin interaction) the parameter
d′ as well as the nature of the boundary conditions imposed on the system (which, unless
stated otherwise, will be assumed to be periodic).

We note that, in the limit L→∞, expression (4) reduces to equation (12.10.7), provided
that the function Y has the asymptotic form

Y (x1,x2)≈ |x1|
dν f±(x2/|x1|

1) |x1|,x2� 1, (7)

thus identifying the nonuniversal parameters F and G with C dν
1 and C2/C11 , respectively.

This enables us to write C1 and C2 in terms of F and G, namely

C1 ∼ F1/(2−α), C2 ∼ F (β+γ )/(2−α)G, (8a, b)

which provides a means of determining the nonuniversal parameters C1 and C2 from a
knowledge of the bulk parameters F and G; any other factors appearing in (8) would be
universal. Once C1 and C2 are known, no more nonuniversal amplitudes are needed to
describe the behavior of the system — regardless of whether it is finite-sized or infinite in
extent. We are now in a position to examine the consequences of the scaling law (4).

With appropriate differentiations, we obtain from equation (4) the following expres-
sions for the zero-field susceptibility per unit volume and the “singular” part of the
zero-field specific heat per unit volume:

χ0(t;L)=−
1
V

(
∂2A(s)

∂B2

)
B=0

≈−
kTµ2C2

2 L21/ν−d

(kT)2

(
∂2Y (x1,x2)

∂x2
2

)
x2=0

=
µ2C2

2 Lγ /ν

kT
Yχ (x1), (9)
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and

c(s)0 (t;L)=−
T
V

(
∂2A(s)

∂T 2

)
B=0

≈−
kT 2C2

1 L2/ν−d

T 2
c (∞)

(
∂2Y (x1,x2)

∂x2
1

)
x2=0

=
kT 2C2

1 Lα/ν

T 2
c (∞)

Yc(x1), (10)

where Yχ (x1) and Yc(x1) are appropriate derivatives of the universal function Y (x1,x2)

and, hence, are themselves universal. We may, for further analysis, supplement the above
results with the corresponding ones for the correlation length of the finite-sized system,
namely

ξ(t,h;L)= LS(x1,x2) (11)

and

ξ0(t;L)= LS(x1), (12)

where S(x1)= S(x1,0); note that the functions S(x1,x2) and S(x1) are also universal. We shall
now focus our attention on equations (9), (10), and (12), to see what messages they deliver
in different regimes of the variables T and L.

Case A: T & Tc(∞)
With t > 0 and L� a, the variable x1 in this regime would be positive and much greater
than unity. The functions Yχ ,Yc, and S are then expected to assume the form

Yχ (x1)≈ 0x−γ1 , Yc(x1)≈ Ax−α1 , S(x1)≈Nx−ν1 , (13a, b, c)

so that we recover the standard bulk results

χ0 ≈
µ20C−γ1 C2

2

kTc(∞)
t−γ , c(s)0 ≈ kAC2−α

1 t−α , ξ0 ≈NC−ν1 t−ν , (14a, b, c)

complete with nonuniversal amplitudes and universal factors. The effect of L in this regime
appears only as a correction to the bulk results; under periodic boundary conditions, such
correction terms turn out to be exponentially small, that is, O(e−L/ξ0)where ξ0 ∼ a.13

Case B: T' Tc(∞)
This case refers to the “core region” where |x1| is of order unity and hence |t| is of order
L−1/ν ; the bulk critical point, t = 0, is at the heart of this region. Equations (9), (10), and
(12) now yield the first significant results of finite-size scaling, namely

χ0 ∼
µ2C2

2

kTc(∞)
Lγ /ν , c(s)0 ∼ kC2

1 Lα/ν , ξ0 ∼ L. (15a, b, c)

13See, for instance, Luck (1985), and Singh and Pathria (1985b, 1987a).
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Case C: T< Tc(∞)
Here we must distinguish between the cases d′ > d< and d′ ≤ d<. In the first case, the sys-
tem becomes critical at a temperature Tc(L) that is not too far removed from Tc(∞); in the
second, the system remains regular at all finite temperatures and becomes critical only at
T = 0.

(i) d′ > d<
In view of the fact that the system is now singular at T = Tc(L) rather than at Tc(∞), it seems
natural to define a shifted temperature variable ṫ such that

ṫ =
T −Tc(L)

Tc(∞)
; (16)

compare this with (6a). Thus, for any temperature T ,

ṫ = t− τ ; τ = [Tc(L)−Tc(∞)]/Tc(∞), (17)

which prompts us to define a shifted scaled variable

ẋ1 = C1L1/ν ṫ = x1−X ; X = C1L1/ντ . (18)

Clearly, the scaling functions governing the system would now be singular at ẋ1 = 0, that
is, at x1 = X . With no other arguments present, we presume that |X | will be of order unity;
the shift in Tc is thus given by

|τ | = |X |C−1
1 L−1/ν

=O(L−1/ν). (19)

Now, as T→ Tc(L), the correlation length of the system approaches infinity — with
the result that, insofar as the qualitative nature of the critical behavior is concerned, the
finite variable L, however large, becomes essentially unimportant. The behavior of the
system, in the immediate neighborhood of Tc(L), would, therefore, be characteristic of a
d′-dimensional bulk system rather than of a d-dimensional one; accordingly, it would be
governed by the critical exponents α̇, β̇, . . . pertaining to d′ dimensions rather than by the
exponents α,β, . . . pertaining to d dimensions. We, therefore, expect that, as ẋ1→ 0, the
functions Yχ , Yc, and S of equations (9), (10), and (12) assume the form

Yχ (x1)≈ 0̇ẋ−γ̇1 , Yc(x1)≈ Ȧẋ−α̇1 , S(x1)≈ Ṅẋ−ν̇1 , (20a, b, c)

with the result that

χ0 ≈ [µ2/kTc(∞)]0̇C−γ̇1 C2
2 L(γ−γ̇ )/ν ṫ−γ̇ , (21a)

c(s)0 ≈ kȦC2−α̇
1 L(α−α̇)/ν ṫ−α̇ , (21b)
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and

ξ0 ≈ ṄC−ν̇1 L(ν−ν̇)/ν ṫ−ν̇ . (21c)

It is obvious that, for ṫ < 0 but such that |ṫ| � 1, the same results would hold — except that
ṫ would be replaced by |ṫ|.

The contents of equations (21), insofar as the dependence on L and ṫ is concerned,
have been verified by direct calculation on a variety of systems over the years; for details,
see the review articles by Barber (1983) and Privman (1990) cited earlier. More recently,
Allen and Pathria (1989) have verified the nonuniversal amplitudes as well by carrying out
an explicit calculation for the spherical model (n=∞) in the general geometry Ld−d′

×

∞
d′ , with both d and d′ greater than d<. Remarkably enough, they found that, just as the

critical exponents α̇, β̇, . . . are the same functions of d′ as the exponents α,β, . . . are of d, the
universal coefficients 0̇, Ȧ, . . . too are the same functions of d′ as the coefficients 0,A, . . . are
of d; the same is true of the coefficients appearing in the presence of a magnetic field (see
Allen and Pathria, 1991). One wonders if this would also be the case for general n!

(ii) d′ ≤ d<
In this case the singularity of the problem lies at T = 0, with the result that at all finite
temperatures the system is regular and hence expressible by smooth, analytic functions.
We may, therefore, generalize the scaling law (4) to apply at all temperatures down to T = 0
by simply allowing the scale factors C1 and C2 to become T-dependent and writing (after
Singh and Pathria, 1985b, 1986a)

x1 = C̃1(T)L
1/νt, x2 = C̃2(T)L

1/νh, (22a, b)

leaving t and h unchanged; the quantities C̃1 and C̃2 must be such that, as T→ Tc(∞)

from below, they approach the quantities C1 and C2 of equations (5). Expressions (9) and
(10) now take the form

χ0(t;L)=
µ2C̃2

2 Lγ /ν

kT
Yχ (x1) (23)

and

c(s)0 (t;L)= kT 2
[
∂

∂T
(C̃1t)

]2

Lα/νYc(x1), (24)

respectively, while expression (12) remains formally the same.
Now, as we approach the critical temperature Tc (which is zero here), we again expect

the quantities χ0, c(s)0 , and ξ0 to behave in a manner characteristic of a d′-dimensional bulk
system. So, let us assume that, in limit d→ 0, our scale factors behave as

C̃1 ∼ T r , C̃2 ∼ T s (T→ 0), (25a, b)
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and our universal functions behave as

Yχ (x1)∼ |x1|
θ , Yc(x1)∼ |x1|

φ , S(x1)∼ |x1|
σ (x1→−∞). (26a, b, c)

The resulting T-dependence of χ0,c(s)0 , and ξ0 then is

χ0 ∼ T 2s−1+θr , c(s)0 ∼ T (2+φ)r , ξ0 ∼ Tσ r . (27a, b, c)

The corresponding results for an n-vector, d′-dimensional model (with n≥ 2 and d′ < d<,
where d< = 2) are14

χ0 ∼ T−2/(2−d′), c(s)0 ∼ T d′/(2−d′), ξ0 ∼ T−1/(2−d′). (28a, b, c)

Comparing (27) with (28), we infer that

θ =
1
r

[
1− 2s−

2
2−d′

]
, φ =

d′

r(2−d′)
− 2, σ =

−1
r(2−d′)

. (29a, b, c)

Very shortly we shall find, see equations (44), that

r =−1/ν(d− 2), s= β/ν(d− 2), (30a, b)

with the results

θ = 2β +
νd′(d− 2)
(2−d′)

, φ =−
νd′(d− 2)
(2−d′)

− 2, σ =
ν(d− 2)
(2−d′)

. (31a, b, c)

The L-dependence of the various quantities now turns out to be

χ0 ∼ L(γ+θ)/ν ∼ L2(d−d′)/(2−d′) (32a)

c(s)0 ∼ L(α+φ)/ν ∼ L−2(d−d′)/(2−d′) (32b)

and

ξ0 ∼ L1+σ/ν
∼ L(d−d′)/(2−d′). (32c)

It is remarkable that in these last expressions the critical exponents pertaining to d dimen-
sions have disappeared altogether and the resulting powers of L depend entirely on the
geometry of the system! Expression (32a) agrees with the earlier results for χ0 pertaining to
a “block” geometry (d′ = 0) and to a “cylindrical” geometry (d′ = 1), namely

χ0 ∼

{
Ld for d′ = 0 (33a)

L2(d−1) for d′ = 1; (33b)

14For the spherical model (n=∞), these results appear in Section 13.5; see equations (13.5.34), (13.5.35), and
(13.5.64). Since the criticality in this case occurs at absolute zero, these results hold for all models with continuous
symmetry, that is, with n≥ 2. See, for instance, Section 13.3, where n is general but d′ = 1.
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see Fisher and Privman (1985). For d′ = 2, the L-dependence of the various quantities
studied here becomes exponential instead of a power law.

To obtain results valid for all T in the range 0< T < Tc(∞), we need to know the full
T-dependence of the scale factors C̃1 and C̃2. It turns out that this too can be determined
from the properties of the corresponding bulk system — in particular, from the field-free
bulk correlation function G(R,T), which is known to possess the following forms:

G(R,T)∼ R−(d−2+η) T = Tc(∞) (34)

and

G(R,T)=m2
0(T)+A(T)R−(d−2) T < Tc(∞), (35)

where m0(T) is the order parameter of the bulk system and A(T) another system-
dependent parameter.15 Now, the correlation function of the finite-sized system may be
written in the scaled form

G(R, t,h;L)≈ D̃(T)R−(d−2+η)Z(x1,x2, x3), (36)

where the scaled variables x1 and x2 are the same given by equations (22a, b) while
x3 = R/L; as usual, the scale factor D̃(T) is nonuniversal while the function Z(x1,x2, x3)

is universal.
Expression (36) already conforms to (34), with x1 = x2 = x3 = 0. For conformity with

(35), the function Z must possess the following asymptotic form:

Z(x1,x2, x3)≈ Z1(|x1|
νx3)

d−2+η
+Z2(|x1|

νx3)
η x1→−∞, x2 = 0, x3→ 0, (37)

with

Z1 =
m2

0(T)

D̃(T)[C̃1(T)|t|]ν(d−2+η)
, Z2 =

A(T)

D̃(T)[C̃1(T)|t|]νη
. (38a, b)

It follows that

C̃1(T)|t| ∼

[
m2

0(T)

A(T)

]1/ν(d−2)

, D̃(T)∼

[
Aβ(T)

mνη

0 (T)

]2/ν(d−2)

; (39a, b)

here, use has been made of the fact that

ν(d− 2+ η)= (2−α)− γ = 2β. (40)

We shall now establish a relationship between the scale factors C̃2 and D̃. For
this, we utilize the fluctuation–susceptibility relation (12.11.12) which, with the help of

15Note that the exponent η appears only in equation (34) and not in (35); for details, see Schultz et al. (1964) and
Fisher et al. (1973).
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expression (36), gives for the zero-field susceptibility per unit volume

χ0(t;L)=
µ2D̃(T)

a2dkT

∫
Z(x1,0, R/L)

Rd−2+η
ddR

=
µ2D̃(T)

a2dkT
L2−ηZχ (x1), (41)

where Zχ is another universal function. Comparing (41) with (23), we get

D̃(T)∼ a2dC̃2
2 (T). (42)

Equation (39b) now gives

C̃2(T)∼ a−d[Aβ(T)/mνη

0 (T)]
1/ν(d−2). (43)

Equations (39) and (43) give us the full T-dependence of the scale factors C̃1, C̃2, and D̃ for
all T in the range 0< T < Tc(∞); these equations were first derived by Singh and Pathria
(1987a).

Before utilizing these results we note that since, in the limit T→ 0, m0(T) approaches
a constant value while A(T)∼ T , expressions (39a) and (43) yield

C̃1|t| ∼ T−1/ν(d−2), C̃2 ∼ Tβ/ν(d−2), (44a, b)

exactly as stipulated in equations (25) and (30). As for the T-dependence of the quantities
χ0, c(s)0 , and ξ0, we observe that, regardless of whether we keep L fixed and let T→ 0 or keep
T fixed and let L→∞, in either case x1→−∞; the asymptotic forms (26) of the universal
functions Yχ , Yc, and S, therefore, apply throughout the region under study. Now, with θ , φ,
and σ given by equations (31), our final results for χ0, c(s)0 , and ξ0 turn out to be

χ0 ∼
µ2A(T)

a2dkT

[
m2

0(T)

A(T)

]2/(2−d′)

L2(d−d′)/(2−d′), (45)

c(s)0 ∼ k

{
T
∂

∂T

[
m2

0(T)

A(T)

]}2[
m2

0(T)

A(T)

]−(4−d′)/(2−d′)

L−2(d−d′)/(2−d′), (46)

and

ξ0 ∼

[
m2

0(T)

A(T)

]1/(2−d′)

L(d−d′)/(2−d′), (47)

complete with nonuniversal amplitudes. Comparing (45) with (47), we find that, in the
regime under study,

χ0/ξ
2
0 ∼ µ

2A(T)/a2dkT , (48)
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a function of T only. In the case of the spherical model, since A(T) is proportional to T at
all T < Tc(∞), see equation (13.5.71), the quantity χ0/ξ

2
0 is a constant — independent of

both T and L; see also equation (13.5.64).
It is important to note that the above formulation ties very neatly with the one provided

by the scale factors C1 and C2 of equations (5) that covered cases A and B pertaining to the
regions T & Tc(∞) and T ' Tc(∞), respectively. To see this, we observe that, as T→ Tc(∞)

from below, m0(T)becomes∼ |t|β and A(T)∼ |t|νη; expressions (39a) and (43) then assume
the form

C̃1(T)|t| ∼ |t|
(2β−νη)/ν(d−2)

∼ |t|1 (49a)

and

C̃2(T)∼ |t|
0. (49b)

Clearly, C̃1(T) and C̃2(T) now assume some constant values that may be identified with
C1 and C2 — thus providing a unified formulation through the same universal func-
tions Y (x1,x2), S(x1,x2), and Z(x1,x2, x3) covering the regions of both first-order and
second-order phase transitions! Remarkable though it is, this finding is not really surpris-
ing because, with L finite and d′ ≤ d<, the system is critical only at T = 0 and analytic
everywhere else; so, its properties should indeed be expressible by a single set of func-
tions throughout. Of course, as L→∞, the criticality spreads all the way from T = 0 to
T = Tc(∞).

As regards the spin dimensionality n, our results for cases A, B, and C(i)were quite gen-
eral; only in case C(ii) did we specialize to systems with continuous symmetry (n≥ 2). With
a slight modification, the case of discrete symmetry (n= 1) can also be taken care of. The
net result essentially is the replacement of the number 2 in equations (28) and henceforth
by the “lower critical dimension,” d<, of the system — leading to results such as16

χ0 ∼ Lζ , c(s)0 ∼ L−ζ , ξ0 ∼ Lζ/d< T < Tc(∞), (50a, b, c)

with ζ = d<(d−d′)/(d<−d′); compared with equations (32). Once again, the L-
dependence of the various quantities of interest follows a power law, which changes to
an exponential when d′ = d<; in the case of scalar models, this happens at d′ = 1.

Throughout this discussion we have assumed that the total dimensionality d of the
system is less than the “upper critical dimension” d>. The case d ≥ d> presents some
special problems but the net result is that, while the situation in the region T < Tc(∞)

is described by the same set of expressions as above, in the region T ' Tc(∞) it is con-
siderably modified. For instance, one now gets in the region T ' Tc(∞), for d > d> and
d′ < d<,

χ0 ∼ L2(d−d′)/(d>−d′), c(s)0 ∼ L0, ξ0 ∼ L(d−d′)/(d>−d′), (51a, b, c)

16See, for instance, Singh and Pathria (1986b).
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which may be compared with the corresponding results, (15a, b, c), for d < d>. Further-
more, if d = d> and/or d′ = d<, factors containing lnL appear along with the power laws
displayed in (51). For details, see Singh and Pathria (1986b, 1988, 1992).

Finally we would like to emphasize the fact that finite-size effects in any given system
are quite sensitive to the choice of the boundary conditions imposed on the system. For
simplicity, we assumed the boundary conditions to be periodic. In real situations, there
may be reasons to adopt different boundary conditions such as antiperiodic, free, and
so on. This, in general, changes the mathematical character of the finite-size effects and
the finite-size corrections in not only the singular part(s) of the various quantities stud-
ied but in their regular part(s) as well. For comparison between theory and experiment,
this aspect of the problem is of vital importance and deserves a close scrutiny. For lack of
space we cannot go into this matter any further here; the interested reader may refer to a
review article by Privman (1990), where other references on this topic can also be found.
An allied subject in this regard is the “critical behavior of surfaces,” for which reference
may be made to Binder (1983) and Diehl (1986).

Problems
14.1. Show that the decimation transformation of a one-dimensional Ising model, with l = 2, can be

written in terms of the transfer matrix P as

P ′
{

K ′
}
= P2
{K }, (1)

where K and K ′ are the coupling constants of the original and the decimated lattice, respectively.
Next show that, with P given by

(P{K })= eK0

(
eK1+K2 e−K1

e−K1 eK1−K2

)
, (2)

see equation (13.2.4), relation (1) leads to the same transformation equations among K and K ′ as
(14.2.8a, b, and c).

14.2. Verify that expression (15) of Section 14.2 indeed satisfies the functional equation (14) for the
field-free Ising model in one dimension. Next show (or at least verify) that, with the field present,
the functional equation (11), with K ′ given by (8), is satisfied by the more general expression

f (K1,K2)=− ln
[

eK1 coshK2+

{
e−2K1 + e2K1 sinh2 K2

}1/2
]

.

14.3. Verify that expression (32) of Section 14.2 indeed satisfies the functional equation (31) for the
field-free spherical model in one dimension. Next show (or at least verify) that, with the field
present, the functional equation (27), with K ′ given by (25), is satisfied by the more general
expression

f (K1,K2,3)=
1
2

ln

3+
√
32−K 2

1

2π

− K 2
2

4(3−K1)
,

where3 is determined by the constraint equation

∂f
∂3
=

1

2
√
32−K 2

1

+
K 2

2

4(3−K1)
2 = 1.
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14.4. Consider the field-free spherical model in one dimension whose partition function is given by
equation (14.2.24) as well as by (14.2.19), with K ′2 = K2 = 0. Substituting σ ′j = (23/K1)

1/2s′j in the
former and comparing the resulting expression with the latter, show that

QN (K1,3)=
(

2π
K1

)N ′/2

QN ′ (K1,3′′),

where N ′ = 1
2 N and3′′ = (232/K1)−K1. This leads to the functional relation

f (K1,3)=−
1
4

ln
(

2π
K1

)
+

1
2

f (K1,3′′).

Check that expression (14.2.32) satisfies this relation.
14.5. An approximate way of implementing an RG transformation on a square lattice is provided by the

so-called Migdal–Kadanoff transformation17 shown in Figure 14.8. It consists of two essential
steps:

(i) First, one-half of the bonds in the lattice are simply removed, so as to change the length scale
of the lattice by a factor of 2; to compensate for this, the coupling strength of the remaining
bonds is changed from J to 2J . This takes us from Figure 14.8(a) to Figure 14.8(b).

(ii) Next, the sites marked by crosses in Figure 14.8(b) are eliminated by a set of one-dimensional
decimation transformations, leading to Figure 14.8(c) with coupling strength J ′.
(a) Show that the recursion relation for a spin- 1

2 Ising model on a square lattice, according to
the above transformation, is

x′ = 2x2/(1+ x4),

where x = exp(−2K ) and x′ = exp(−2K ′). Disregarding the trivial fixed points x∗ = 0 and
x∗ = 1, show that a nontrivial fixed point of this transformation is

x∗ =
1
3

[
−1+ 2

√
2sinh

{
1
3

sinh−1 17
2
√

2

}]
' 0.5437;

compare this with the actual value of xc, which is (
√

2− 1)' 0.4142.
(b) Linearizing around this nontrivial fixed point, show that the eigenvalue λ of this

transformation is

λ= 2(1− x∗)/x∗ ' 1.6785

and hence the exponent ν = ln2/ lnλ' 1.338; compare this with the actual value of ν,
which is 1.

J J
J J

2J 2J

(a) (b) (c)

J 9

FIGURE 14.8 Migdal–Kadanoff transformation on a square lattice.

17See Kadanoff (1976a).
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14.6. Consider the linearized RG transformation (14.3.12), with

A∗l =

(
a11 a12
a21 a22

)
, (3)

such that (a11a22−a12a21) 6= 0. We now introduce the “generalized coordinates” u1 and u2 through
equations (14.3.13); clearly, u1 and u2 are certain linear combinations of the system parameters k1
and k2.
(a) Show that the slopes of the lines u1 = 0 and u2 = 0, in the (k1,k2)-plane, are

m1 =
a21

λ2−a22
=
λ2−a11

a12
and m2 =

a21

λ1−a22
=
λ1−a11

a12
,

respectively; here, λ1 and λ2 are the eigenvalues of the matrix A∗l . Verify that the product
m1m2 =−a21/a12 and hence the two lines are mutually perpendicular if and only if a12 = a21.

(b) Check that, in the special case when a12 = 0 but a21 6= 0, the above slopes assume the simple
form

m1 =∞ and m2 = a21/(a11−a22)

whereas, in the special case when a21 = 0 but a12 6= 0, they become

m1 = (a22−a11)/a12 and m2 = 0;

note that Figure 14.7 pertains to the latter case.
(c) Examine as well the cases for which either a11 or a22 is zero; Figure 14.6 pertains to the latter

of these cases.
14.7. Check that the critical exponents (14.4.38) through (14.4.40), in the limit n→∞, agree with the

corresponding exponents for the spherical model of Section 13.5 with d . 4.
14.8. Show, from equations (14.4.43) through (14.4.46), that for d . 4

η '
1

2n
ε2, γ ' 1+

1
2

(
1−

6
n

)
ε, α '−

1
2

(
1−

12
n

)
ε,

where ε = (4−d)� 1. Check that these results agree with the ones following from equations
(14.4.38) through (14.4.40) for n� 1.

14.9. Using the various scaling relations, derive from equations (14.4.43) through (14.4.45) comparable
expressions for the remaining exponents β, δ, and ν. Repeat for these exponents the exercise
suggested in the preceding problem.



15
Fluctuations and Nonequilibrium

Statistical Mechanics

In this course we have been mostly concerned with the evaluation of statistical averages
of the various physical quantities; these averages represent, with a high degree of accu-
racy, the results expected from relevant measurements on the given system in equilibrium.
Nevertheless, there do occur deviations from, or fluctuations about, these mean values.
Even though they are generally small, their study is of great physical interest for several
reasons.

First, such a study enables us to develop a mathematical scheme with the help of
which the magnitude of the relevant fluctuations, under a variety of physical situations,
can be estimated. Not surprisingly, we find that while in a single-phase system the fluctu-
ations are thermodynamically negligible but they can assume considerable importance in
multiphase systems, especially in the neighborhood of a critical point. In the latter case,
we obtain a rather high degree of spatial correlation among the molecules of the system
which, in turn, gives rise to phenomena such as critical opalescence.

Second, it provides a natural framework for understanding a class of phenomena that
come under the heading “Brownian motion”; these phenomena relate properties such as
the mobility of a fluid system, its coefficient of diffusion, and so on, with temperature
through the so-called Einstein relations. The mechanism of Brownian motion is vital in for-
mulating, and in a certain sense answering, questions as to how “a given physical system,
which is not in a state of equilibrium, finally approaches such a state” while “a physical
system, which is already in a state of equilibrium, persists to stay in that state.”

Third, the study of fluctuations, as a function of time, leads to the concept of certain
“correlation functions” that play a vital role in relating the dissipative properties of a sys-
tem, such as the viscous resistance of a fluid or the electrical resistance of a conductor,
with the microscopic properties of the system in a state of equilibrium; this relation-
ship (between irreversible processes on one hand and equilibrium properties on the
other) manifests itself in the so-called fluctuation–dissipation theorem. At the same time, a
study of the “frequency spectrum” of fluctuations, which is related to the time-dependent
correlation function through the fundamental theorem of Wiener and Khintchine, is of
considerable value in assessing the “noise” met with in electrical circuits as well as in the
transmission of electromagnetic signals.

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00015-3
© 2011 Elsevier Ltd. All rights reserved.

583



584 Chapter 15 . Fluctuations and Nonequilibrium Statistical Mechanics

15.1 Equilibrium thermodynamic fluctuations
We begin by deriving a probability distribution law for the fluctuations of certain basic
thermodynamic quantities pertaining to a given physical system; the mean square fluctu-
ations can then be evaluated, in a straightforward manner, with the help of this law. We
assume that the given system, which may be referred to as 1, is embedded in a reservoir,
which may be referred to as 2, such that a mutual exchange of energy, and of volume, can
take place between the two; of course, the overall energy E and the overall volume V are
supposed to be fixed. For convenience, we do not envisage an exchange of particles here,
so the numbers N1 and N2 remain individually constant. The equilibrium division of E into
E1 and E2, and of V into V 1 and V 2, must be such that parts 1 and 2 of the composite sys-
tem (1+ 2) have a common temperature T∗ and a common pressure P∗; see Sections 1.2
and 1.3, especially equations (1.3.6). Of course, the entropy of the composite system will
have its largest value in the equilibrium state; in any other state, such as the one character-
ized by a fluctuation, it must have a lower value. If1S denotes the deviation in the entropy
of the composite system from its equilibrium value S0, then

1S≡ S− S0 = k ln�f − k ln�0, (1)

where �f (or �0) denotes the number of distinct microstates of the system (1+ 2) in the
presence (or in the absence) of a fluctuation from the equilibrium state; see equation
(1.2.6). The probability that the proposed fluctuation may indeed occur is then given by

p∝�f ∝ exp(1S/k); (2)

see Section 3.1, especially equation (3.1.3). In terms of other thermodynamic quantities,
we may write

1S=1S1+1S2 =1S1+

f∫
0

dE2+P2dV2

T2
; (3)

note that the pressure P2 and the temperature T2 of the reservoir may, in principle, vary
during the build-up of the fluctuation! Now, even if the fluctuation is sizable from the point
of view of system 1, it will be small from the point of view of 2. The “variables” P2 and T2

may, therefore, be replaced by the constants P∗ and T∗, respectively; at the same time, the
increments dE2 and dV2 may be replaced by −dE1 and −dV1, respectively. Equation (3)
then becomes

1S=1S1− (1E1+P∗1V1)/T∗. (4)

Accordingly, formula (2) takes the form

p∝ exp{−(1E1−T∗1S1+P∗1V1)/kT∗}. (5)
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Clearly, the probability distribution law (5) does not depend, in any manner, on the
peculiarities of the reservoir in which the given system was supposedly embedded. For-
mula (5), therefore, applies equally well to a system that attained equilibrium in a statistical
ensemble (or, for that matter, to any macroscopic part of a given system itself). Conse-
quently, we may drop the suffix 1 from the symbols 1E1,1S1, and 1V1, and the star from
the symbols P∗ and T∗, and write

p∝ exp{−(1E−T1S+P1V )/kT}. (6)

In most cases, the fluctuations are exceedingly small in magnitude; the quantity 1E
may, therefore, be expanded as a Taylor series about the equilibrium value (1E)0 = 0, with
the result

1E =
(
∂E
∂S

)
0
1S+

(
∂E
∂V

)
0
1V

+
1
2

[(
∂2E

∂S2

)
0

(1S)2+ 2

(
∂2E
∂S∂V

)
0

1S1V +

(
∂2E

∂V 2

)
0

(1V )2
]
+ ·· · (7)

Substituting (7) into (6) and retaining terms up to second order only, we obtain

p∝ exp{−(1T1S−1P1V )/2kT}; (8)

here, use has been made of the relations(
∂E
∂S

)
0
= T ,

(
∂E
∂V

)
0
=−P, (9)

and of the fact that the expression within the square brackets in (7) is equivalent to

1

(
∂E
∂S

)
0
1S+1

(
∂E
∂V

)
0
1V =1T1S−1P1V . (10)

With the help of (8), the mean square fluctuations of various physical quantities and the
statistical correlations among different fluctuations can be readily calculated. We note,
however, that of the four 1 terms appearing in this formula only two can be chosen inde-
pendently; the other two must assume the role of “derived quantities.” For instance, if we
choose1T and1V to be the independent variables, then1S and1P can be written as

1S=
(
∂S
∂T

)
V
1T +

(
∂S
∂V

)
T
1V =

CV

T
1T +

(
∂P
∂T

)
V
1V (11)

and

1P =
(
∂P
∂T

)
V
1T +

(
∂P
∂V

)
T
1V =

(
∂P
∂T

)
V
1T −

1
κT V

1V , (12)
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κT being the isothermal compressibility of the system. Substituting (11) and (12) into (8),
we get

p∝ exp
{
−

CV

2kT 2
(1T)2−

1
2kTκT V

(1V )2
}

, (13)

which shows that the fluctuations in T and V are statistically independent, Gaussian
variables! A quick glance at (13) yields the results

(1T)2 =
kT 2

CV
, (1V )2 = kTκT V , (14a)

while

(1T1V )= 0. (14b)

Similarly, if we choose 1S and 1P as our independent variables, we are led to the
distribution law

p∝ exp
{
−

1
2kCP

(1S)2−
κSV
2kT

(1P)2
}

, (15)

which gives

(1S)2 = kCP , (1P)2 =
kT
κSV

, (16a)

while

(1S1P)= 0; (16b)

here, κS denotes the adiabatic compressibility of the system.
We note that, in general, the mean square fluctuation of an extensive quantity is directly

proportional to the size of the system while that of an intensive quantity is inversely pro-
portional to the same; in either case, the relative, root-mean-square fluctuation of any
quantity is inversely proportional to the square root of the size of the system. Thus, except
for situations such as the ones met with in a critical region, normal fluctuations are ther-
modynamically negligible. This does not mean that fluctuations are altogether irrelevant
to the physical phenomena taking place in the system; in fact, as will be seen in the sequel,
the very presence of fluctuations at the microscopic level is of fundamental importance to
several properties of the system displayed at the macroscopic level!

With the help of the foregoing results, we may evaluate the mean square fluctuation in
the energy of the system. With T and V as independent variables, we have

1E =
(
∂E
∂T

)
V
1T +

(
∂E
∂V

)
T
1V . (17)



15.2 The Einstein–Smoluchowski theory of the Brownian motion 587

Squaring this expression and taking averages, keeping in mind equations (14), we get

(1E)2 = kT 2CV + kTκT V
{(

∂E
∂V

)
T

}2

= kT 2CV + kTκT

(
N2

V

){(
∂E
∂N

)
T

}2

. (18)

Now, the results derived in the preceding paragraphs determine the fluctuations of the
various physical quantities pertaining to any macroscopic subsystem of a given system,
provided that the number of particles in the subsystem remains fixed. The expression (14b)
for (1V )2 may, therefore, be used to derive an expression for the mean square fluctuation
of the variable v (the volume per particle) and the variable n (the particle density) of the
subsystem. We readily obtain

(1v)2 = kTκT V /N2, (1n)2 =
1

v4 (1v)2 = kTκT N2/V 3; (19)

note that the last result obtained here is in complete agreement with equation (4.5.7),
which was derived on the basis of the grand canonical ensemble. A little reflection shows
that this result applies equally well to a subsystem with a fixed volume V and a fluctuating
number of particles N . The mean square fluctuation in N is then given by

(1N)2 = V 2(1n)2 = kTκT N2/V . (20)

Substituting (20) into (18), we obtain once again the grand canonical result for (1E)2,
namely

(1E)2 = kT 2CV + (1N)2{(∂E/∂N)T }
2, (21)

as in equation (4.5.14).
In passing, we note that the first part of expression (21) denotes the mean square fluc-

tuation in the energy E of a subsystem for which both N and V are fixed, just as we have
in the canonical ensemble (N ,V ,T). Conversely, if we assume the energy E to be fixed,
then the temperature of the subsystem will fluctuate, and the mean square value of the
quantity 1T will be given by (kT 2CV ) divided by the square of the thermal capacity of the
subsystem. The net result will, therefore, be (kT 2/CV ), which is the same as in (14a).

15.2 The Einstein–Smoluchowski theory
of the Brownian motion

The term “Brownian motion” derives its name from the botanist Robert Brown who, in
1828, made careful observations on the tiny pollen grains of a plant under a microscope. In
his own words: “While examining the form of the particles immersed in water, I observed
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many of them very evidently in motion. These motions were such as to satisfy me . . . that
they arose neither from currents in the fluid nor from its gradual evaporation, but belonged
to the particle itself.” We now know that the real source of this motion lies in the incessant,
and more or less random, bombardment of the Brownian particles, as these grains (or,
for that matter, any colloidal suspensions) are usually referred to, by the molecules of the
surrounding fluid. It was Einstein who, in a number of papers (beginning in 1905), first
provided a sound theoretical analysis of the Brownian motion on the basis of the so-called
“random walk problem” and thereby established a far-reaching relationship between the
irreversible nature of this phenomenon and the mechanism of molecular fluctuations.

To illustrate the essential theme of Einstein’s approach, we first consider the problem in
one dimension. Let x(t) denote the position of the Brownian particle at time t, given that
its position coincided with the point x = 0 at time t = 0. To simplify matters, we assume
that each molecular impact (which, on an average, takes place after a time τ ∗) causes the
particle to jump a (small) distance l — of constant magnitude — in either a positive or
negative direction along the x-axis. It seems natural to regard the possibilities 1x =+l
and 1x =−l to be equally likely; though somewhat less natural, we may also regard the
successive impacts on, and hence the successive jumps of, the Brownian particle to be
mutually uncorrelated. The probability that the particle is found at the point x at time t is
then equal to the probability that, in a series of n(= t/τ ∗) successive jumps, the particle
makes m(= x/l) more jumps in the positive direction of the x-axis than in the negative,
that is, it makes 1

2 (n+m) jumps in the positive direction and 1
2 (n−m) in the negative.1

The desired probability is then given by the binomial expression

pn(m)=
n!{

1
2 (n+m)

}
!
{

1
2 (n−m)

}
!

(
1
2

)n

, (1)

with the result that

m= 0 and m2 = n. (2)

Thus, for t� τ ∗, we have for the net displacement of the particle

x(t)= 0 and x2(t)= l2 t
τ∗
∝ t1. (3)

Accordingly, the root-mean-square displacement of the particle is proportional to the
square root of the time elapsed:

xr.m.s. =
√(

x2(t)
)
= l
√
(t/τ∗)∝ t1/2. (4)

It should be noted that the proportionality of the net overall displacement of the Brownian
particle to the square root of the total number of elementary steps is a typical consequence

1Since the quantities x and t are macroscopic in nature while l and τ ∗ are microscopic, the numbers n and m are
much larger than unity; consequently, it is safe to assume that they are integral as well.
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of the random nature of the steps and it manifests itself in a large variety of phenomena in
nature. In contrast, if the successive steps were fully coherent (or else if the motion were
completely predictable and reversible over the time interval t),2 then the net displacement
of the Brownian particle would have been proportional to t1.

Smoluchowski’s approach to the problem of Brownian motion, which appeared in
1906, was essentially the same as that of Einstein; the difference lay primarily in the math-
ematical procedure. Smoluchowski introduced the probability function pn(x0|x), which
denotes the “probability that, after a series of n steps, the Brownian particle, initially at
the point x0, reaches the point x”; the number x here denotes the distance traveled by the
Brownian particle in terms of the length of the elementary step. Clearly,

pn(x0|x)=
∞∑

z=−∞

pn−1(x0|z)p1(z|x) (n≥ 1); (5)

moreover, since a single step is equally likely to take the particle to the right or to the left,

p1(z|x)=
1
2
δz,x−1+

1
2
δz,x+1, (6)

while

p0(z|x)= δz,x. (7)

Equation (5) is known as the Smoluchowski equation. To solve it, we introduce a generating
function Qn(ξ), namely

Qn(ξ)=

∞∑
x=−∞

pn(x0|x)ξ
x−x0 , (8)

from which it follows that

Q0(ξ)=

∞∑
x=−∞

p0(x0|x)ξ
x−x0 =

∞∑
x=−∞

δx0,xξ
x−x0 = 1. (9)

Substituting (6) into (5), we obtain

pn(x0|x)=
1
2

pn−1(x0|x− 1)+
1
2

pn−1(x0|x+ 1). (10)

2The term “reversible” here is related to the fact that the Newtonian equations of motion, which govern this class
of phenomena, preserve their form if the direction of time is reversed (i.e., if we change t to −t, etc.); alternatively, one
would expect that if at any instant of time we reverse the velocities of the particles in a given mechanical system, the
system would “retrace” its path exactly. This is not true of equations describing “irreversible” phenomena, such as the
diffusion equation (19), with which the phenomenon of Brownian motion is intimately related.
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Multiplying (10) by ξx−x0 and adding over all x, we obtain the recurrence relation

Qn(ξ)=
1
2

[ξ + (1/ξ)]Qn−1(ξ), (11)

so that, by iteration,

Qn(ξ)=

{
1
2

[ξ + (1/ξ)]
}n

Q0(ξ)= (1/2)n[ξ + (1/ξ)]n. (12)

Expanding this expression binomially and comparing the result with (8), we get

pn(x0|x)=
(

1
2

)n n!

{
1
2 (n+ x− x0)}! { 1

2 (n− x+ x0)}!
for |x− x0| ≤ n

0 for |x− x0|> n. (13)

Identifying (x− x0)with m, we find this result to be in complete agreement with our previ-
ous result (1).3 Accordingly, any conclusions drawn from the Smoluchowski approach will
be the same as the ones drawn from the Einstein approach.

To obtain an asymptotic form of the function pn(m), we apply Stirling’s formula,
n!≈ (2πn)1/2(n/e)n, to the factorials appearing in (1), with the result

lnpn(m)≈
(

n+
1
2

)
lnn−

1
2
(n+m+ 1) ln

{
1
2
(n+m)

}
−

1
2
(n−m+ 1) ln

{
1
2
(n−m)

}
−n ln2−

1
2

ln(2π).

For m� n (which is generally true because m= 0 and mr.m.s. = n1/2, while n� 1), we
obtain

pn(m)≈
2

√
(2πn)

exp(−m2/2n). (14)

Taking x to be a continuous variable (and remembering that pn(m)≡ 0 either for even val-
ues of m or for odd values of m, so that in the distribution (14),1m= 2 and not 1), we may
write this result in the Gaussian form:

p(x)dx =
dx

√
(4πDt)

exp

(
−

x2

4Dt

)
, (15)

where

D= l2/2τ∗. (16)

3It is easy to recognize the additional fact that if n is even, then pn(m)≡ 0 for odd m, and if n is odd, then pn(m)≡ 0
for even m.
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Later on, we shall see that the quantity D introduced here is identical to the diffusion
coefficient of the given system; equation (16) connects this quantity with the microscopic
quantities l and τ ∗. To appreciate this connection, one has simply to note that the prob-
lem of Brownian motion can also be looked on as a problem of “diffusion” of Brownian
particles through the medium of the fluid; this point of view is also due to Einstein. How-
ever, before we embark on these considerations, we would like to present here the results
of an actual observation made on the Brownian motion of a spherical particle immersed
in water; see Lee, Sears, and Turcotte (1963). It was found that the 403 values of the net dis-
placement 1x of the particle, observed after successive intervals of 2 seconds each, were
distributed as follows:

Displacement 1x, in units of µ(= 10−4cm) Frequency of occurrence n

less than−5.5 0

between−5.5 and−4.5 1

between−4.5 and−3.5 2

between−3.5 and−2.5 15

between−2.5 and−1.5 32

between−1.5 and−0.5 95

between−0.5 and+0.5 111

between+0.5 and+1.5 87

between+1.5 and+2.5 47

between+2.5 and+3.5 8

between+3.5 and+4.5 5

greater than+4.5 0

The mean square value of the displacement here turns out to be: (1x)2 = 2.09×
10−8cm2. The observed frequency distribution has been plotted as a “block diagram” in
Figure 15.1. We have included, in this figure, a Gaussian curve based on the observed value
of the mean square displacement; we find that the experimental data fit the theoretical
curve fairly well. We can also derive here an experimental value for the diffusion coefficient
of the medium; we obtain: D= (1x)2/2t = 5.22× 10−9cm2/s.4

We now turn to the study of the Brownian motion from the point of view of diffusion.
We denote the number density of the Brownian particles in the fluid by the symbol n(r, t)
and their current density by j(r, t){= n(r, t)v(r, t)}; then, according to Fick’s law,

j(r, t)=−D∇n(r, t), (17)

4In the next section we shall see that, for a spherical particle, D= kT/6πηa where η is the coefficient of viscosity
of the medium and a the radius of the Brownian particle. In the case under study, T ' 300K, η ' 10−2 poise, and a'
4× 10−5 cm. Substituting these values, we obtain for the Boltzmann constant: k ' 1.3× 10−16erg/K.
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FIGURE 15.1 The statistical distribution of the successive displacements, 1x, of a Brownian particle immersed in
water: (1x)r.m.s. ' 1.45µ.

where D denotes for the diffusion coefficient of the medium. We also have here the
equation of continuity, namely

∇ · j(r, t)+
∂n(r, t)
∂t

= 0. (18)

Substituting (17) into (18), we obtain the diffusion equation

∇
2n(r, t)−

1
D
∂n(r, t)
∂t

= 0. (19)

Of the various possible solutions of this equation, the one relevant to the present situa-
tion is

n(r, t)=
N

(4πDt)3/2
exp

(
−

r2

4Dt

)
, (20)

which is a spherically symmetric solution and is already normalized:

∞∫
0

n(r, t)4πr2dr =N , (21)

N being the total number of (Brownian) particles immersed in the fluid. A comparison
of the (three-dimensional) result (20) with the (one-dimensional) result (15) brings out
most vividly the relationship between the random walk problem on one hand and the
phenomenon of diffusion on the other.

It is clear that in the last approach we have considered the motion of an “ensemble” of
N Brownian particles placed under “equivalent” physical conditions, rather than consid-
ering the motion of a single particle over a length of time (as was done in the random walk
approach). Accordingly, the averages of the various physical quantities obtained here will
be in the nature of “ensemble averages”; they must, of course, agree with the long-time
averages of the same quantities obtained earlier.
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Now, by virtue of the distribution (20), we obtain

〈r(t)〉 = 0; 〈r2(t)〉 =
1
N

∞∫
0

n(r, t)4πr4dr = 6Dt ∝ t1, (22)

in complete agreement with our earlier results, namely

x(t)= 0; x2(t)= l2t/τ∗ = 2Dt ∝ t1. (23)

Thus, the “ensemble” of the Brownian particles, initially concentrated at the origin, “dif-
fuses out” as time increases, the nature and the extent of its spread at any time t being given
by equations (20) and (22), respectively. The diffusion process, which is clearly irrever-
sible, gives us a fairly good picture of the statistical behavior of a single particle in the
ensemble. However, the important thing to bear in mind is that, whether we focus our
attention on a single particle in the ensemble or look at the ensemble as a whole, the ulti-
mate source of the phenomenon lies in the incessant, and more or less random, impacts
received by the Brownian particles from the molecules of the fluid. In other words, the
irreversible character of the phenomenon ultimately arises from the random, fluctuating
forces exerted by the fluid molecules on the Brownian particles. This leads us to another
systematic theory of the Brownian motion, namely the theory of Langevin (1908). For
a detailed analysis of the problem, see Uhlenbeck and Ornstein (1930), Chandrasekhar
(1943, 1949), MacDonald (1948–1949), and Wax (1954).

15.3 The Langevin theory of the
Brownian motion

We consider the simplest case of a “free” Brownian particle, surrounded by a fluid envi-
ronment; the particle is assumed to be free in the sense that it is not acted on by any other
force except the one arising from the molecular bombardment. The equation of motion of
the particle will then be

M
dv
dt
=F (t), (1)

where M is the particle mass, v(t) the particle velocity, and F (t) the force acting on the
particle by virtue of the impacts received from the fluid molecules. Langevin suggested
that the force F (t)may be written as a sum of two parts: (i) an “averaged-out” part, which
represents the viscous drag,−v/B, experienced by the particle (accordingly, B is the mobil-
ity of the system, that is, the drift velocity acquired by the particle by virtue of a unit
“external” force)5 and (ii) a “rapidly fluctuating” part F(t) which, over long intervals of

5If Stokes’s law is applicable, then B= 1/(6πηa), where η is the coefficient of viscosity of the fluid and a the radius of
the particle (assumed spherical).



594 Chapter 15 . Fluctuations and Nonequilibrium Statistical Mechanics

time (as compared to the characteristic time τ ∗), averages out to zero; thus, we may write

M
dv
dt
=−

v
B
+F(t); F(t)= 0. (2)

Taking the ensemble average of (2), we obtain6

M
d
dt
〈v〉 = −

1
B
〈v〉, (3)

which gives

〈v(t)〉 = v(0)exp(−t/τ) (τ =MB). (4)

Thus, the mean drift velocity of the particle decays, at a rate determined by the relaxation
time τ , to the ultimate value zero. We note that this result is typical of the phenomena
governed by dissipative properties such as the viscosity of the fluid; the irreversible nature
of the result is also evident.

Dividing (2) by the mass of the particle, we obtain an equation for the instantaneous
acceleration, namely

dv
dt
=−

v
τ
+A(t); A(t)= 0. (5)

We now construct the scalar product of (5) with the instantaneous position r of the particle
and take the ensemble average of the product. In doing so, we make use of the facts that
(i) r · v = 1

2 (dr2/dt), (ii) r · (dv/dt)= 1
2 (d

2r2/dt2)− v2, and (iii) 〈r ·A〉 = 0.7 We obtain

d2

dt2
〈r2
〉+

1
τ

d
dt
〈r2
〉 = 2〈v2

〉. (6)

If the Brownian particle has already attained thermal equilibrium with the molecules of
the fluid, then the quantity 〈v2

〉 in this equation may be replaced by its equipartition value
3kT/M . The equation is then readily integrated, with the result

〈r2
〉 =

6kTτ2

M

{
t
τ
− (1− e−t/τ )

}
, (7)

6The process of “averaging over an ensemble” implies that we are imagining a large number of systems similar to the
one originally under consideration and are taking an average over this collection at any time t. By the very nature of the
function F(t), the ensemble average 〈F(t)〉must be zero at all times.

7This is so because we have no reason to expect a statistical correlation between the position r(t) of the Brownian
particle and the force F(t) exerted on it by the molecules of the fluid; see, however, Manoliu and Kittel (1979). Of course,
we do expect a correlation between the variables v(t) and F(t); consequently, 〈v ·F〉 6= 0 (see Problem 15.7).
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where the constants of integration have been so chosen that at, t = 0, both 〈r2
〉 and its first

time-derivative vanish. We observe that, for t� τ ,

〈r2
〉 '

3kT
M

t2
= 〈v2

〉t2, (8)8

which is consistent with the reversible equations of motion whereby one would simply
have

r = vt. (9)

On the other hand, for t� τ ,

〈r2
〉 '

6kTτ
M

t = (6BkT)t, (10)9

which is essentially the same as the Einstein–Smoluchowski result (15.2.22); incidentally,
we obtain here a simple, but important, relationship between the coefficient of diffusion
D and the mobility B, namely

D= BkT , (11)

which is generally referred to as the Einstein relation.
The irreversible character of equation (10) is self-evident; it is also clear that it arises

essentially from the viscosity of the medium. Moreover, the Einstein relation (11), which
connects the coefficient of diffusion D with the mobility B of the system, tells us that the
ultimate source of the viscosity of the medium (as well as of diffusion) lies in the random,
fluctuating forces arising from the incessant motion of the fluid molecules; see also the
fluctuation–dissipation theorem of Section 15.6.

In this context, if we consider a particle of charge e and mass M moving in a viscous
fluid under the influence of an external electric field of intensity E, then the “coarse-
grained” motion of the particle will be determined by the equation

M
d
dt
〈v〉 = −

1
B
〈v〉+ eE; (12)

compare this to equation (3). The “terminal” drift velocity of the particle would now be
given by the expression (eB)E, which prompts one to define (eB) as the “mobility” of the
system and denote it by the symbol µ. Consequently, one obtains, instead of (11),

D=
kT
e
µ, (13)

which, in fact, is the original version of the Einstein relation; sometimes this is also referred
to as the Nernst relation.

8Note that the limiting solution (8) corresponds to “dropping out” the second term on the left side of equation (6).
9Note that the limiting solution (10) corresponds to “dropping out” the first term on the left side of equation (6).
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So far we have not felt any direct influence of the rapidly fluctuating term A(t) that
appears in the equation of motion (5) of the Brownian particle. For this, let us try to eval-
uate the quantity 〈v2(t)〉 which, in the preceding analysis, was assumed to have already
attained its “limiting” value 3kT/M . For this evaluation we replace the variable t in equa-
tion (5) by u, multiply both sides of the equation by exp(u/τ), rearrange and integrate over
du between the limits u= 0 and u= t; we thus obtain the formal solution

v(t)= v(0)e−t/τ
+ e−t/τ

t∫
0

eu/τA(u)du. (14)

Thus, the drift velocity v(t) of the particle is also a fluctuating function of time; of course,
since 〈A(u)〉 = 0 for all u, the average drift velocity is given by the first term alone, namely

〈v(t)〉 = v(0)e−t/τ , (15)

which is the same as our earlier result (4). For the mean square velocity 〈v2(t)〉, we now
obtain from (14)

〈v2(t)〉 = v2(0)e−2t/τ
+ 2e−2t/τ

v(0) ·

t∫
0

eu/τ
〈A(u)〉du



+ e−2t/τ

t∫
0

t∫
0

e(u1+u2)/τ 〈A(u1) ·A(u2)〉du1du2. (16)

The second term on the right side of this equation is identically zero, because 〈A(u)〉 van-
ishes for all u. In the third term, we have the quantity 〈A(u1) ·A(u2)〉, which is a measure of
the “statistical correlation between the value of the fluctuating variable A at time u1 and its
value at time u2”; we call it the autocorrelation function of the variable A and denote it by
the symbol KA(u1,u2) or simply by K (u1,u2). Before proceeding with (16) any further, we
place on record some of the important properties of the function K (u1,u2).

(i) In a stationary ensemble (i.e., one in which the overall macroscopic behavior of the
systems does not change with time), the function K (u1,u2) depends only on the time
interval (u2−u1). Denoting this interval by the symbol s, we have

K (u1,u1+ s)≡ 〈A(u1) ·A(u1+ s)〉 = K (s), independently of u1. (17)

(ii) The quantity K (0), which is identically equal to the mean square value of the variable
A at time u1, must be positive definite. In a stationary ensemble, it would be a
constant, independent of u1:

K (0)= const.> 0. (18)

(iii) For any value of s, the magnitude of the function K (s) cannot exceed K (0).
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Proof : Since

〈|A(u1)±A(u2)|
2
〉 = 〈A2(u1)〉+ 〈A

2(u2)〉± 2(A(u1) ·A(u2)〉

= 2{K (0)±K (s)} ≥ 0,

the function K (s) cannot go outside the limits−K (0) and+K (0); consequently,

|K (s)| ≤ K (0) for all s. (19)

(iv) The function K (s) is symmetric about the value s= 0, that is,

K (−s)= K (s)= K (|s|). (20)

Proof :

K (s)≡ 〈A(u1) ·A(u1+ s)〉 = 〈A(u1− s) ·A(u1)〉
10

= 〈A(u1) ·A(u1− s)〉 ≡ K (−s).

(v) As s becomes large in comparison with the characteristic time τ ∗, the values A(u1)

and A(u1+ s) become uncorrelated, that is

K (s)≡ 〈A(u1) ·A(u1+ s)〉 −−−−−−−→
s�τ∗

〈A(u1)〉 · 〈A(u1+ s)〉 = 0. (21)

In other words, the “memory” of the molecular impacts received during a given interval
of time, say between u1 and u1+du1, is “completely lost” after a lapse of time large in
comparison with τ ∗. It follows that the magnitude of the function K (s) is significant only
so long as the variable s is of the same order of magnitude as τ ∗.

Figures 15.7 through 15.9 later in this chapter show the s-dependence of certain typical
correlation functions K (s); they fully conform to the properties listed here.

We now evaluate the double integral appearing in (16):

I =

t∫
0

t∫
0

e(u1+u2)/τK (u2−u1)du1du2. (22)

Changing over to the variables

S=
1
2
(u1+u2) and s= (u2−u1), (23)

the integrand becomes exp(2S/τ)K (s), the element (du1du2) gets replaced by the corre-
sponding element (dSds) while the limits of integration, in terms of the variables S and s,

10This is the only crucial step in the proof. It involves a “shift,” by an amount s, in both instants of the measurement
process; the equality results from the fact that the ensemble is supposed to be stationary.
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FIGURE 15.2 Limits of integration, of the double integral I, in terms of the variables S and s.

can be read from Figure 15.2; we find that, for 0≤ S ≤ t/2,s goes from−2S to+2S while, for
t/2≤ S ≤ t, it goes from−2(t− S) to+2(t− S). Accordingly,

I =

t/2∫
0

e2S/τdS

+2S∫
−2S

K (s)ds+

t∫
t/2

e2S/τdS

+2(t−S)∫
−2(t−S)

K (s)ds. (24)

In view of property (v) of the function K (s), see equation (21), the integrals over s draw
significant contribution only from a very narrow region, of the order of τ ∗, around the value
s= 0 (i.e., from the shaded region in Figure 15.2); contributions from regions with larger
values of |s| are negligible. Thus, if t� τ ∗, the limits of integration for s may be replaced by
−∞ and+∞, with the result

I ' C

t∫
0

e2S/τdS= C
τ

2
(e2t/τ

− 1), (25)

where

C =

∞∫
−∞

K (s)ds. (26)

Substituting (25) into (16), we obtain

〈v2(t)〉 = v2(0)e−2t/τ
+C

τ

2
(1− e−2t/τ ). (27)

Now, as t→∞, 〈v2(t)〉must tend to the equipartition value 3kT/M ; therefore,

C = 6kT/Mτ (28)
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and hence

〈v2(t)〉 = v2(0)+
{

3kT
M
− v2(0)

}
(1− e−2t/τ ). (29)11

We note that if v2(0)were itself equal to the equipartition value 3kT/M , then 〈v2(t)〉would
always remain the same, which shows that statistical equilibrium, once attained, has a
natural tendency to persist.

Substituting (29) into the right side of (6), we obtain a more representative description
of the manner in which the quantity 〈r2

〉 varies with t; we thus have

d2

dt2
〈r2
〉+

1
τ

d
dt
〈r2
〉 = 2v2(0)e−2t/τ

+
6kT
M

(1− e−2t/τ ), (30)

with the solution

〈r2
〉 = v2(0)τ2(1− e−t/τ )2−

3kT
M

τ2(1− e−t/τ )(3− e−t/τ )+
6kTτ

M
t. (31)

Solution (31) satisfies the initial conditions that both 〈r2
〉 and its first time-derivative van-

ish at t = 0; moreover, if we put v2(0)= 3kT/M , it reduces to solution (7) obtained earlier.
Once again, we note the reversible nature of the motion for t� τ , with 〈r2

〉 ' v2(0)t2, and
its irreversible nature for t� τ , with 〈r2

〉 ' (6BkT)t.
Figures 15.3 and 15.4 show the variation, with time, of the ensemble averages 〈v2(t)〉

and 〈r2(t)〉 of a Brownian particle, as given by equations (29) and (31), respectively. All
important features of our results are manifestly evident in these plots.

Brownian motion continues to be a topic of contemporary research nearly 200 years
after Brown’s discovery and over 100 years after Einstein and Smoluchowski’s analysis and
early measurements by Perrin. The renewed interest is due to the growth in the techno-
logical importance of colloids across a wide range of fields and the development of digital
video and computer image analysis. An interesting example is the detailed observation and
analysis of rotational and two-dimensional translational Brownian motion of ellipsoidal
particles by Han et al. (2006) in a thin microscope slide. The case of rotational Brownian
motion was first analyzed by Einstein (1906b) and first measured by Perrin (1934, 1936).
Both rotational and translational modes diffuse according to Langevin dynamics but the
translational diffusion is coupled to the rotational diffusion since the translational diffu-
sion constant parallel to the longer axis is larger than the diffusion constant perpendicular

11One may check that

d
dt
〈v2(t)〉 =

2
τ

[
v2(∞)−〈v2(t)〉

]
=−

2
τ
1〈v2(t)〉,

where v2(∞)= 3kT/M and1〈v2(t)〉 is the “deviation of the quantity concerned from its equilibrium value.” In this form
of the equation, we have a typical example of a “relaxation phenomenon,” with relaxation time τ/2.
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FIGURE 15.3 The mean square velocity of a Brownian particle as a function of time. Curves 1, 2, and 3 correspond,
respectively, to the initial conditions v2(0)= 6kT/M ,3kT/M, and 0.
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FIGURE 15.4 The mean square displacement of a Brownian particle as a function of time. Curves 1, 2, and 3
correspond, respectively, to the initial conditions v2(0)= 6kT/M , 3kT/M, and 0.

to that axis. The rotational diffusion and both long-axis (a) and short-axis (b) body-frame
diffusions are all Gaussian:

pθ (1θ , t)=
1

√
4πDθ t

exp

(
−
(1θ)2

4Dθ t

)
, (32a)

pa(1xa, t)=
1

√
4πDat

exp

(
−
(1xa)

2

4Dat

)
, (32b)

pb(1xb, t)=
1√

4πDbt
exp

(
−
(1xb)

2

4Dbt

)
, (32c)
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with diffusion constants Dθ , Da, and Db. Experiments have observed the complex
two-dimensional spatial diffusion at short times (t . τθ = 1/(2Dθ )), as predicted by the
Langevin theory. The long-time (t� τθ ) spatial diffusion is isotropic with diffusion con-
stant D= (Da+Db)/2.

15.3.A Brownian motion of a harmonic oscillator

An analysis similar to the one for a diffusing Brownian particle can also be performed
for a particle in a harmonic oscillator potential that prevents the particle from diffus-
ing away from the origin and allows a more general analysis of the relationship between
the position and velocity response functions and the power spectra of the fluctua-
tions; see Kappler (1938) and Chandrasekhar (1943). The one-dimensional equation of
motion for a Brownian particle of mass M in a harmonic oscillator potential with spring
constant Mω2

0 is

d2x

dt2
+ γ

dx
dt
+ω2

0x =
F(t)
M

, (33)

where γ (= 6πηa/M) is the damping coefficient of a spherical particle in a fluid with
viscosity η. Just as in the case of diffusive Brownian motion, the force F(t) can be a time-
dependent external force designed to explore the response function or a time-dependent
random force due to collisions with molecules in the fluid to analyze the equilibrium fluc-
tuations. Assuming the system was in equilibrium in the distant past, the position at time
t is given by

x(t)=

t∫
−∞

χxx(t− t ′)F(t ′)dt ′, (34)

where

χxx(s)=
1

Mω1
e−

γ s
2 sin(ω1s) (35)

is the xx response function and ω1 =

√
ω2

0 −
γ 2

4 . 12 The velocity response is given by

v(t)=

t∫
−∞

χvx(t− t ′)F(t ′)dt ′, (36)

12This form of the response function assumes that the oscillator is underdamped. The notation χxx refers to the
notation used in Section 15.6.A in which the response of the position coordinate x depends on the applied field F that
couples to the Hamiltonian via a term−F(t)x(t).
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where

χvx(s)=
1

M
e−

γ s
2

(
cos(ω1s)−

γ

2ω1
sin(ω1s)

)
. (37)

The response of the system can be decomposed into a sum of independent terms
involving a sinusoidal applied force F̂(ω)eiωt . This takes the form

x̂(ω)= χ̃xx(ω)F̂(ω), (38)

where the frequency-dependent response function can be decomposed into real and
imaginary parts χ̂ ′xx(ω) and χ̂ ′′xx(ω):

χ̃xx(ω)=

∞∫
0

χxx(s)eiωsds= χ̂ ′xx(ω)+ iχ̂ ′′xx(ω), (39a)

χ̂ ′xx(ω)=
ω2

0 −ω
2

M[(ω2
0 −ω

2)2+ γ 2ω2]
, (39b)

χ̂ ′′xx(ω)=
γω

M[(ω2
0 −ω

2)2+ γ 2ω2]
. (39c)

The real part here describes the dispersion and the imaginary part describes the dissipa-
tion, that is, it sets the average rate of energy dissipation due to the sinusoidal external
force.

Now let’s consider the natural fluctuations of the position and the velocity of the parti-
cle in equilibrium due to the random collisions with the atoms in the fluid. We will use the
same Langevin formalism as was used earlier with Brownian motion of a free particle. The
random force averages to zero and is assumed to be delta-function correlated in time:

〈F〉 = 0, (40a)〈
F(t)F(t ′)

〉
= 0δ(t− t′), (40b)

where 0 = 2γMkT . With this choice, the long-time average position and velocity of the
particle are both zero,

〈x(t)〉 = 〈v(t)〉 = 0, (41)

and the average of the squares of the position and velocity both obey the equipartition
theorem:

〈x2(t)〉 =
kT

Mω2
0

, 〈v2(t)〉 =
kT
M

. (42a,b)
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The xx correlation function is given by

Gxx(t− t′)=
〈
x(t)x(t ′)

〉
=

kT

Mω2
0

exp
(
−γ |t− t ′|

2

)(
cos

(
ω1|t− t ′|

)
+

γ

2ω1
sin

(
ω1|t− t′|

))
, (43)

and the xx power spectrum by

Sxx(ω)=

∞∫
−∞

Gxx(s)eiωsds=
2γkT

M
1(

ω2
0 −ω

2
)2
+ γ 2ω2

. (44)

Note that the imaginary part of the response function, χ̂ ′′xx(ω), in equation (39c) is propor-
tional to the power spectrum Sxx(ω):

χ̂ ′′xx(ω)=
ω

2kT
Sxx(ω). (45)

This result indicates that the dissipation that results from driving a system out of equilib-
rium by an external force is proportional to the power spectrum of the natural fluctuations
that occur in equilibrium. While this result was derived here for a very specific model, it
constitutes an example of the very general fluctuation–dissipation theorem we will derive
in Section 15.6.A.

15.4 Approach to equilibrium: the
Fokker–Planck equation

In our analysis of the Brownian motion we have considered the behavior of a dynamical
variable, such as the position r(t) or the velocity v(t) of a Brownian particle, from the point
of view of fluctuations in the value of the variable. To determine the average behavior of
such a variable, we sometimes invoked an “ensemble” of Brownian particles immersed
in identical environments and undergoing diffusion. A treatment along these lines was
carried out toward the end of Section 15.2, and the most important results of that treat-
ment are summarized in equation (15.2.20) for the density function n(r, t) and in equation
(15.2.22) for the mean square displacement 〈r2(t)〉.

A more generalized way of looking at “the manner in which, and the rate at which,
a given distribution of Brownian particles approaches a state of thermal equilibrium” is
provided by the so-called Master Equation, a simplified version of which is known as the
Fokker–Planck equation. For illustration, we examine the displacement, x(t), of the given
set of particles along the x-axis. At any time t, let f (x, t)dx be the probability that an arbi-
trary particle in the ensemble may have a displacement between x and x+dx. The function
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f (x, t)must satisfy the normalization condition

∞∫
−∞

f (x, t)dx = 1. (1)

The Master Equation then reads:

∂f (x, t)
∂t

=

∞∫
−∞

{−f (x, t)W (x,x′)+ f (x′, t)W (x′,x)}dx′, (2)

where W (x,x′)dx′δt denotes the probability that, in a short interval of time δt, a parti-
cle having displacement x makes a “transition” to having a displacement between x′ and
x′+dx′.13

The first part of the integral in equation (2) corresponds to all those transitions that
remove particles from the displacement x at time t to some other displacement x′ and,
hence, represent a net loss to the function f (x, t); similarly, the second part of the integral
corresponds to all those transitions that bring particles from some other displacement x′

at time t to the displacement x and, hence, represent a net gain to the function f (x, t).14

The structure of the Master Equation is thus founded on very simple and straightfor-
ward premises. Of course, under certain conditions, this equation, or any generalization
thereof (such as the one including velocity, or momentum, coordinates in the argument of
f ), can be reduced to the simple form

∂f
∂t
=−

f − f0

τ
, (3)

which has proved to be a very useful first approximation for studying problems related
to transport phenomena. Here, f0 denotes the equilibrium distribution function (for
∂f /∂t = 0 when f = f0), while τ is the relaxation time that determines the rate at which
the fluctuations in the system drive it to a state of equilibrium.

In studying Brownian motion on the basis of equation (2), we can safely assume that
it is only transitions between “closely neighboring” states x and x′ that have an apprecia-
ble probability of occurring; in other words, the transition probability function W (x,x′) is
sharply peaked around the value x′ = x and falls rapidly to zero away from x. Denoting the
interval (x′− x) by ξ , we may write

W (x,x′)→W (x;ξ), W (x′,x)→W (x′;−ξ) (4)

13We are tacitly assuming here a “Markovian” situation where the transition probability function W (x,x′) depends
only on the present position x (and, of course, the subsequent position x′) of the particle but not on the previous history
of the particle.

14In the case of fermions, an account must be taken of the Pauli exclusion principle, which controls the “occupation
of single-particle states in the system”; for instance, we cannot, in that case, consider a transition that tends to transfer a
particle to a state that is already occupied. This requires an appropriate modification of the Master Equation.
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where W (x;ξ) and W (x′;−ξ) have sharp peaks around the value ξ = 0 and fall rapidly to
zero elsewhere.15 This enables us to expand the right side of (2) as a Taylor series around
ξ = 0. Retaining terms up to second order only, we obtain

∂f (x, t)
∂t

=−
∂

∂x
{µ1(x)f (x, t)}+

1
2
∂2

∂x2
{µ2(x)f (x, t)}, (5)

where

µ1(x)=

∞∫
−∞

ξW (x;ξ)dξ =
〈δx〉δt

δt
= 〈vx〉 (6)

and

µ2(x)=

∞∫
−∞

ξ2W (x;ξ)dξ =
〈(δx)2〉δt

δt
. (7)

Equation (5) is the so-called Fokker–Planck equation, which occupies a classic place in the
field of Brownian motion and fluctuations.

We now consider a specific system of Brownian particles (of negligible mass), each par-
ticle being acted on by a linear restoring force, Fx =−λx, and having mobility B in the
surrounding medium; the assumption of negligible mass implies that the relaxation time
τ(=MB) of equation (15.3.4) is very small, so the time t here may be regarded as very large
in comparison with that τ . The mean viscous force,−〈vx〉/B, is then balanced by the linear
restoring force, with the result that

−
〈vx〉

B
+Fx = 0 (8)

and hence

〈vx〉 ≡ µ1(x)=−λBx. (9)

Next, in view of equation (15.3.10), we have

〈(δx)2〉
δt

≡ µ2(x)= 2BkT ; (10)

it will be noted that the influence of λ on this quantity is being neglected here. Substituting
(9) and (10) into (5), we obtain

∂f
∂t
= λB

∂

∂x
(xf )+BkT

∂2f

∂x2
. (11)

15Clearly, this assumption limits our analysis to what may be called the “Brownian motion approximation,” in which
the object under consideration is presumed to be on a very different scale of magnitude than the molecules constituting
the environment. It is obvious that if one tries to apply this sort of analysis to “understand” the behavior of molecules
themselves, one cannot hope for anything but a “crude, semiquantitative” outcome.
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Now we apply equation (11) to an “ensemble” of Brownian particles, initially concen-
trated at the point x = x0. To begin with, we note that, in the absence of the restoring force
(λ= 0), equation (11) reduces to the one-dimensional diffusion equation

∂f
∂t
=D

∂2f

∂x2
(D= BkT), (12)

which conforms to our earlier results (15.2.19) and (15.3.11). The present derivation shows
that the process of diffusion is essentially a “random walk, at the molecular level.” In view
of equation (15.2.20), the function f (x, t) here would be

f (x, t)=
1

(4πDt)1/2
exp

{
−
(x− x0)

2

4Dt

}
, (13)

with

x = x0 and x2 = x2
0 + 2Dt; (14)

the last result shows that the mean square distance traversed by the particle(s) increases
linearly with time, without any upper limit on its value. The restoring force, however, puts
a check on the diffusive tendency of the particles. For instance, in the presence of such
a force (λ 6= 0), the terminal distribution f∞ (for which ∂f /∂t = 0) is determined by the
equation

∂

∂x
(xf∞)+

kT
λ

∂2f∞
∂x2

= 0, (15)

which gives

f∞(x)=
(

λ

2πkT

)1/2

exp

(
−
λx2

2kT

)
, (16)

with

x = 0 and x2 = kT/λ. (17)

The last result agrees with the fact that the mean square value of x must ultimately comply

with the equipartition theorem, namely (1
2λx2)

∞
=

1
2 kT . From the point of view of equilib-

rium statistical mechanics, if we regard Brownian particles with kinetic energy p2
x/2m and

potential energy 1
2λx2 as loosely coupled to a thermal environment at temperature T , then

we may directly write

feq(x,px)dxdpx ∝ e−(p
2
x/2m+λx2/2)/kT dxdpx. (18)

On integration over px, expression (18) leads directly to the distribution function (16).
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FIGURE 15.5 The distribution function (19) at times t = 0, t = 1/(2λB), and t =∞.

The general solution of equation (11), relevant to the ensemble under consideration, is
given by

f (x, t)=
{

λ

2πkT(1− e−2λBt)

}1/2

exp

{
−
λ(x− x0e−λBt)2

2kT(1− e−2λBt)

}
, (19)

with

x = x0e−λBt and x2 = x2
0e−2λBt

+
kT
λ
(1− e−2λBt); (20)

in the limit λ→ 0, we recover the purely “diffusive” situation, as described by equa-
tions (13) and (14), while for t� (λB)−1, we approach the “terminal” situation, as
described by equations (16) and (17). Figure 15.5 shows the manner in which an ensem-
ble of Brownian particles approaches a state of equilibrium under the combined influence
of the restoring force and the molecular bombardment; clearly, the relaxation time of the
present process is∼ (λB)−1.

A physical system to which the foregoing theory is readily applicable is provided by the
oscillating component of a moving-coil galvanometer. Here, we have a coil of wire and a
mirror that are suspended by a fine fiber, so they can rotate about a vertical axis. Random,
incessant collisions of air molecules with the suspended system produce a succession of
torques of fluctuating intensity; as a result, the angular position θ of the system continu-
ally fluctuates and the system exhibits an unsteady zero. This is clearly another example of
the Brownian motion! The role of the viscous force in this case is played by the mechanism
of air damping (or, else, electromagnetic damping) of the galvanometer, while the restor-
ing torque, Nθ =−cθ , arises from the torsional properties of the fiber. In equilibrium, we
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expect that

(
1
2

cθ2

)
=

1
2

kT , that is, θ2 =
kT
c

; (21)

compare this to equation (17). An experimental determination of the mean square deflec-
tion, θ2, of such a system was made by Kappler (1931) who, in turn, applied his results to
derive, with the help of equation (21), an empirical value for the Boltzmann constant k (or,
for that matter, the Avogadro number NA). The system used by Kappler had a moment of
inertia I = 4.552× 10−4 gcm2 and a time period of oscillation τ = 1379s; accordingly, the
constant c of the restoring torque had a value given by the formula τ = 2π(I/c)1/2, so that

c = 4π2(I/τ2)= 9.443× 10−9gcm2s−2/rad.

The observed value of θ2, at a temperature of 287.1 K, was 4.178× 10−6. Substituting these
numbers in (21), Kappler obtained: k = 1.374× 10−16 erg K−1. And, since the gas constant
R is equal to 8.31× 107 erg K−1mole−1, he obtained for the Avogadro number: NA = R/k =
6.06× 1023 mole−1.

One might expect that by suspending the mirror system in an “evacuated” casing the
fluctuations caused by the collisions of the air molecules could be severely reduced. This
is not true because even at the lowest possible pressures there still remain a tremendously
large number of molecules in the system that keep the Brownian motion “alive.” The inter-
esting part of the story, however, is that the mean square deflection of the system, caused
by molecular bombardment, is not at all affected by the density of the molecules; for a sys-
tem in equilibrium, it is determined solely by the temperature. This situation is depicted,
rather dramatically, in Figure 15.6 where we have two traces of oscillations of the mir-
ror system, the upper one having been taken at the atmospheric pressure and the lower
one at a pressure of 10−4 mm of mercury. The root-mean-square deviation is very nearly
the same in the two cases! Nevertheless, one does note a difference of “quality” between
the two traces that relates to the “frequency spectrum” of the fluctuations and arises
for the following reason. When the density of the surrounding gas is relatively high, the
molecular impulses come in rapid succession, with the result that the individual deflec-
tions of the system are large in number but small in magnitude. As the pressure is lowered,
the time intervals between successive impulses become longer, making the individual
deflections smaller in number but larger in magnitude. However, the overall deflection,
observed over a long interval of time, remains essentially the same.

FIGURE 15.6 Two traces of the thermal oscillations of a mirror system suspended in air; the upper trace was taken
at the atmospheric pressure, the lower one at a pressure of 10−4 mm of mercury.
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15.5 Spectral analysis of fluctuations: the
Wiener–Khintchine theorem

We have already made reference to the (spectral) quality of a fluctuation pattern. Refer-
ring once again to the patterns shown in Figure 15.6, we note that, even though the mean
square fluctuation of the variable θ is the same in the two cases, the second pattern is
far more “jagged” than the first; in other words, the high-frequency components are far
more prominent in the second pattern. At the same time, there is a lot more “predictabil-
ity” in the first pattern (insofar as it is represented by a much smoother curve); in other
words, the correlation function, or the memory function, K (s) of the first pattern extends
over much larger values of s. In fact, these two aspects of a fluctuation process, namely its
time-dependence and its frequency spectrum, are very closely related to one another. And
the most natural course for studying this relationship is to carry out a Fourier analysis of
the given process.

For this study we consider only those variables, y(t), whose mean square value, 〈y2(t)〉,
has already attained an equilibrium, or stationary, value:

〈y2(t)〉 = const. (1)

Such a variable is said to be statistically stationary. As an example of such a variable, we
may recall the velocity v(t) of a “free” Brownian particle at times t much larger than the
relaxation time τ , see equation (15.3.29), or the displacement x(t) of a Brownian particle
moving under the influence of a restoring force (Fx =−λx) at times t much larger than
(λB)−1, see equation (15.4.20). Now, if the variable y(t) were strictly periodic (and hence
completely predictable), with a time period T = 1/f0, then we could write

y(t)= a0+

∞∑
n=1

an cos(2πnf0t)+
∞∑

n=1

bn sin(2πnf0t), (2)

where

a0 =
1
T

T∫
0

y(t)dt, (3)

an =
2
T

T∫
0

y(t)cos(2πnf0t)dt, (4)

and

bn =
2
T

T∫
0

y(t)sin(2πnf0t)dt; (5)

in this case, the coefficients a and b would be completely known and would define, with
no uncertainty, the frequency spectrum of the variable y(t). If, on the other hand, the given
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variable is more or less a random function of time, then the coefficients a and b would
themselves be statistical in nature. To apply the concept of periodicity to such a function,
we must take the “time interval of repetition” to be infinitely large, that is, we let f0→ 0.

In the proposed limit, equation (3) would read

a0 = Lim
T→∞

1
T

T∫
0

y(t)dt ≡ 〈y(t)〉; (6)

thus, the coefficient a0, which represents the mean (or d.c.) value of the variable y, may be
determined either by taking a time average (over a sufficiently long interval) of the variable
or by taking an ensemble average (at any instant of time t). For convenience, and without
loss of generality, we take a0 = 0; in other words, we assume that from the actual values of
the variable y(t) its mean value, 〈y(t)〉, has already been subtracted.16

Taking the ensemble average of equations (4) and (5), we obtain, for all n,

〈an〉 = 〈bn〉 = 0. (7)

However, by taking the ensemble average of equation (2) squared, we obtain

〈y2(t)〉 =
∑

n

1
2
〈a2

n〉+
∑

n

1
2
〈b2

n〉

=

∑
n

1
2

{
〈a2

n〉+ 〈b
2
n〉
}
= const. (8)

The term 1
2 {〈a

2
n〉+ 〈b

2
n〉} represents the respective “share,” belonging to the frequency nf0,

in the total, time-independent value of the quantity 〈y2(t)〉. Now, in view of the random-
ness of the phases of the various components, we have, for all n, 〈a2

n〉 = 〈b
2
n〉; consequently,

equation (8) may be written as

〈y2
〉 =

∑
n

〈a2
n〉 '

∞∫
0

w( f )df , (9)

where

〈a2
n〉 =w(nf0)1(nf0), that is, w(nf0)=

1
f0
〈a2

n〉; (10)

the function w( f ) defines the power spectrum of the variable y(t).
We shall now show that the power spectrum w( f ) of the fluctuating variable y(t) is

completely determined by its autocorrelation function K (s). For this, we make use of

16Obviously, this does not affect the spectral quality of the fluctuations, except that now we do not have a compo-
nent with frequency zero. To represent the actual situation, one may have to add, to the resulting spectrum, a suitably
weighted δ( f )-term.
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equation (4), which gives

〈a2
n〉 = 4f 2

0

1/f0∫
0

1/f0∫
0

〈y(t1)y(t2)〉cos(2πnf0t1)cos(2πnf0t2)dt1dt2. (11)

Changing over to the variables

S=
1
2
(t1+ t2) and s= (t2− t1),

and remembering that the interval T over which the integrations extend is much larger
than the duration over which the “memory” of the variable y lasts, we obtain

〈a2
n〉 ' 2f 2

0

1/f0∫
S=0

∞∫
s=−∞

K (s){cos(2πnf0s)+ cos(4πnf0S)}dSds; (12)

compare this to the steps that led us from equations (15.3.22) to (15.3.25) and (15.3.26).
The second part of the integral in (12) vanishes on integration over S; the first part then
gives

〈a2
n〉 = 4f0

∞∫
0

K (s)cos(2πnf0s)ds. (13)

Comparing (13) with (10), we obtain the desired formula

w( f )= 4

∞∫
0

K (s)cos(2π fs)ds. (14)

Taking the inverse of (14), we obtain

K (s)=

∞∫
0

w( f )cos(2π fs)df . (15)

For s= 0, formula (15) yields the important relationship

K (0)=

∞∫
0

w( f )df = 〈y2
〉; (16)

see equation (9) as well as the definition of the autocorrelation function of the variable y,
namely K (s)= 〈y(t1)y(t1+ s)〉. Equations (14) and (15), which connect the complementary
functions w( f ) and K (s), constitute a theorem that goes after the names of Wiener (1930)
and Khintchine (1934).
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We shall now look at some special cases of the variable y(t) to illustrate the use of the
Wiener–Khintchine theorem.

Case 1
If the given variable y(t) is extremely irregular, and hence unpredictable, then its correla-
tion function K (s) would extend over a negligibly small range of the time interval s.17 We
may then write

K (s)= cδ(s). (17a)

Equation (14) then gives

w( f )= 2c for all f . (17b)

A spectrum in which the distribution (of power) over different frequencies is uniform is
known as a “flat” or a “white” spectrum. We note, however, that if the uniformity of distri-
bution were literally true for all frequencies, from 0 to∞, then the integral in (16), which
is identically equal to 〈y2

〉, would diverge! We, therefore, expect that, in any realistic sit-
uation, the correlation function K (s) will not be as sharply peaked as in (17a). Typically,
K (s) will extend over a small range, O(σ ), of the variable s, which in turn will define a
“frequency zone,” with f =O(1/σ), such that the function w( f ) would undergo a change
of character as f passes through this zone; toward lower frequencies, w( f )→ const. 6= 0,
while toward higher frequencies, w( f )→ const.= 0. One possible representation of this
situation is shown in Figure 15.7 where we have taken, rather arbitrarily,

K (s)= K (0)
sin(as)

as
(a> 0), (18a)

for which

w( f )=
2π
a

K (0) for f <
a

2π

0 for f >
a

2π
.

(18b)

In the limit a→∞, equations (18) reduce to (17), with c = πa−1K (0).

Case 2
On the other hand, if the variable y(t) is extremely regular, and hence predictable, then its
correlation function would extend over large values of s; its power spectrum would then
appear in the form of “peaks,” located at certain “characteristic frequencies” of the vari-
able. In the simplest case of a monochromatic variable, with characteristic frequency f ∗,
the correlation function would be

K (s)= K (0)cos(2π f ∗s), (19a)

17This is essentially true of the rapidly fluctuating force F(t) experienced by a Brownian particle due to the incessant
molecular impulses received by it.



15.5 Spectral analysis of fluctuations: the Wiener–Khintchine theorem 613

0 � 2�2�22�

K(s)

a 5 2

a 5 1

s

a 52

a 5 1

0

w
 (f

 )

f 

1
2�

1
�

FIGURE 15.7 The autocorrelation function K (s) and the power distribution function w( f ) of a given variable y(t);
the parameter a appears in terms of an arbitrary unit of (time)−1.

for which

w( f )= K (0)δ( f − f ∗); (19b)

see Figure 15.8. A very special case arises when f ∗ = 0; then, both y(t) and K (s) are constant
in value, and the function w( f ) is peaked at the d.c. frequency f = 0.

Case 3
If the variable y(t) represents a signal that arises from, or has been filtered through, a lightly
damped tuned circuit (a “narrowband” filter), then its power will be distributed over a
“hump” around the mean frequency f ∗. The function K (s)will then appear in the nature of
an “attenuated” function whose time scale, σ , is determined by the width,1f , of the hump
in the power spectrum. A situation of this kind is shown in Figure 15.9.

The relevance of spectral analysis to the problem of the actual observation of a fluc-
tuating variable is best brought out by examining the power spectrum of the velocity v(t)
of a Brownian particle. Considering the x-component alone, the autocorrelation function
Kvx(s), or simply K (s), in this case is given by

K (s)=
kT
M

e−|s|/τ (τ =MB); (20)
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FIGURE 15.8 The autocorrelation function K (s) and the power distribution function w( f ) of a monochromatic
variable y(t), with characteristic frequency f ∗.

see equation (15.6.10). The power spectrum w( f ) is then given by the expression

w( f )=
4kT
M

∞∫
0

e−s/τ cos(2π fs)ds=
4kTτ

M
1

1+ (2π f τ)2
, (21)

which indeed satisfies the relationship

∞∫
0

w( f )df =
2kT
πM

tan−1(2π f τ)
∣∣∣∞
0

=
kT
M
= 〈v2

x〉, (22)

in agreement with the equipartition theorem (as applied to a single component of the
velocity v). For f � τ−1, the power distribution is practically independent of f , which
implies a practically “white” spectrum, with

w( f )'
4kTτ

M
= 4BkT . (23)
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FIGURE 15.9 The autocorrelation function K (s) and the power distribution function w( f ) of a variable that has
been filtered through a lightly damped tuned circuit, with mean frequency f ∗ and width 1f ∼ (1/σ).

We can then write for the velocity fluctuations in the frequency range ( f , f +1f ), with
f � τ−1,

〈1v2
x〉( f , f+1f ) 'w( f )1f ' (4BkT)1f . (24)

In general, our measuring instrument (or the eye, in the case of a visual examination of
the particle) has a finite response time τ0, as a consequence of which it is unable to respond
to frequencies larger than, say, τ−1

0 . The observed fluctuation is then given by the “pruned”
expression

〈v2
x〉obs '

1/τ0∫
0

w( f )df =
2kT
πM

tan−1
(

2π
τ

τ0

)
, (25)

instead of the “full” expression (22). In a typical case, the mass of the Brownian particle
M ∼ 10−12g, its diameter 2a∼ 10−4 cm, and the coefficient of viscosity of the fluid η ∼ 10−2

poise, so that the relaxation time τ =M/(6πηa)∼ 10−7 seconds. However, the response
time τ0, in the case of visual observation, is of the order of 10−1 s; clearly, τ/τ0 ∼ 10−6

� 1.
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Equation (25) then reduces to18

〈v2
x〉obs '

4kTτ
Mτ0

�
kT
M

; (26)

thus, in view of the finiteness of the response time τ0, the observed root-mean-square
velocity of the Brownian particle will be down by a factor of 2(τ/τ0)

1/2
∼ 10−3; numeri-

cally, this takes us down from a root-mean-square velocity which, at room temperatures,
is∼ 10−1 cm/s to a value∼ 10−4 cm/s.

It is gratifying to note that the outcome of actual observations of Brownian particles is
in complete agreement with the latter result; for a more detailed analysis of this question,
see MacDonald (1950). The foregoing discussion highlights the fact that, in the process
of observing a fluctuating variable, our measuring instrument picks up signals over only
a limited range of frequencies (as determined by the response time of the instrument);
signals belonging to higher frequencies are simply left out.

The theory of this section can be readily applied to fluctuations in the motion of elec-
trons in an (L,R) circuit. Corresponding to equations (21) through (24), we now have for
fluctuations in the electric current I

w( f )=
4kTτ ′

L
1

1+ (2π f τ ′)2

(
τ ′ =

L
R

)
, (27)

so that

∞∫
0

w( f )df =
kT
L
= 〈I2

〉, (28)

in agreement with the equipartition theorem: 〈12 LI2
〉 =

1
2 kT . For f � 1/τ ′, equation (27)

reduces to

w( f )'
4kT

R
, (29)

which, once again, implies “white” noise; accordingly, for low frequencies,

〈1I2
〉( f , f+1f ) 'w( f )1f '

4kT
R
1f . (30)

Equivalently, we obtain for fluctuations in the voltage

〈1V 2
〉( f , f+1f ) ' (4RkT)1f . (31)

Equation (31) constitutes the so-called Nyquist theorem, which was first discovered empir-
ically by Johnson (1927a,b; 1928) and was later derived by Nyquist (1927–1928) on the basis

18The fluctuations constituting this result belong entirely to the region of the “white” noise, with 1f = 1/τ0; see
equation (24), with B= τ/M .
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of an argument involving the second law of thermodynamics and the exchange of energy
between two resistances in thermal equilibrium.19

15.6 The fluctuation–dissipation theorem
In Section 15.3 we obtained a result of considerable importance, namely

1
B
≡

M
τ
=

M2

6kT
C =

M2

6kT

∞∫
−∞

KA(s)ds

=
1

6kT

∞∫
−∞

KF (s)ds; (1)

see equations (15.3.4), (15.3.26), and (15.3.28). Here, KA(s) and KF (s) are, respectively, the
autocorrelation functions of the fluctuating acceleration A(t) and the fluctuating force F(t)
experienced by the Brownian particle:

KA(s)= 〈A(0) ·A(s)〉 =
1

M2
〈F(0) ·F(s)〉 =

1

M2
KF (s). (2)20

Equation (1) establishes a fundamental relationship between the coefficient, 1/B, of the
“averaged-out” part of the total force F (t) experienced by the Brownian particle due to the
impacts of the fluid molecules and the statistical character of the “fluctuating” part, F(t),
of that force; see Langevin’s equation (15.3.2). In other words, it relates the coefficient of
viscosity of the fluid, which represents dissipative forces operating in the system, with the
temporal character of the molecular fluctuations; the content of equation (1) is, therefore,
referred to as a fluctuation–dissipation theorem.

The most striking feature of this theorem is that it relates, in a fundamental manner,
the fluctuations of a physical quantity pertaining to the equilibrium state of a given system
to a dissipative process which, in practice, is realized only when the system is subject to an
external force that drives it away from equilibrium. Consequently, it enables us to deter-
mine the nonequilibrium properties of the given system on the basis of a knowledge of the
thermal fluctuations occurring in the system when the system is in one of its equilibrium

19We note that the foregoing results are essentially equivalent to Einstein’s original result for charge fluctuations in a
conductor, namely

〈δq2
〉t =

2kT
R t;

compare, as well, the Brownian-particle result: 〈x2
〉t = 2BkTt.

20We note that the functions KA(s) and KF (s), which are nonzero only for s=O(τ ∗), see equation (15.3.21), may, for
certain purposes, be written as

KA(s)= 6kT
M2B

δ(s) and KF (s)= 6kT
B δ(s).

In this form, the functions are nonzero only for s= 0.
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states! For an expository account of the fluctuation–dissipation theorem, the reader may
refer to Kubo (1966).

At this stage we recall that in equation (15.3.11) we obtained a relationship between
the diffusion coefficient D and the mobility B, namely D= BkT . Combining this with
equation (1), we get

1
D
=

1

6(kT)2

∞∫
−∞

KF (s)ds. (3)

Now, the diffusion coefficient D can be related directly to the autocorrelation function
Kv(s) of the fluctuating variable v(t). For this, one starts with the observation that, by
definition,

r(t)=

t∫
0

v(u)du, (4)

which gives

〈r2(t)〉 =

t∫
0

t∫
0

〈v(u1) · v(u2)〉du1du2. (5)

Proceeding in the same manner as for the integral in equation (15.3.22), one obtains

〈r2(t)〉 =

t/2∫
0

dS

+2S∫
−2S

Kv(s)ds+

t∫
t/2

dS

+2(t−S)∫
−2(t−S)

Kv(s)ds; (6)

compare this to equation (15.3.24).
The function Kv(s) can be determined by making use of expression (15.3.14) for v(t)

and following exactly the same procedure as for determining the quantity 〈v2(t)〉, which is
nothing but the maximal value, Kv(0), of the desired function. Thus, one obtains

Kv(s)=


v2(0)e−(2t+s)/τ

+
3kT
M

e−s/τ (1− e−2t/τ ) for s> 0 (7)

v2(0)e−(2t+s)/τ
+

3kT
M

es/τ (1− e−2(t+s)/τ ) for s< 0; (8)

compare these results to equation (15.3.27). It is easily seen that formulae (7)and (8) can
be combined into a single one, namely

Kv(s)= v2(0)e−|s|/τ +
{

3kT
M
− v2(0)

}
(e−|s|/τ − e−(2t+s)/τ ) for all s; (9)
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compare this to equation (15.3.29). In the case of a “stationary ensemble,”

Kv(s)=
3kT
M

e−|s|/τ , (10)

which is consistent with property (15.3.20). It should be noted that the time scale for the
correlation function Kv(s) is provided by the relaxation time τ of the Brownian motion,
which is many orders of magnitude larger than the characteristic time τ ∗ that provides the
time scale for the correlation functions KA(s) and KF (s).

It is now instructive to verify that the substitution of expression (10) into (6) leads to
formula (15.3.7) for 〈r2

〉, while the substitution of the more general expression (9) leads to
formula (15.3.31); see Problem 15.17. In either case,

〈r2
〉 −−−→

t�τ
6Dt. (11)

In the same limit, equation (6) reduces to

〈r2
〉 '

t∫
0

dS

∞∫
−∞

Kv(s)ds= t

∞∫
−∞

Kv(s)ds. (12)

Comparing the two results, we obtain the desired relationship:

D=
1
6

∞∫
−∞

Kv(s)ds. (13)

In passing, we note, from equations (3) and (13), that

∞∫
−∞

Kv(s)ds

∞∫
−∞

KF (s)ds= (6kT)2; (14)

see also Problem 15.7.
It is not surprising that the equations describing a fluctuation–dissipation theorem can

be adapted to any situation that involves a dissipative mechanism. For instance, fluctua-
tions in the motion of electrons in an electric resistor give rise to a “spontaneous” thermal
e.m.f., which may be denoted as B(t). In the spirit of the Langevin theory, this e.m.f. may
be split into two parts: (i) an “averaged-out” part,−RI(t), which represents the resistive (or
dissipative) aspect of the situation, and (ii) a “rapidly fluctuating” part, V (t), which, over
long intervals of time, averages out to zero. The “spontaneous” current in the resistor is
then given by the equation

L
dI
dt
=−RI +V (t); 〈V (t)〉 = 0. (15)
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Comparing this with the Langevin equation (15.3.2) and pushing the analogy further, we
infer that there exists a direct relationship between the resistance R and the temporal
character of the fluctuations in the variable V (t). In view of equations (1) and (13), this
relationship would be

R=
1

6kT

∞∫
−∞

〈V (0) ·V (s)〉ds (16)

or, equivalently,

1
R
=

1
6kT

∞∫
−∞

〈I(0) · I(s)〉ds. (17)

A generalization of the foregoing result has been given by Kubo (1957, 1959); see, for
instance, Problem 6.19 in Kubo (1965), or Section 23.2 of Wannier (1966). On generaliza-
tion, the electric current density j(t) is given by the expression

ji(t)=
∑

l

t∫
−∞

El(t
′)8li(t− t′)dt ′ (i, l = x,y,z); (18)

here, E(t) denotes the applied electric field while

8li(s)=
1

kT
〈jl(0)ji(s)〉. (19)

Clearly, the quantities kT8li(s) are the components of the autocorrelation tensor of the
fluctuating vector j(t). In particular, if we consider the static case E = (E,0,0), we obtain
for the conductivity of the system

σxx ≡
jx

E
=

t∫
−∞

8xx(t− t ′)dt ′ =

∞∫
0

8xx(s)ds

=
1

2kT

∞∫
−∞

〈 jx(0)jx(s)〉ds, (20)

which may be compared with equation (17). If, on the other hand, we take E =
(E cosωt,0,0), we obtain instead

σxx(ω)=
1

2kT

∞∫
−∞

〈 jx(0)jx(s)〉e−iωsds. (21)
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Taking the inverse of (21), we get

〈jx(0)jx(s)〉 =
kT
π

∞∫
−∞

σxx(ω)eiωsdω. (22)

If we now assume that σxx(ω) does not depend on ω (and may, therefore, be denoted by the
simpler symbol σ ), then

〈jx(0)jx(s)〉 = (2kTσ)δ(s); (23)

see footnote 20. A reference to equations (15.5.17) shows that, in the present approxima-
tion, thermal fluctuations in the electric current are charaterized by a “white” noise.

15.6.A Derivation of the fluctuation–dissipation theorem
from linear response theory

In this section we will show that the nonequilibrium response of a thermodynamic system
to a small driving force is very generally related to the time-dependence of equilibrium
fluctuations. In hindsight, this is not too surprising since natural fluctuations about the
equilibrium state also induce small deviations of observables from their average val-
ues. The response of the system to these natural fluctuations should be the same as the
response of the system to deviations from the equilibrium state as caused by small driving
forces; see Martin (1968), Forster (1975), and Mazenko (2006).

Let us compute the time-dependent changes to an observable A caused by a small
time-dependent external applied field h(t) that couples linearly to some observable B. The
Hamiltonian for the system then becomes

H(t)=H0−h(t)B, (24)

where H0 is the unperturbed Hamiltonian in the equilibrium state. Remarkably, the calcu-
lation for determining the nonequilibrium response to the driving field is easiest using the
quantum-mechanical density matrix approach developed in Section 5.1. The equilibrium
density matrix is given by

ρ̂eq =
exp(−βH0)

Tr
(
exp(−βH0)

) , (25)

where equilibrium averages involve traces over the density matrix:

〈A〉eq = Tr
(
Aρ̂eq

)
. (26)

When the Hamiltonian includes a small time-dependent field h(t), then this additional
term drives the system slightly out of equilibrium. We will assume that the field was zero
in the distant past so the system was initially in the equilibrium state defined by the
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Hamiltonian H0. We then turn on the field and measure the time-dependent deviations
of the observable A from its equilibrium value. The small time-dependent applied field
h(t) induces a small change to the density matrix

ρ̂(t)= ρ̂eq+ δρ̂(t). (27)

The equation of motion of the density matrix in equation (5.1.10) gives

∂ρ̂

∂t
=
∂δρ̂

∂t
=

1
i~
[
H , ρ̂(t)

]
≈

1
i~
([

H0,δρ̂
]
−h(t)

[
B, ρ̂eq

])
, (28)

where [, ] denotes the commutator. Since we are considering only the linear response of
the system to the applied field, we have ignored the higher-order term proportional to
h(t)

[
B,δρ̂

]
. Solving (28) for the time-dependent change to the density matrix, we get

δρ̂(t)=
i
~

t∫
−∞

h(t ′)exp
(
−iH0(t− t′)

~

)[
B, ρ̂eq

]
exp

(
iH0(t− t′)

~

)
dt ′. (29)

This form uses the interaction representation in which operators evolve in time due to the
unperturbed Hamiltonian H0. We can use the change in the density matrix at time t to
calculate the change in the observable A compared to its equilibrium value, namely

〈δA(t)〉 = 〈A(t)〉− 〈A〉eq = Tr
(
Aρ̂(t)

)
−Tr

(
Aρ̂eq

)
= Tr

(
Aδρ̂(t)

)
. (30)

Using the cyclic property of traces, Tr(QRS)= Tr(SQR), we find that 〈δA(t)〉 is the convolu-
tion of a response function with the applied field:

〈δA(t)〉 =
i
~

t∫
−∞

〈[
A(t),B(t ′)

]〉
eq h(t ′)dt ′. (31)

Note that this nonequilibrium response function of the system to the driving force
depends on the equilibrium average of the commutator of the observables A and B at dif-
ferent times. The effect of the field on the observable A is causal since 〈δA(t)〉 depends
only on the applied field at earlier times. Since the relation is linear, time-translationally
invariant, and causal, the Fourier spectra of 〈δA〉 and h, namely

δÂ(ω)=

∞∫
−∞

〈δA(t)〉eiωt dt, and (32a)

ĥ(ω)=

∞∫
−∞

h(t)eiωt dt, (32b)

are related by

δÂ(ω)=
(
χ̂ ′AB(ω)+ iχ̂ ′′AB(ω)

)
ĥ(ω), (33)
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where χ̂ ′′AB(ω) is given by

χ̂ ′′AB(ω)=
1

2~

∞∫
−∞

〈[A(t),B(0)]〉eq eiωt dt. (34)

The quantity χ̂ ′AB(ω) is given by the Kramers–Kronig relation using the principal part P of
an infinite integral over χ̂ ′′AB(ω):

χ̂ ′AB(ω)= P

∞∫
−∞

χ̂ ′′AB(ω
′)

ω′−ω

dω′

π
. (35)

If A and B are the same operator, then χ̂ ′AA(ω) and χ̂ ′′AA(ω) are, respectively, the real and
imaginary parts of the response function. If A and B have the same symmetry under time-
reversal, ωχ̂ ′′AB(ω) is real and is an even function of ω. For a set of observables Ai, the set of
response functions ωχ̂ ′′ij(ω) form a symmetric positive matrix that gives the rate of energy
dissipation due to the external driving forces. See Jackson (1999) for a general causality
discussion and Martin (1968), Forster (1975), or Mazenko (2006) for the details of this
calculation.

Now we consider the equilibrium temporal correlations between the fluctuations of the
observables A and B, namely

GAB(t− t′)=
〈
δA(t)δB(t ′)

〉
eq . (36)

At equal times, this measures the AB equilibrium fluctuations described in Section 15.1,
that is, GAB(0)= 〈δAδB〉eq. The power spectrum of the AB equilibrium fluctuations is
defined by

SAB(ω)=

∞∫
−∞

GAB(t)e
iωt dt =

∞∫
−∞

〈δA(t)δB(0)〉eq eiωt dt. (37)

The similarity between the forms of SAB(ω) and χ̂ ′′AB(ω) in equations (34) and (37) leads
to an important relation between the power spectrum and the linear response function,
namely the fluctuation–dissipation theorem:

χ̂ ′′AB(ω)=
1

2~

(
1− e−β~ω

)
SAB(ω). (38)

The power spectrum SAB(ω) measures equilibrium fluctuations whereas χ̂ ′′AB(ω) is propor-
tional to the average rate of power dissipation that results from the time-varying applied
field. The classical limit of the fluctuation–dissipation theorem is obtained by letting
~ω/kT→ 0 with the result

χ̂ ′′AB(ω)=
ω

2kT
SAB(ω); (39)

compare this to equation (15.3.45). More complete discussions of the fluctuation–
dissipation theorem can be found in Martin (1968), Forster (1975), and Mazenko (2006).
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15.6.B Inelastic scattering

Inelastic scattering is an important experimental technique for measuring the dynamical
behavior of materials. By measuring the intensity of radiation scattered from a sample as a
function of wavevector transfer and frequency change relative to the incident monochro-
matic radiation source, one can measure the spatio-temporal correlations in the material.
This technique is now commonly applied to the scattering of neutrons, electrons, light,
and x-rays. The frequency changes in the scattered wave are caused by inelastic scattering
from quantum excitations in the sample; see Forster (1975), Squires (1997), and Mazenko
(2006).

The frequency-dependent scattering intensity is directly proportional to the dynamical
structure factor

S(k,ω)=
1
N

∞∫
−∞

〈∑
i,j

e−ik·(ri(t)−rj(0))

〉
eiωt dt, (40)

where k represents the wavevector transfer of the scattering process and ω represents the
frequency difference from that of the incident beam. A positive value of ω corresponds to
a detected frequency that is less than the frequency of the incident beam. The dynamical
structure factor S(k,ω) encodes both the spatial and temporal equilibrium correlations of
fluctuations in the material and can be decomposed into two terms, one that represents
scattering from a single particle at different times and another that represents scattering
from different particles:

S(k,ω)= Sself(k,ω)+ Scoherent(k,ω), (41a)

Sself(k,ω)=
1
N

∞∫
−∞

〈∑
i

e−ik·(ri(t)−ri(0))

〉
eiωt dt, (41b)

Scoherent(k,ω)=
1
N

∞∫
−∞

〈∑
i 6=j

e−ik·(ri(t)−rj(0))

〉
eiωt dt. (41c)

The dynamical structure factor S(k,ω) can also be written in terms of the spatio-
temporal Fourier transforms of the time-dependent density n(r, t) to connect it to the
power spectrum as defined in Section 15.6.A:

S(k,ω)= SAB(ω)=

∞∫
−∞

〈δA(t)δB(0)〉eiωt dt, (42a)

δA(t)=
1
√

N

∫
e−ik·rδn(r, t)dr =

1
√

N
n̂−k(t), (42b)

δB(0)=
1
√

N

∫
eik·rδn(r,0)dr =

1
√

N
n̂k(0). (42c)
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Positive frequency changes ω > 0 represent scattering events that create quantum exci-
tations in the material with energy ~ω and are referred to as Stokes scattering. Negative
frequency changes are called anti-Stokes scattering and correspond to scattering events
that destroy an excitation in the material with energy ~ω. Since an excitation must first
exist in order for it to be destroyed, the anti-Stokes scattering rate in equilibrium is lower
relative to the Stokes scattering rate by the Boltzmann factor for the excitation:

S(k,−ω)= e−β~ωS(k,ω). (43)

This relation is sometimes used in Raman scattering to measure the temperature of the
sample. The heights of Stokes and anti-Stokes peaks are symmetric if the excitation ener-
gies are small compared to thermal energies, that is ~ω� kT . The static structure factor
S(k) in equation (10.7.18) is obtained by integrating S(k,ω) over all ω:

S(k)=
1

2π

∞∫
−∞

S(k,ω)dω. (44)

This singles out equal-time scattering events and corresponds to quasielastic scattering
measurements that are unable to resolve the energy changes due to the excitations in the
material.

Three commonly measured types of inelastic laser scattering are: Raman scattering,
Brillouin scattering, and Rayleigh scattering. Raman scattering measures electronic, vibra-
tional, and rotational excitations of atoms and molecules, electronic band structure, and
optical phonon modes. Brillouin scattering measures long-wavelength acoustic sound
modes. The widths of Raman and Brillouin scattering peaks are determined by the life-
times of their respective modes. Rayleigh scattering measures the heat diffusion mode
centered at ω = 0 with width proportional to the thermal diffusivity. The wavelength of
visible light is large compared to atomic scales, so the wavevector transfers possible with
light scattering are very small compared to the size of the Brillouin zone. This limita-
tion is removed for inelastic x-ray and neutron scattering where experiments can probe
wavevectors away from the center of the Brillouin zone.

The dynamical scattering of a laser beam from a liquid includes three peaks: a Rayleigh
peak centered at ω = 0 due to scattering from the thermal fluctuations in the liquid and
the Stokes and anti-Stokes Brillouin peaks at ωk ≈±ck due to scattering from acoustic
phonons with sound speed c. For scattering in this wavevector and frequency range, the
dynamical structure factor is symmetric in ω since ~ω� kT . An early Brillouin scatttering
measurement of the dynamical structure factor of a liquid is shown in Figure 15.10.

The fluctuation–dissipation theorem enables one to develop a theory of the dynamical
structure factor based on the hydrodynamic response of a system that is weakly perturbed
from equilibrium. In the case of a fluid, small perturbations in pressure and tempera-
ture result in propagating sound waves and thermal diffusion. This results in the following
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� ��� 0

FIGURE 15.10 Dynamical structure factor for carbon tetrachloride using 632.8 nm He-Ne laser with a 90◦ scattering
angle. The structure factor is symmetric since ~ω� kT . The Landau-Placzek ratio of the integrated intensity under
the Rayleigh peak to the integrated intensities under the two Brillouin peaks is related to ratio of the constant-
pressure heat capacity to the constant-volume heat capacity: IR/(2IB)= CP/CV − 1= 0.72± 0.03, Landau and
Placzek (1934). The locations of the Brillouin peaks give the sound speed and the widths of the peaks measure
the thermal diffusivity and sound attenuation coefficient of the liquid; see equation (45). From Cummins and
Gammon (1966), reprinted with permission; copyright © 1966, American Institute of Physics.

theoretical form for the dynamical structure factor:

S(k,ω)=S(k)

[(
γ − 1
γ

)
2DT k2

ω2+ (DT k2)2
+

1
γ

(
0k2

(ω2− c2k2)2+ (0k2)2
+

0k2

(ω2+ c2k2)2+ (0k2)2

)]
. (45)

The parameters in equation (45) are the thermal diffusivity DT , the sound speed c, and the
sound attenuation coefficient 0, while γ = CP/CV is the ratio of the constant-pressure and
constant-volume heat capacities; see Forster (1975) and Hansen and McDonald (1986).

15.7 The Onsager relations
Most physical phenomena exhibit a kind of symmetry, sometimes referred to as reci-
procity, that arises from certain basic properties of the microscopic processes that operate
behind the (observable) macroscopic situations. A notable example of this is met with
in the thermodynamics of irreversible processes where one deals with a variety of flow
processes, such as heat flow, electric current, mass transfer, and so on. These flows (or
“currents”) are driven by “forces,” such as a temperature difference, a potential difference,
a pressure difference, and so on, which come into play because of a natural tendency
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among physical systems which happen to be out of equilibrium to approach a state
of equilibrium. If the given state of the system is not too far removed from a state of
equilibrium, then one might assume a linear relationship between the forces Xi and the
currents ẋi:

ẋi = γijXj, (1)

where γij are the kinetic coefficients of the system.21 Simple examples of such coefficients
are thermal conductivity, electrical conductivity, diffusion coefficient, and so on. There
are, however, nondiagonal elements, γij(i 6= j), as well that may or may not vanish; they are
responsible for the so-called cross effects. It is the symmetry properties of the matrix (γij)

that form the subject matter of this section.
The most obvious way to approach this problem is to consider the entropy, S(xi), of

the system in the disturbed state relative to its maximal value, S(x̃i), in the relevant state of
equilibrium. It is the natural tendency of the function S(xi) to approach its maximal value
S(x̃i) that brings into play the driving forces Xi; these forces give rise to currents ẋi, which
take the “coordinates” xi toward their equilibrium values x̃i. If the deviations (xi− x̃i) are
small, then the function S(xi)may be expressed as a Taylor series around the values xi = x̃i;
retaining terms up to the second order only, we have

S(xi)= S(x̃i)+

(
∂S
∂xi

)
xi=x̃i

(xi− x̃i)

+
1
2

(
∂2S
∂xi∂xj

)
xi, j=x̃i, j

(xi− x̃i)(xj − x̃j). (2)

In view of the fact that the function S(xi) is maximum at xi = x̃i, its first derivatives vanish;
we may, therefore, write

1S≡ S(xi)− S(x̃i)=−
1
2
βij(xi− x̃i)(xj − x̃j), (3)

where

βij =−

(
∂2S
∂xi∂xj

)
xi, j=x̃i, j

= β ji. (4)

The driving forces Xi may be defined in the spirit of the second law of thermodynamics,
that is,

Xi =

(
∂S
∂xi

)
=−βij(xj − x̃j). (5)

21In writing equation (1), and other subsequent equations, we follow the summation convention that implies an
automatic summation over a repeated index.
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We note that in the present approximation the forces Xi depend linearly on the dis-
placements (xi− x̃i); in the state of equilibrium, they vanish. Now, in view of equation
(15.1.2), the ensemble average of the product xiXj is given by

〈xiXj〉 =

∫
∞

−∞
(xiXj)exp

{
−

1
2kβij(xi− x̃i)(xj − x̃j)

}∏
i

dxi∫
∞

−∞
exp

{
−

1
2kβij(xi− x̃j)(xj − x̃j)

}∏
i

dxi

; (6)

the limits of integration in (6) have been extended to −∞ and +∞ because the integrals
here do not draw any significant contribution from large values of the variables involved.
In the same way,

〈xi〉 =

∫
∞

−∞
xi exp

{
−

1
2kβij(xi− x̃i)(xj − x̃j)

}∏
i

dxi∫
∞

−∞
exp

{
−

1
2kβij(xi− x̃i)(xj − x̃j)

}∏
i

dxi

= x̃i. (7)

Differentiating (7) with respect to x̃j (and remembering that the integral in the denomina-
tor is a constant, independent of the actual values of the quantities x̃i), and comparing the
resulting expression with (6), we obtain the remarkable result

〈xiXj〉 = −kδij. (8)

We now proceed toward the key point of the argument. First of all, we note that,
though equations (1) are concerned with irreversible phenomena, the microscopic pro-
cesses underlying these phenomena obey time reversal, which means that the temporal
correlations of the relevant variables are the same whether measured forward or backward
in time. Thus,

〈xi(0)xj(s)〉 = 〈xi(0)xj(−s)〉; (9)

also, by a shift in the zero of time,

〈xi(0)xj(−s)〉 = 〈xi(s)xj(0)〉. (10)

Combining (9) and (10), we get

〈xi(0)xj(s)〉 = 〈xi(s)xj(0)〉. (11)

If we now subtract, from both sides of this equation, the quantity 〈xi(0)xj(0)〉, divide the
resulting equation by s and let s→ 0, we obtain

〈xi(0)ẋj(0)〉 = 〈ẋi(0)xj(0)〉. (12)
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Substituting from (1) and making use of (8), we obtain on the left side of (12)

〈xi(0)γ jlXl(0)〉 = −kγ jlδil =−kγ ji

and on its right side

〈γilXl(0)xj(0)〉 = −kγilδ jl =−kγij.

It follows that

γij = γ ji. (13)

Equations (13) constitute the Onsager reciprocity relations; they were first derived by
Onsager in 1931 and have become an essential part of the thermodynamics of irreversible
phenomena.

In view of equations (1) and (13), the currents ẋi may be written as

ẋi =
∂f
∂Xi

, (14)

where the generating function f is a quadratic function of the forces Xi:

f =
1
2
γijXiXj. (15)

The function f is especially important in that it determines directly the rate at which the
entropy of the system changes with time:

Ṡ=
∂S
∂xi

ẋi = Xiẋi = Xi
∂f
∂Xi
= 2f . (16)

As the system approaches the state of equilibrium, its entropy must increase toward the
equilibrium value S(x̃i). The function f must, therefore, be positive definite, which places
certain restrictions on the coefficients γij.

Analogous to equation (1), we could also write

Ẋi = ζij(x j − x̃ j), (17)

the quantities ζij being another set of coefficients pertaining to the system. From equa-
tions (1) and (5), on the other hand, we obtain

Ẋi =−βijẋ j =−βij(γ jlXl)=−βijγ jl{−βlm(xm− x̃m)}

= βijγ jlβlm(xm− x̃m). (18)

Comparing (17) and (18), we obtain a relationship between the new coefficients ζij and the
kinetic coefficients γij:

ζim = βijγ jlβlm. (19)
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Now, in view of the symmetry properties of the matrices β and γ , we get

ζim = ζmi; (20)

thus, the coefficients ζij, introduced through the phenomenological equations (17), also
obey the reciprocity relations. It then follows that the quantities Ẋi, see equation (14), may
be written as,

Ẋi =
∂f ′

∂xi
, (21)

where

f ′ =
1
2
ζij(xi− x̃i)(x j − x̃ j). (22)

The entropy change dS may now be written as

dS=
∂S
∂x j

dx j = X jdx j =−β ji(xi− x̃i)dx j

= (xi− x̃i)d{−βij(x j − x̃ j)} = (xi− x̃i)dXi, (23)

so that

∂S
∂Xi
= (xi− x̃i); (24)

clearly, the entropy S is now regarded as an explicit function of the forces Xi (rather than of
the coordinates xi). The time derivative of S now takes the form

Ṡ=
∂S
∂Xi

Ẋi = (xi− x̃i)
∂f ′

∂xi
= 2f ′. (25)

Comparing (16) and (25), we conclude that the functions f and f ′ are, in fact, the same;
they are only expressed in terms of two different sets of variables.

It seems important to mention here that Onsager’s reciprocity relations have an inti-
mate connection with the fluctuation–dissipation theorem of the preceding section. Fol-
lowing equations (15.6.18) and (15.6.19), and adopting the summation convention, we
have in the present context

ẋi(t)=
1

kT

t∫
−∞

El(t
′)〈ẋl(t

′)ẋi(t)〉dt ′ (26)

or, setting (t− t ′)= s,

ẋi(t)=
1

kT

∞∫
0

El(t− s)〈ẋl(t− s)〈ẋi(t)〉ds; (27)
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compare this to equation (1). Interchanging the indices i and l, we obtain

ẋl(t)=
1

kT

∞∫
0

Ei(t− s)〈ẋi(t− s)ẋl(t)〉ds. (28)

The crucial point now is that the correlation functions appearing in equations (27) and
(28) are identical in value, for

〈ẋl(t− s)ẋi(t)〉 = 〈ẋl(0)ẋi(s)〉 = 〈ẋl(0)ẋi(−s)〉 = 〈ẋl(t)ẋi(t− s)〉; (29)

in establishing (29), the first and third steps followed from “a shift in time” while the sec-
ond step followed from the “principle of dynamical reversibility of microscopic processes.”
The equivalence depicted in equation (29) is, in essence, the content of Onsager’s reci-
procity relations. In particular, if the correlation functions appearing in (27) and (28) are
sharply peaked at the value s= 0, then these equations reduce to the phenomenological
equations (1), and equation (29) becomes synonymous with the Onsager relations (13).

In the end, we make some further remarks concerning relations (13). We recall that, in
arriving at these relations, we had to make an appeal to the invariance of the microscopic
processes under time reversal. The situation is somewhat different in the case of a “system
in rotation” (or a “system in an external magnetic field”), for then the invariance under
time reversal holds only if there is also a simultaneous change of sign of the angular veloc-
ity � (or of the magnetic field B). The kinetic coefficients, which in this case might depend
on the parameter � (or B), will now satisfy the relations

γij(�)= γ ji(−�) (13a)

and

γij(B)= γ ji(−B). (13b)

In addition, our proof here rested on the implicit assumption that the quantities xi

themselves do not change under time reversal. If, for some reason, these quantities
are proportional to the velocities of a certain macroscopic motion, then they will also
change their sign under time reversal. Now, if both xi and x j belong to this category, then
equation (12), which is crucial to our proof, would remain unaltered; consequently, the
coefficients γij and γ ji would still be equal. However, if only one of them belongs to this
category while the other one does not, then equation (12) would change to

〈xi(0)ẋj(0)〉 = −〈ẋi(0)xj(0)〉; (12′)

the coefficients γij and γ ji would then obey the relations

γij =−γ ji. (13′)
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For the application of Onsager’s relations to different physical problems, reference may be
made to the monographs by de Groot (1951), de Groot and Mazur (1962), and Prigogine
(1967).

Problems
15.1. Making use of expressions (15.1.11) and (15.1.12) for1S and1P, and expressions (15.1.14) for

(1T)2,(1V )2, and (1T1V ), show that

(a) (1T1S)= kT ; (b) (1P1V )=−kT ;

(c) (1S1V )= kT(∂V /∂T)P ; (d) (1P1T)= kT 2C−1
V (∂P/∂T)V .

[Note that results (a) and (b) give: (1T1S−1P1V )= 2kT , which follows directly from the
probability distribution function (15.1.8).]

15.2. Establish the probability distribution (15.1.15), which leads to the expressions in (15.1.16) for
(1S)2, (1P)2, and (1S1P). Show that these results can also be obtained by following the
procedure of the preceding problem.

15.3. If we choose the quantities E and V as “independent” variables, then the probability distribution
function (15.1.8) does not reduce to a form as simple as (15.1.13) or (15.1.15); it is marked instead
by the presence, in the exponent, of a cross term proportional to the product1E1V .
Consequently, the variables E and V are not statistically independent : (1E1V ) 6= 0.

Show that

(1E1V )= kT
{

T
(
∂V
∂T

)
P
+P

(
∂V
∂P

)
T

}
;

verify as well expressions (15.1.14) and (15.1.18) for (1V )2 and (1E)2.
[Note that in the case of a two-dimensional normal distribution, namely

p(x,y)∝ exp
{
−

1
2
(ax2
+ 2bxy+ cy2)

}
,

the quantities 〈x2
〉, 〈xy〉, and 〈y2

〉 can be obtained in a straightforward manner by carrying out a
logarithmic differentiation of the formula

∞∫
−∞

∞∫
−∞

exp
{
−

1
2
(ax2
+ 2bxy+ cy2

}
dx dy =

2π√
(ac−b2)

with respect to the parameters a,b, and c. This leads to the covariance matrix of the distribution,
namely (

〈x2
〉 〈xy〉

〈yx〉 〈y2
〉

)
=

1
(ac−b2)

(
c −b
−b a

)
.

If b= 0, then

〈x2
〉 = 1/a, 〈xy〉 = 0, 〈y2

〉 = 1/c.]22

15.4. A string of length l is stretched, under a constant tension F , between two fixed points A and B.
Show that the mean square (fluctuational) displacement y(x) at point P, distant x from A, is
given by

{y(x)}2 =
kT
Fl

x(l− x).

22For the covariance matrix of an n-dimensional normal distribution, see Landau and Lifshitz (1958), Section 110.
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Further show that, for x2 ≥ x1,

y(x1)y(x2)=
kT
Fl

x1(l− x2).

[Hint : Calculate the energy,8, associated with the fluctuation in question; the desired
probability distribution is then given by p∝ exp(−8/kT), from which the required averages can
be readily evaluated.]

15.5. How small must the volume, VA, of a gaseous subsystem (at normal temperature and pressure) be,
so that the root-mean-square deviation in the number, NA, of particles occupying this volume be
1 percent of the mean value NA?

15.6. Pospišil (1927) observed the Brownian motion of soot particles, of radii 0.4× 10−4 cm, immersed
in a water–glycerine solution, of viscosity 0.0278 poise at a temperature of 18.8◦C. The observed
value of x2, in a 10-second time interval, was 3.3× 10−8cm2. Making use of these data, determine
the Boltzmann constant k.

15.7. In the notation of Section 15.3, show that for a Brownian particle

〈v(t) ·F(t)〉 = 3kT/τ , while 〈v(t) ·F (t)〉 = 0.

On the other hand,

〈r(t) ·F (t)〉 = −3kT , while 〈r(t) ·F(t)〉 = 0.

15.8. Integrate equation (15.3.14) to obtain

r(t)= v(0)τ (1− e−t/τ )+ τ

t∫
0

{1− e(u−t)/τ
}A(u)du,

so that r(0)= 0. Taking the square of this expression and making use of the autocorrelation
function KA(s), derive formula (15.3.31) for 〈r2(t)〉.

15.9. While detecting a very feeble current with the help of a moving-coil galvanometer, one must
ensure that an observed deflection is not just a stray kick arising from the Brownian motion of the
suspended system. If we agree that a deflection θ , whose magnitude exceeds 4θr.m.s.[= 4(kT/c)1/2],
is highly unlikely to be due to the Brownian motion, we obtain a lower limit to the magnitude of the
current that can be reliably recorded with the help of the given galvanometer. Express this limiting
current in terms of the time period τ and the critical damping resistance Rc of the galvanometer.

15.10. (a) Integrate Langevin’s equation (15.3.5) for the velocity component vx over a small interval of
time δt, and show that

〈δvx〉

δt
=−

vx

τ
and

〈(δvx)
2
〉

δt
=

2kT
Mτ

.

(b) Now, set up the Fokker–Planck equation for the distribution function f (vx, t) and, making use
of the foregoing results for µ1(vx) and µ2(vx), derive an explicit expression for this function.
Study the various cases of interest, especially the one for which t� τ .

15.11. Generalize the analysis of the Langevin theory of a harmonic oscillator, as given by equation
(15.3.33), to the case of an oscillator starting at time t = 0 with the initial position x(0) and
the initial velocity v(0). Derive, for this system, the quantities 〈x2(t)〉 and 〈v2(t)〉 and show that,
in the limit ω0→ 0, these expressions reproduce equations (15.3.29) and (15.3.31) while, in the
limit M→ 0, they lead to the relevant results of Section 15.4.

15.12. Generalize the Fokker–Planck equation to the case of a particle executing Brownian motion in
three dimensions. Determine the general solution of this equation and study its important
features.

15.13. The autocorrelation function K (s) of a certain statistically stationary variable y(t) is given by
(a) K (s)= K (0)e−αs2

cos(2π f ∗s)

or by

(b) K (s)= K (0)e−α|s| cos(2π f ∗s),
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where α > 0. Determine, and discuss the nature of, the power spectrum w( f ) in each of these cases
and investigate its behavior in the limits (a) α→ 0, (b) f ∗→ 0, and (c) both α and f ∗→ 0.

15.14. Show that if the autocorrelation function K (s) of a certain statistically stationary variable y(t) is
given by

K (s)= K (0)
sin(as)

as
sin(bs)

bs
(a> b> 0),

then the power spectrum w( f ) of that variable is given by

w( f )=
2π
a

K (0) for 0< f ≤
a−b

2π
,

2π
ab

K (0)
{

a+b
2
−π f

}
for

a−b
2π
≤ f ≤

a+b
2π

,

0 for
a+b

2π
≤ f <∞.

Verify that the function w( f ) satisfies the requirement (15.5.16).
[Note that, in the limit b→ 0, we recover the situation pertaining to equations (15.5.18).]

15.15. (a) Show that the mean square value of the variable Y (t), defined by the formula

Y (t)=

u+t∫
u

y(u)du,

where y(u) is a statistically stationary variable with power spectrum w( f ), is given by

〈Y 2(t)〉 =
1

2π2

∞∫
0

w( f )
f 2

{
1− cos(2π ft)

}
df ;

and, accordingly,

w( f )= 4π f

∞∫
0

∂

∂t
〈Y 2(t)〉sin(2π ft)dt

= 2

∞∫
0

∂2

∂t2
〈Y 2(t)〉cos(2π ft)dt.

For details, see MacDonald (1962), Section 2.2.1. A comparison of the last result with equation
(15.5.14) suggests that

Ky(s)=
1
2
∂2

∂s2 〈Y
2(s)〉.

(b) Apply the foregoing analysis to the motion of a Brownian particle, taking y to be the velocity of
the particle and Y its displacement.

15.16. Show that the power spectra wv( f ) and wA( f ) of the fluctuating variables v(t) and A(t) that appear
in the Langevin equation (15.3.5) are connected by the relation

wv( f )=wA( f )
τ2

1+ (2π f τ)2
,

τ being the relaxation time of the problem. Hence, by equation (15.5.21) wA( f )= 12kT/Mτ .
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15.17. (a) Verify equations (15.6.7) through (15.6.9).
(b) Substituting expression (15.6.9) for K v(s) into equation (15.6.6), derive formula (15.3.31) for
〈r2(t)〉.

15.18. Determine χ̂ ′′vx(ω) and Svx(ω) for a Brownian particle in a harmonic oscillator potential. Show that
the response function and the power spectrum for this case are related by the classical limit of the
fluctuation–dissipation theorem.

15.19. Derive the linear response density matrix (15.6.29) from the equation of motion (15.6.28).
15.20. Show that GAB(t)= GBA(t− iβ~) and use the cyclic property of the traces to derive the

fluctuation–dissipation theorem χ̂ ′′AB(ω)=
1

2~
(
1− e−β~ω)SAB(ω).

15.21. Show that GAB(t)= GBA(t− iβ~). Use this result to show that, in the classical limit, χ̂ ′′AB(t) becomes〈
dA(t)

dt B(0)
〉
. Further show that this leads to equation (15.6.39).

15.22. Determine the self-diffusion term in the dynamical structure factor Sself(k,ω) in
equation (15.6.41b) for the case of a single particle that diffuses according to the diffusion
equation. Assume the process to be Gaussian for which 〈e f

〉 = exp
(
〈f 2/2〉

)
.

15.23. Determine the angular frequency ωk for the Brillouin peaks in water for 90◦ laser scattering, using
a He-Ne laser with λ= 632.8nm. Determine the width of the Rayleigh peak and show that the
Brillouin peaks are well-separated from the Rayleigh peak. The thermal diffusivity of water is
DT = 1.4× 10−7 m2/s.

15.24. Describe the dynamical structure factor for Raman scattering for a He-Ne laser with λ= 632.8nm.
The energy level responsible for this scattering has an energy of 0.05eV and the lifetime of this
state is 1picosecond. Are the Stokes/anti-Stokes scatterings symmetric as ω→−ω at room
temperature?



16
Computer Simulations

Computer simulations play an important role in modern statistical mechanics. The history
of the use of computer simulations in science parallels the history of early digital comput-
ing. The people and places involved centered around Los Alamos and other U.S. national
laboratories where the first digital computers became available for use by scientists after
World War II. Early leaders in the development of computer simulation methods included
Fermi, Ulam, von Neumann, Teller, Metropolis, Rosenbluth, and others who were also
involved in the Manhattan Project (Metropolis, 1987).

Computer simulations in statistical mechanics fall into two broad classes: Monte Carlo
(MC) and molecular dynamics (MD), although variants span the range between the two.
Both methods involve numerically evolving simple models of materials through a set of
microstates in order to determine the thermodynamic averages of measurable quantities.
Computer simulations provide a means to study physical systems that is complementary
to both experiment and theory. The following are a few of the advantages of computer
simulations:

. Computer simulations can provide insight into the equilibrium and nonequilibrium
behavior of model systems for ranges of parameters where theoretical approximations
are invalid or untested.. Computer simulations provide a means to test the range of validity of theoretical
approximations against specific model systems.. Computer simulations allow visualization of physical processes that can provide new
insights into complex phenomena.. Computer simulations allow detailed examination of behaviors that might not be
accessible experimentally.. Computer simulations can be used to examine fundamental physical processes that
can be used to guide theory.. Computer simulations can be used to model systems that do not exist in nature to
provide assistance in understanding existing materials and engineering new ones.

16.1 Introduction and statistics
While certain critical aspects of computer simulation theory should be followed rigorously,
much of computer simulation development and use is an art form. There are many possi-
ble simulation approaches for any given problem and some choices will be more effective

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00016-5
© 2011 Elsevier Ltd. All rights reserved.
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at elucidating important physical properties than others. This brief chapter concentrates
on equilibrium simulations but computer simulations are also widely used to model
dynamical and nonequilibrium processes. The task of determining equilibrium thermody-
namic averages of model systems is accomplished by generating a sequence of microstates
that are chosen from the equilibrium ensemble of the model. For example, an MD simula-
tion might be used to integrate Newton’s equations of motion for generating a time-series
of states in phase space as the system explores the constant-energy hypersurface of the
Hamiltonian. By comparison, an MC simulation of the same model might generate a
sequence of states chosen by a random walk among the configurational microstates of the
canonical ensemble. Both methods are examples of importance sampling, which focuses
computational effort on generating microstates that are representative of the equilibrium
ensemble rather than sampling all of the phase space. It is this huge improvement in effi-
ciency that makes computer simulations of statistical mechanical models feasible. The
sequence of states produced by either method can be used to estimate equilibrium aver-
ages. Allen and Tildesley (1990), Binder and Heermann (2002), Frenkel and Smit (2002),
and Landau and Binder (2009) provide more detailed discussions of computer simulations
and their applications in statistical physics.

Let q represent a microstate of the system and A(q) a thermodynamic observable that
is a function of the microstate. In an MC simulation, q might represent the positions of
all the particles in the system while in an MD simulation q might represent the posi-
tions and momenta of all the particles. The observable A(q) might represent the potential
energy, virial contribution to the pressure, pair correlation function, and so on. The initial
microstate chosen to start a simulation will generally not be typical of the set of microstates
that make up the equilibrium ensemble, but the goal of a simulation is to evolve the
microstate through a large enough subset of the microstates of the equilibrium ensemble
so that averages of observables approach their equilibrium values. After a simulation has
run long enough for the system to approach equilibrium, the simulation then generates a
sequence of M configurations, {qj}

M
j=1, chosen from the set of microstates in the equilib-

rium ensemble and stores a sequence of values, {A(qj)}
M
j=1, for each of the thermodynamic

variables one wants to measure.1 Since the microstates are chosen from the equilibrium
ensemble, the equilibrium average of A is approximated by a simple average of the set of
values {A(qj)}

M
j=1. Of course, a simulation can only provide a finite sequence of states, so a

statistical analysis of the uncertainty of the results is a crucial part of any simulation.
The equilibrium average of the variable A is given by

〈A〉 = 〈A〉M ± σM (1)

1Alternatively, one can store the full configuration set of statistically independent microstates for later analysis. This
tactic requires a large amount of storage space but is useful if there is a large computational cost of generating statistically
independent configurations and one needs to calculate averages of many different observables at a later time using the
stored configurations. This is sometimes done in large-scale lattice quantum chromodynamics simulations.
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where the simulation average 〈A〉M and uncertainty σM are determined by

〈A〉M =
1

M

M∑
j=1

A(qj), (2a)

σM =

√〈
A2
〉
M −〈A〉

2
M

√
M/(2τ + 1)

, (2b)

〈
A2〉

M −〈A〉
2
M =

1
M

M∑
j=1

[A(qj)−〈A〉M ]2. (2c)

The “correlation time” τ is defined as follows. Since the states qj are generated sequentially
by the simulation, each new state qj+1 is guaranteed to be close to the previous state qj, so
the values A(qj) in the sequence are highly correlated. The correlations in the values of
A(qj) decrease with the “correlation time” τ which can be calculated from the correlation
function φAA(t), namely

φAA(t)=
〈A(t)A(0)〉− 〈A(t)〉 〈A(0)〉〈

A2
〉
−〈A〉2

, (3a)

τ =
∑
t>0

φAA(t). (3b)

The variable t is a measure of the separation between pairs of configurations in the ordered
sequence. In the case of molecular dynamics simulations, τ represents a physical time
for the system to move far enough along its trajectory on the energy surface to result in
decorrelated values of A. Monte Carlo simulations explore equilibrium microstates in a
random walk, so τ does not correspond to physical time but rather the average number
of Monte Carlo sweeps needed to give statistically independent values for A. The quan-
tity M/(2τ + 1) represents the number of statistically independent configurations in the
sequence of M values.2

2The correlations φAA(t) in equation (16.1.3a) can be measured using subsequences of the M configurations:

〈A(t)A(0)〉 ≈
1

M ′

M ′∑
j=1

A(qj+t )A(qj),

and

〈A(t)〉 ≈
1

M ′

M ′∑
j=1

A(qj+t ).

By definition, the correlation function φAA(0) is unity and the correlations decay to zero as t→∞. Once one can place
a reliable upper bound on the size of the correlation time τ for a given system from a knowledge of its equilibrium
correlations, one can simply skip more than τ configurations between storing values of A(qj) to ensure that the numbers
in the sequence are now approximately statistically independent.



640 Chapter 16 . Computer Simulations

16.2 Monte Carlo simulations
The term Monte Carlo method, named for the gambling casinos in Monaco, was coined
by Nicholas Metropolis (1987) – “a suggestion not unrelated to the fact that Stan [Ulam]
had an uncle who would borrow money from relatives because he ‘just had to go to Monte
Carlo’.” The goal of a Monte Carlo simulation in equilibrium statistical mechanics is to
use pseudorandom numbers to draw a representative sample of microstates {q} from the
equilibrium probability distribution

Peq(q)=
exp

(
−βE(q)

)∑
q′ exp

[
−βE(q′)

] . (1)

This means that “instead of choosing configurations randomly, then weighting them with
exp(−E/kT), we choose configurations with a probability exp(−E/kT) and weight them
evenly” (Metropolis et al., 1953). If a simulation can accomplish this, then thermodynamic
averages can be calculated using the simple averages in equation (16.1.2). This importance
sampling of the states provides a huge computational advantage over normal random
sampling.

The following algorithm accomplishes the goal of randomly selecting microstates q
from the set of all microstates with a probability distribution that approaches the equilib-
rium distribution (1) (Metropolis et al., 1953; Kalos and Whitlock, 1986; Allen and Tildesley,
1990; Frenkel and Smit, 2002; Binder and Heermann, 2002; Landau and Binder, 2009). Con-
sider an ensemble of microstates that has some initial distribution of probabilities P(q,0)
and let the distribution evolve according to the discrete stochastic rate equation

P(q, t+ 1)= P(q, t)+
∑

q′
P(q′, t)W (q′→ q)−P(q, t)

∑
q′

W (q→ q′), (2)

where W (q→ q′) is the transition rate from state q to state q′. If the transition rate obeys
the balance condition ∑

q′
Peq(q′)W (q′→ q)= Peq(q)

∑
q′

W (q→ q′), (3)

and the random process in equation (2) can reach every microstate from every other
microstate in a finite number of steps, then the ensemble probability will approach the
equilibrium distribution:

lim
t→∞

P(q, t)= Peq(q). (4)

In practice, equation (3) is usually implemented using the detailed balance condition

Peq(q)W (q→ q′)= Peq(q′)W (q′→ q). (5)

Evaluating Peq(q) requires summing over all states to determine the partition function,
but the ratio Peq(q′)/Peq(q) depends only on the energy difference 1E = E(q′)−E(q).
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Therefore, the transition rates are related by

W (q→ q′)= exp(−β1E)W (q′→ q). (6)

This guarantees that the sequence of states generated by this stochastic process, begin-
ning from any starting configuration, asymptotically becomes equivalent to selecting
states by a random walk among the microstates of the equilibrium ensemble. This can
be implemented in a computer code, as first proposed by Metropolis et al. (1953), using
the transition rates

W (q→ q′)= 1 if1E ≤ 0,

W (q→ q′)= exp(−β1E) if1E > 0. (7)

Other choices for the transition rates are possible but this form, named after Metropolis, is
one of the most commonly used.

16.2.A Metropolis Monte Carlo algorithm

The Metropolis method can be implemented in a computer program by using a pseudo-
random number generator rand() that returns pseudorandom numbers that are uniformly
distributed on the open unit interval (0.0,1.0); see Appendix I for a discussion of how
pseudorandom numbers are generated. First, initialize the system by choosing a starting
state q0 from the set of all microstates of the model. It is helpful if q0 is not atypical of
the states in the equilibrium ensemble. This reduces the number of steps needed for the
system to equilibrate. For example, a disordered liquid-like state would not be the best
starting point for a simulation of a crystalline solid.

The Metropolis algorithm is defined by the following steps:

1. Generate a random trial state qtrial that is “nearby” the current state qj of the system.
“Nearby” here means that the trial state should be almost identical to the current state
except for a small random change made, usually, to a single particle or spin. For
example, one can create a trial state of a particle simulation by randomly moving one
particle to a nearby location

xtrial
i = xi+1x(rand()− 0.5), (8)

with two more calls to rand( ) to generate ytrial
i and ztrial

i . The trial state of a spin system
usually involves a spin flip or a random rotation of a single spin.3

3There are Monte Carlo algorithms for spin systems that flip spins in large correlated clusters rather than one spin at a
time; see Swendsen and Wang (1987) and Wolff (1989). These methods are very effective for simulations of some particu-
lar models. Also, one can attempt spin flips of all the spins on noninteracting sublattices at one time since the acceptance
of each flip is independent of the other flipped spins. For example, a chessboard pattern update of a spin model in which
spins only interact with nearest neighbors of a square lattice can be more efficient for some computer architectures or
programming environments.
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2. Determine the change in the energy of the trial state compared to the previous
state, namely1E = E(qtrial)−E(qj). If1E ≤ 0, accept the trial state, that is, set
qj+1 = qtrial. If1E > 0, then accept the trial state with probability exp(−β1E). This is
accomplished by using an additional call to the pseudorandom number generator. If
rand() < exp(−β1E), then accept the trial state. If the interactions are short-ranged,
the calculation of the energy change will only involve interactions with a few nearby
particles or spins. If the trial state is illegal in some way, that is, it is not an allowed
state in the set of all configurations, then the state should be rejected. This is
equivalent to setting the energy change at+∞. If the trial state is rejected for either
reason, then set the new state of the system equal to the previous state qj+1 = qj, that
is, leave the state at the old value qj, throw away the trial state, and move on.

3. Perform steps 1 and 2 once for each particle or spin in the system. This is often done
randomly to ensure detailed balance.4 Steps 1 through 3 define one Monte Carlo
sweep.

4. Repeat steps 1 through 3 for Meq Monte Carlo sweeps to let the system equilibrate. The
proper choice of Meq is not obvious a priori. At the very least, all the measures A(q)
studied in the simulation should no longer have any obvious monotonic drift by
the end of equilibration. This does not guarantee that the system has reached
equilibrium since the system could well be trapped in the vicinity of a long-lived
metastable state.

5. Repeat steps 1 through 3 for M Monte Carlo sweeps while keeping track of all the
thermodynamic variables one wants to measure, namely {A(qj)}

M
j=1. Use

equations (16.1.1) and (16.1.2) to determine the equilibrium averages and
uncertainties.

To determine averages at a different set of parameters (temperature, density, etc.), change
the parameters by a small amount and repeat steps 1 through 5, including the equilibration
step 4.5 Using the last configuration of the previous run as the first configuration of the next
run can often reduce the equilibration time. Figure 16.1 shows a Monte Carlo calculation
of the specific heat of the two-dimensional Ising model on a 128× 128 square lattice, as
compared to the exact solution presented in Section 13.4.A.

4Sequential and other update methods that violate detailed balance are sometimes used for efficiency but special
care should be taken to ensure that detailed balance is maintained on average.

5Histogram reweighting methods can sometimes be used to reduce the number of temperatures and fields that need
to be simulated (Ferrenberg and Swendsen, 1988). For example, if a spin simulation at coupling K and field h collects a
histogram that samples the joint energy-magnetization distribution PK ,h(E,M), the distribution at nearby temperatures
and fields is given by

PK+1K ,h+1h(E,M)=
PK ,h(E,M)e1K E+1hM∑

E,M PK ,h(E,M)e1K E+1hM
.

Other methods that are now widely used are: parallel tempering, multicanonical Monte Carlo, and “broad histogram”
methods. These are particularly effective for studying systems with strongly first-order phase transitions. Monte Carlo
renormalization group methods are very powerful for studying critical points. For a survey, see Landau and Binder (2009).
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FIGURE 16.1 Monte Carlo specific heat (×’s) of the two-dimensional Ising model on a 128×128 lattice, as compared
to the exact solution (solid line) from Section 13.4.A; see Kaufman (1948), Ferdinand and Fisher (1967), and Beale
(1996). The MC error bars are smaller than the symbols used, except near the bulk critical temperature Tc(∞). Each
data point represents an average using 105 Monte Carlo sweeps, except at the bulk critical point where 106 Monte
Carlo sweeps were used to mitigate critical slowing down.

16.3 Molecular dynamics
The purpose of a molecular dynamics simulation is to integrate Newton’s equations of
motion for the set of particles in the given system. One advantage of MD over MC is that
it approximates the time evolution of the equations of motion of the system, so MD can
be used to study a host of dynamical properties. MD is usually more efficient at simulat-
ing systems with long-range interactions since all the particles are updated together. MD
is sometimes easier to implement than MC for complex systems since appropriate MC
moves are sometimes difficult to derive. There are MD variants that allow simulations of
other ensembles, but the simplest case simulates a microcanonical ensemble in which the
microstate of the given system explores its energy surface in the phase space; see Allen and
Tildesley (1990) and Frenkel and Smit (2002) for details.

The equations of motion here are

d2ri

dt2
=

1
mi

F i =−
1

mi
∇iU (r1, r2, .., rN ) , (1)

where F i is the force on particle i arising from the N-particle potential energy function
U . The MD simulation moves the system forward in time by discrete steps 1t. The most
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commonly used integration method in this context is due to Verlet (1967):

ri(t+1t)= 2ri(t)− ri(t−1t)+
(1t)2

mi
F i(t). (2)

This is equivalent to the leap-frog and velocity Verlet algorithms that update both positions
and velocities of the particles; see Frenkel and Smit (2002). The Verlet method preserves the
time-reversal symmetry of the Hamiltonian equations of motion and has an error per step
of order (1t)4, while only requiring a single determination of the force on each particle,
which is usually the most computationally time-consuming part of the simulation. Most
importantly, the Verlet algorithm is symplectic, so the integration is equivalent to an exact
solution of a “nearby” ghost Hamiltonian, which results in good long-term stability and
good conservation of energy properties.

A simulation starts the system in some initial microstate with defined positions and
velocities of all the particles, and the integration algorithm steps the positions and veloc-
ities of the particles forward in time. The simplest forms of the approximations employed
for the velocities and the energy are

vi(t)=
ri(t+1t)− ri(t−1t)

21t
, (3a)

E =
N∑

i=1

mi

2

(
ri(t+1t)− ri(t−1t)

21t

)2

+U[r1(t), r2(t), .., rN (t)]. (3b)

The time-step1t is chosen to be small as compared to the shortest fundamental time scale
in the Hamiltonian, while not so small as to limit the efficiency of the program. The numer-
ical integration approximates a member of the microcanonical ensemble moving along
the constant-energy hypersurface in the phase space. Calculating equilibrium averages
properly depends on the Hamiltonian being ergodic;6 this allows the system to sample
all regions of the constant-energy hypersurface, so the MD time-averages are equivalent
to averages over the microcanonical ensemble. If the total energy drifts more than some
predetermined amount during the course of the simulation, then all the velocities can
be rescaled to shift the total energy back to its initial value. Alternatively, one can use a
thermostat to maintain the temperature at a desired value; see Frenkel and Smit (2002).

6Since an MD simulation creates a time evolution of the model system, one needs some assurance that the sys-
tem is ergodic, that is, the time averages and the ensemble averages are the same. For example, a system of harmonic
oscillators is not ergodic. A system of N particles in d dimensions has a 6N-dimensional phase space, so the constant-
energy hypersurface has 6N − 1 dimensions. The normal mode solution for N coupled oscillators has 3N constants of
the motion, so the system explores only a 3N-dimensional hypersurface. Even making the couplings between particles
anharmonic does not eliminate the problem as first shown by Fermi, Pasta, and Ulam (1955) and explored theoretically
by Kolmogorov (1954), Arnold (1963), and Moser (1962). MD simulations of equilibrium systems presume that the sys-
tem is ergodic. There are only a few systems that are provably ergodic but, fortunately, most systems with realistic pair
potentials appear to behave ergodically in two or more dimensions. In view of this, MD simulations of one-dimensional
systems should be treated as suspect from this perspective.
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A commonly used pair interaction for monatomic fluids such as neon and argon is the
Lennard-Jones interaction

u(r)= 4ε

((
D
r

)12

−

(
D
r

)6
)

, (4)

where D is the molecular diameter and ε is the depth of the attractive well. The Lennard-
Jones potential is attractive at long distances, and decays as 1/r6 to model the van der
Waals attraction; at short distances, it diverges as 1/r12 to model the Pauli repulsion
that prevents overlap of the electronic wavefunctions. Simulations are best carried out
using dimensionless parameters. In the case of a fluid with Lennard-Jones interactions,
all lengths can be measured in units of D, all energies (including kT) in units of ε, all forces
in units of ε/D, all pressures in units of ε/D3, all times in units of

√
mD2/ε, and so on. Simu-

lations then need to be conducted only for single values of reduced temperature kT/ε, the
reduced density nD3, and so on, while measuring observables in reduced units. Compar-
isons between simulations and experimental results can then be made using experimental
values of D, m, and ε.7 In dimensionless units, the Lennard-Jones force between a pair of
particles is

F =±
r
r2

(
48

r12
−

24

r6

)
. (5)

Newton’s third law of motion can be used to reduce the number of force calculations by
a factor of two. The Lennard-Jones model was first studied in an MC simulation by Wood
and Parker (1957) and in an MD simulation by Rahman (1964) and Verlet (1967).

16.3.A Molecular dynamics algorithm

First, start the system by choosing an initial state by setting the initial positions and veloc-
ities of all the particles. The initial velocities are usually set by choosing each component
of the velocity vector of each particle from the Maxwell distribution. In reduced units,
this is

PMaxwell(vx(0))=
1

√
2πT

exp

(
−

v2
x(0)
2T

)
; (6)

7For example, the Lennard-Jones parameters appropriate for argon are ε/k = 119.8K and D= 0.3405nm (Levelt, 1960;
Rowley, Nicholson, and Parsonage, 1975). Interaction potentials are almost always cut off at a finite distance between
molecules to reduce the number of interactions that need to be considered at each time step. For the Lennard-Jones
interaction, this is most commonly done at rmax = 2.5D. If the potential is set to zero for distances greater than rmax,
then this would leave a small discontinuity in the potential. To eliminate this, the potential is often shifted upward by
−u(2.5D)' 0.0163ε, so that the potential is zero at rmax. This allows a direct comparison between MC and MD simula-
tions. If the shift is not made in the potential, one could not directly compare the results from MC and MD simulations
because the discontinuity in the potential would result in a delta-function force that affects the motion in the MD sim-
ulation but not the configurations in the MC simulation. Comparisons of MC and MD results with experiments need to
include perturbations from the shift and the missing tails of the pair potentials.
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see Appendix I to see how to use a uniform pseudorandom number generator to select
from a Gaussian distribution. The initial velocities can then be used to set the positions of
the particles after the first time-step, namely

ri(1t)= ri(0)+ vi(0)1t+
1
2
(1t)2

mi
F i(0). (7)

1. Next, use equation (2) to move the system forward in time through Meq = τeq/1t time
steps. The equilibration time τeq must be chosen large enough for the system to
equilibrate; see the Monte Carlo discussion in Section 16.2. A thermostat is often used
to evolve the system to a state with the desired temperature; see Frenkel and Smit
(2002).

2. Now, use equation (2) to move the system forward in time through M = τavg/1t time
steps while keeping track of all the thermodynamic variables {A(qj)} one wants to
measure. Finally, use equation (16.1.2) to determine the equilibrium averages and
uncertainties.

To determine averages at a different set of parameters (temperature, density, etc.), change
the parameters by a small amount and repeat steps 1 and 2. Using the last configura-
tion of the previous run as the first configuration of the new run can often reduce the
equilibration time.

16.4 Particle simulations
Fluids can be modeled by both MC and MD simulations by placing N particles in a periodic
box with volume V interacting via a pair potential. Hansen and McDonald (1986), Allen
and Tildesley (1990), and Frenkel and Smit (2002) provide excellent surveys of this topic.
Calculating energy changes of trial moves in MC or forces in MD only involves pairs of
particles whose closest periodic copies are within the cutoff distance of each other. MC
simulations typically sample the canonical ensemble,8 so they control the temperature
and density, and measure the energy, pressure, and so on. MD simulations typically sample
the microcanonical ensemble,9 so they control the energy and density, and they measure
the temperature, pressure, and so on. The equipartition theorem gives for the temperature

8Monte Carlo simulations of isobaric or grand canonical ensembles are also widely used by adding PV or µN terms
to the Hamiltonian (Frenkel and Smit, 2002).

9Molecular dynamics simulations of other ensembles are possible. For example, one can include extra dynamical
variables that allow the total energy or volume to fluctuate in order to approximate a canonical or isobaric ensemble;
see Frenkel and Smit (2002). Variants of MC and MD simulations that span the range between the two include hybrid
Monte Carlo methods that mix MC and MD methods into one code to take advantage of the strengths of both methods.
Alternatively, one can include Langevin random force terms and damping in an MD simulation to create coupling to a
heat bath.
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T in a d-dimensional system

kT =
1

Nd

〈 N∑
i=1

miv
2
i

〉
. (1)

The virial equation of state in equations (3.7.15) and (10.7.11) can be used to determine
the pressure P in either type of simulation:

P
nkT

= 1+
1

NdkT

〈∑
i<j

F(rij) · rij

〉
= 1−

n
2dkT

∫
du
dr

rg(r)dr. (2)

As discussed in Section 10.7, the pair correlation function of a fluid can be used to measure
a variety of thermodynamic properties including the pressure, the isothermal compress-
ibility κT , and the scattering structure factor S(k); see equations (10.7.18) through (10.7.21).
The pair correlation function g(r) defined in equation (10.7.5) can be determined by col-
lecting a histogram of the distances between all pairs of particles periodically during the
simulation, accounting for the periodic boundary conditions, and scaling the histogram
by an amount proportional to the volume of shells of radius r and thickness 1r. In three
dimensions, the pair correlation function is given by

g(r)=
2V

N2
(

4π
3

)[
(r+1r)3− r3

]
〈 N∑

i<j

11r(rij − r)

〉
, (3)

where the step function11r(ξ) is unity for 0< ξ <1r and zero otherwise. This expression
is the ratio of the number of events in each bin in the histogram compared to the average
number that would be expected for an ideal gas with the same density.

16.4.A Simulations of hard spheres

The system of hard spheres has been studied extensively in both MC and MD simulations,
and was the first model studied using either method (Metropolis et al., 1953; Adler and
Wainwright, 1957, 1959). The pair potential for hard spheres is

u(r)=

{
0 for r >D,

∞ for r ≤D.
(4)

Temperature is an irrelevant parameter for the spatial configurations sampled by this
model since the pair potential does not have a finite energy scale. A full exploration of
the phase diagram involves only varying the reduced number density nDd. All thermody-
namic properties are either independent of temperature, or scale with temperature in a
trivial way. For example, the scaled pressure for a system of hard spheres P/nkT is a func-
tion only of the reduced number density nDd. The hard sphere density is often expressed in
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terms of the packing fraction η, the fraction of the volume of the system actually occupied
by the spheres. In three dimensions, the volume fraction is given by η = πnD3/6. Since the
pair potential is singular, the pressure cannot be calculated using the virial equation (2) but
the pressure can be determined using the virial equation of state for hard spheres, namely
(10.7.12).

An MC code for hard spheres is relatively simple since the energy change in a trial move
is either zero or infinity. A trial displacement of a particle is rejected if the trial position of
the particle is within a distance D of any other particle, and is accepted otherwise. This was
the first statistical physics model ever studied in a computer simulation (Metropolis et al.,
1953).

Implementing MD for hard spheres requires a different approach from the standard
MD. Finite-difference integration methods will not work here since the potential is not
differentiable. Instead, one can exploit the exact solution to the equations of motion. Each
particle travels in a straight line at a constant velocity except at the instants when pairs
of particles collide, that is when they are a distance D apart. Due to the singular nature of
the potential, the collisions can be uniquely time-ordered. Each collision conserves both
kinetic energy and momentum, so the velocities after each collision can be determined
analytically from the velocities and the displacement vector between the centers of the two
particles at the moment of the collision. The changes in the velocities of the two colliding
particles are

1vi =− 1vj =
−
(
rij · vij

)
rij

D2

∣∣∣∣∣
|rij |=D

, (5)

where ri j and vi j are, respectively, the relative positions and relative velocities of the two
particles. The simulation moves the particles forward in time from collision to collision
and changes the velocities of the pairs of particles involved in the collisions, as given by
equation (5). This was the first implementation of the MD method in statistical physics
(Alder and Wainwright 1957, 1959).

The pair correlation function and the structure factor in the fluid phase are shown in
Figure 16.2 and the phase diagram for hard spheres in Figure 16.3. At low densities, the
equilibrium phase is a short-range ordered fluid. At high densities, the equilibrium phase
of the model is a long-range ordered, face-centered cubic solid. It is worthwhile to note
that an attractive interaction is not required for a model to have a crystalline phase. An
attractive interaction is, however, required for the formation of a liquid–vapor coexistence
line and a critical point. For this reason, the low-density phase of the hard sphere model is
often referred to as a fluid phase rather than a liquid phase since the model does not have
a liquid–vapor coexistence line. The liquid and solid volume fractions at the liquid–solid
coexistence line are ηl ' 0.491± 0.002 and ηs ' 0.543± 0.002, respectively. The liquid–solid
coexistence pressure is given by P∗ls = PlsD3/kT ' 11.55± 0.11; see Speedy (1997). In the
low-density fluid phase for η < ηl, the reduced pressure is accurately modeled by the
Carnahan–Starling equation of state (10.3.25)

P
nkT

=
1+ η+ η2

− η3

(1− η)3
, (6)
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FIGURE 16.2 (a) The pair correlation function g(r) and (b) the static structure factor S(k) for a three-dimensional
system of hard spheres at volume fraction η = 0.49 from a Monte Carlo simulation of 2916 particles (M. Glaser,
unpublished). This value of the volume fraction is in the liquid phase close to the solid–liquid coexistence line. The
solid lines depict the pair correlation function and the static structure factor from the Percus–Yevick approximation;
see Percus and Yevick (1958), Wertheim (1963), and Hansen and McDonald (1986).
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FIGURE 16.3 Sketch of the equilibrium phase diagram for hard spheres in three dimensions. The horizontal axis is
the volume fraction η = πnD3/6 and the vertical axis is the scaled pressure P∗ = PD3/kT . There are two equilibrium
phases: a low-density fluid phase for 0< η < ηl and a high-density solid phase for ηs < η < ηcp.

although there are other good parametizations as well. In the solid phase the pressure is
approximately given by

P
nkT

=
3

1− η∗
− 0.5921

η∗− 0.7072
η∗− 0.601

, (7)

where η∗(= η/ηcp) is the ratio of the actual packing fraction to the maximum close-packed
value ηcp, namely π

√
2/6' 0.7405 (Speedy, 1997; Frenkel and Smit, 2002). The pressure

in the solid phase diverges as the density approaches the close-packed density. The model
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also exhibits a metastable disordered phase for densities between ηl and the random close-
packed volume fraction ηrcp ' 0.644± 0.005; see Rintoul and Torquato (1996). For a survey
of hard sphere results, see Mulero et al. (2008).

16.5 Computer simulation caveats
Computer simulations are widely used in statistical physics and have played an important
role in our understanding of many physical systems. Simulations complement theory and
experiment and provide many advantages for the study of systems that are not amenable
to exact or approximate theoretical analysis. However, it is important to understand the
inherent limitation of this technique.

. Computer simulations necessarily involve a limited number of degrees of freedom,
typically hundreds to thousands of particles or spins. This is not nearly large enough
to display many of the behaviors that occur in thermodynamically large systems. For
example, a model of a dense system of 1,000 particles in a three-dimensional cubic
box will only have about 10 particles along each linear dimension of the box, so
correlations beyond about five particle diameters are affected by the periodic
boundary conditions. Extraction of accurate thermodynamic behavior from such a
study will often involve an analysis of the finite-size scaling behavior of the model for a
sequence of systems with different sizes.. Computer simulations necessarily involve a limited time-scale of simulation. Typical
molecular time scales are of the order of t0 ≈ a/v, where a a microscopic length scale
and v a molecular velocity. For atomic scales near room temperature, a≈ 0.1nm and
v ≈ 100 m/s, which gives t0 ≈ 10−12 s. In an MD simulation, each time step moves the
system forward in time by an amount1t, which must be much less than t0 in order
to aptly integrate the equations of motion, say1t ≈ 10−14 s. A simulation that moves
the system forward through 106 time steps will sample a physical time of only 10ns,
which may not be sufficient to reach many important time-scales of interest in the
problem. This is especially problematic when the system has inherently slow time-
scales, such as the critical slowing down near second-order phase transitions and the
hysteresis near first-order phase transitions. Monte Carlo simulations are similarly
hampered in that the simulation must run long enough for the model to explore a
sufficiently large region of the phase space to capture the equilibrium behavior. In
favorable cases, this and the previous issue can be mitigated by special simulation
methods such as coarse graining, cluster update methods, parallel tempering,
multicanonical Monte Carlo methods, Monte Carlo renormalization group, and so
on; see footnote 5.. Interactions between particles are usually highly simplified for computational
efficiency and the interaction range is usually cut off. Long-range interactions
(Couloub, dipole, van der Waals, etc.) need to be resummed or treated via perturbation
theory to try to account for their effects.



Problems 651

. MC and MD simulations do not directly measure the number of microstates available
to the system, so one cannot directly calculate the entropy or the free energy in the
same way as other observables. If, for example, a determination of the free energy is
necessary to locate a phase transition, then it can be determined by a thermodynamic
integration to a state with a theoretically known free energy; see Frenkel and Smit
(2002).. MD simulations depend on the ergodicity of the Hamiltonian, so one-dimensional
models, models that are weakly perturbed from mechanical equilibrium, and other
nearly integrable models may get trapped in low-dimensional orbits that do not fully
explore the constant-energy hypersurface of the Hamiltonian; see footnote 6.. All pseudorandom number generators produce some level of correlation in their
sequences. Even subtle correlations in pseudorandom number sequences can
produce erroneous results in Monte Carlo simulations. Different classes of generators
have different weaknesses, so switching to a generator based on a different algorithm
will sometimes cure a problem caused by correlations produced by a particular
generator. Testing a generator before using it in a simulation is always a good idea;
see Appendix I.. It is extremely important to confirm the validity of MC and MD simulation codes.
This process is rather different from verifying a theoretical calculation. Some code
evaluation and verification procedures include: testing the code initially on small
systems with known properties, testing the code whenever possible against models
with exact solutions or models that have been widely studied in the literature,
examining results as a function of system size and run length, and retesting carefully
whenever new interactions or code modules are added. In this connection, Frenkel
and Smit (2002), Parker (2008), and Landau and Binder (2009) provide lists of good
strategies.

Problems
16.1. Write a code to test a uniform pseudorandom number generator. If you do not have a canned

generator available, write a generator based on L’Ecuyer’s recommended generator in Appendix I.
Apply the following tests: average 〈x〉 = 1/2, variance

〈
x2
〉
−〈x〉2 = 1/12, and the pair correlations

test
〈
xi+kxi

〉
= 1/4 for k 6= 0. Generate a histogram of pairs of numbers on a two-dimensional unit

square and test that the distribution is statistically uniform.
16.2. Write a code to test a Gaussian pseudorandom number generator. If you do not have a canned

generator available, write a generator based on the Box-Muller algorithm in Appendix I. Apply
the following tests: average 〈x〉 = 0, variance

〈
x2
〉
= 1, and the pair correlations test

〈
xi+kxi

〉
= 0 for

k 6= 0. Generate a histogram of pairs of numbers in two dimensions and test that the distribution
is statistically Gaussian.

16.3. Define a sequence of correlated random numbers

sk = αsk−1+ (1−α)rk,

where rk is a unit-variance, uncorrelated, Gaussian pseudorandom number while 0< α < 1
defines the range of the correlations. Show that this sequence is Gaussian distributed, with a zero
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mean. Determine the variance in terms of α and compare your result with equation (16.1.2b).
Write a code to determine the correlation function (16.1.3). Plot your measured correlation
function and compare it to the exact correlation function.

16.4. Write a Monte Carlo code for a system of N hard spheres of diameter D on a one-dimensional
ring of length L with periodic boundary conditions. Calculate the pair correlation function
and compare it to equations (13.1.6) and (13.1.7). The pressure of the system is given by
P/nkT = 1+nDg(D+); see equation (10.7.12). Compare your pressure to the one obtained for the
exact configurational partition function ZN = L(L−ND)N−1/N !; see equation (13.1.2).

16.5. Write a Monte Carlo code for a fluid of N hard spheres in a two-dimensional L×L square box with
periodic boundary conditions in each direction. Calculate the pair correlation function and
determine the scaled pressure using equation (10.7.12), namely P/nkT = 1+ 2ηg(D+). Compare
this pressure to the approximate form P/nkT = (1+ η/8)/(1− η)2.

16.6. Write a Monte Carlo code for a fluid of N hard spheres in a two-dimensional L×L square box and
include a one-body gravity term

∑N
i=1 mgyi in the algorithm, that is, accept otherwise legal

configurations with probability exp(−βmg1y). You will need to use hard-wall boundary
conditions on the top and bottom walls. Determine the average number density as a function of
the vertical position in the box.

16.7. Write a molecular dynamics code for N Lennard-Jones particles in a two-dimensional L×L
square box. Apply periodic boundary conditions in each direction. Determine the scaled pressure
using the virial equation (16.4.2). Calculate and plot the pair correlation function of the system.

16.8. Write a molecular dynamics code for N Lennard-Jones particles in a two-dimensional L×L
square box, and include a one-body gravity term in the energy:

∑N
i=1 mgyi. Apply periodic

boundary conditions in the x-direction but a repulsive WCA (Weeks, Chandler, and Andersen,
1971) potential on the top and bottom walls. The WCA potential is the repulsive part of a
Lennard-Jones potential for r/D< (2)1/6, with the potential shifted up by ε. Show that the average
kinetic energy per particle is independent of the height y in the box but the average scaled density
nD2 depends on the vertical position in the box.

16.9. Write an MC code to simulate the one-dimensional Ising model on a periodic lattice of length L.
Calculate the internal energy and specific heat of the model and compare them to
equations (13.2.15) and (13.2.16). Calculate the correlation function G(n)=

〈
si+nsi

〉
and it

compare to equation (13.2.32).
16.10. Write an MC code to simulate the two-dimensional nearest-neighbor Ising model on a periodic

L×L lattice in zero field. Calculate the internal energy and the specific heat of the system as
functions of temperature and compare them to the exact results in section 13.4.A. See exact
results for the two-dimensional Ising model for various lattice sizes at www.elsevierdirect.com.

16.11. Write an MC code to simulate the two-dimensional nearest-neighbor Ising model on a periodic
L×L lattice in zero field. Calculate the energy distribution P(E) over a range of temperatures
including the critical point. Use this distribution to calculate the internal energy and the specific
heat as functions of temperature. See exact results for the two-dimensional Ising model for
various lattice sizes at www.elsevierdirect.com.

16.12. Write an MC code to simulate the one-dimensional XY model. Calculate the internal energy, the
specific heat, the isothermal susceptibility, and the pair correlation function, and compare your
results to the analytical results for the n= 2 case in Section 13.2.

16.13. Write an MC code to simulate the two-dimensional XY model. Calculate the internal energy,
specific heat, isothermal susceptibility and the pair correlation function, and compare your
results to the theoretical results given in Section 13.7.



Appendices

A Influence of boundary conditions on
the distribution of quantum states

In this appendix we examine, under different boundary conditions, the asymptotic distribution of

single-particle states in a bounded continuum. For simplicity, we consider a cuboidal enclosure of

sides a, b, and c. The admissible solutions of the free-particle Schrödinger equation

∇
2ψ + k2ψ = 0

(
k = p~−1

)
, (1)

which satisfy Dirichlet boundary conditions (namely, ψ = 0 everywhere at the boundary), are then

given by

ψlmn(r)∝ sin
(

lπx
a

)
sin

(mπy
b

)
sin

(nπz
c

)
, (2)

with

k = π

(
l2

a2
+

m2

b2
+

n2

c2

)1/2

; l,m,n= 1,2,3, . . . . (3)

Note that in this case none of the quantum numbers l, m, or n can be zero, for that would make the

wavefunction identically vanish. If, on the other hand, we impose Neumann boundary conditions

(namely, ∂ψ/∂n= 0 everywhere at the boundary), the desired solutions turn out to be

ψlmn(r)∝ cos
(

lπx
a

)
cos

(mπy
b

)
cos

(nπz
c

)
, (4)

with

l,m,n= 0,1,2, . . . ; (5)

clearly, the value zero of the quantum numbers is now allowed! In each case, however, the negative-
integral values of the quantum numbers do not lead to any new wavefunctions.

The total number g(K ) of distinct wavefunctions ψ , with wave number k not exceeding a given

value K , may be written as

g(K )=
∑′

l,m,n
f (l,m,n), (6)

Traveling Wave Analysis of Partial Differential Equations
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where f (l,m,n)= 1 for the numbers (l,m,n) belonging to the set (3) or (5), as the case may be; the

summation
∑
′ in each case is restricted by the condition(

l2

a2
+

m2

b2
+

n2

c2

)
≤

K 2

π2
. (7)

We now define a sum

G(K )=
∑′

l,m,n
f ∗(l,m,n), (8)

where f ∗(l,m,n)= 1 for all integral values of l, m, and n (positive, negative, or zero), the restric-

tion on the numbers (l,m,n) being the same as stated in (7). One can then show, by setting up

correspondence of terms, that

∑′

l,m,n
f (l,m,n)=

1
8

[∑′

l,m,n
f ∗(l,m,n)∓

{∑′

l,m
f ∗(l,m,0)+

∑′

l,n
f ∗(l,0,n)+

∑′

m,n
f ∗(0,m,n)

}
+

{∑′

l
f ∗(l,0,0)+

∑′

m
f ∗(0,m,0)+

∑′

n
f ∗(0,0,n)

}
∓ 1

]
; (9)

the upper and the lower signs here correspond, respectively, to the Dirichlet and the Neumann
boundary conditions.

Clearly, the first sum on the right side of (9) denotes the number of lattice points in the ellipsoid1

(X 2/a2
+Y 2/b2

+Z2/c2)= K 2/π2, the next three sums denote the numbers of lattice points in the

ellipses, which are cross-sections of this ellipsoid with the Z-, Y - and X-planes, while the last three

sums denote the numbers of lattice points on the principal axes of the ellipsoid. Now, if a, b, and c

are sufficiently large in comparison with π/K , one may replace these numbers by the corresponding

volume, areas, and lengths, respectively, with the result

g(K )=
K 3

6π2
(abc)∓

K 2

8π
(ab+ ca+bc)+

K
4π
(a+b+ c)∓

1
8
+E(K ); (10)

the term E(K ) here denotes the net error committed in making the aforementioned replacements.
We thus find that the main term of our result is directly proportional to the volume of the enclosure
while the first correction term is proportional to its surface area (and, hence, represents a “surface
effect”); the next-order term(s) appear in the nature of an “edge effect” and a “corner effect.”

Now, a reference to the literature dealing with the determination of the “number of lattice points

in a given domain” reveals that the error term E(K ) in equation (10) is O(K α), where 1< α < 1.4;

hence, expression (10) for g(K ) is reliable only up to the surface term. In view of this, we may write

g(K )=
K 3

6π2
V ∓

K 2

16π
S+ a lower-order remainder; (11)

1By the term “in the ellipsoid” we mean “not external to the ellipsoid,” that is, the lattice points “on the ellipsoid” are
also included. Other such expressions in the sequel carry a similar meaning.
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in terms of ε∗, where

ε∗ =
8mL2

h2
ε =

4L2

h2
P2
=

L2

π2
K 2, (12)

equation (11) reduces to equations (1.4.15) and (1.4.16) of the text.

In the case of periodic boundary conditions, namely

ψ(x,y,z)= ψ(x+a,y,z)= ψ(x,y+b,z)= ψ(x,y,z+ c), (13)

the appropriate wavefunctions are

ψlmn(r)∝ exp{i(k · r)}, (14)

with

k = 2π
(

l
a

,
m
b

,
n
c

)
; l,m,n= 0,±1,±2, . . . . (15)

The number of free-particle states g(K ) is now given by

g(K )=
∑′

l,m,n
f ∗(l,m,n), (16)

such that

(l2/a2
+m2/b2

+n2/c2)≤ K 2/(4π2). (17)

This is precisely the number of lattice points in the ellipsoid with semiaxes Ka/2π , Kb/2π , and
Kc/2π , which, allowing for the approximation made in the earlier cases, is just equal to the volume
term in (11). Thus, in the case of periodic boundary conditions, we do not obtain a surface term in
the expression for the density of states.

For further information on this topic, see Fedosov (1963, 1964), Pathria (1966), Chaba and Pathria
(1973), and Baltes and Hilf (1976).

B Certain mathematical functions
In this appendix we outline the main properties of certain mathematical functions that are of special
importance to the subject matter of this text.

We start with the gamma function 0(ν), which is identical with the factorial function (ν− 1)! and

is defined by the integral

0(ν)≡ (ν− 1)!=

∞∫
0

e−xxν−1dx; ν > 0. (1)

First of all, we note that

0(1)≡ 0!= 1. (2)
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Next, integrating by parts, we obtain the recurrence formula

0(ν)=
1
ν
0(ν+ 1), (3)

from which it follows that

0(ν+ 1)= ν(ν− 1) · · ·(1+p)p0(p), 0< p≤ 1, (4)

p being the fractional part of ν. For integral values of ν (ν = n, say), we have the familiar

representation

0(n+ 1)≡ n!= n(n− 1) · · ·2 · 1; (5)

on the other hand, if ν is a half-odd integral (ν =m+ 1
2 , say), then

0
(

m+ 1
2

)
≡

(
m− 1

2

)
!=

(
m− 1

2

)(
m− 3

2

)
· · ·

3
2 ·
(

1
2

)
0
(

1
2

)
=
(2m− 1)(2m− 3) · · ·3 · 1

2m π1/2, (6)

where use has been made of equation (21), whereby

0
(

1
2

)
≡

(
−

1
2

)
!= π1/2. (7)

By repeated application of the recurrence formula (3), the definition of the function 0(ν) can be

extended to all ν, except for ν = 0,−1,−2, . . .where the singularities of the function lie. The behavior

of 0(ν) in the neighborhood of a singularity can be determined by setting ν =−n+ ε, where n=

0,1,2, . . . and |ε| � 1, and using formula (3) n+ 1 times; we get

0(−n+ ε)=
1

(−n+ ε)(−n+ 1+ ε) · · ·(−1+ ε)ε
0(1+ ε)

≈
(−1)n

n!ε
. (8)

Replacing x by αy2, equation (1) takes the form

0(ν)= 2αν
∞∫

0

e−αy2
y2ν−1dy, ν > 0. (9)

We thus obtain another closely related integral, namely

I2ν−1 ≡

∞∫
0

e−αy2
y2ν−1dy =

1
2αν

0(ν), ν > 0; (10)

by a change of notation, this can be written as

Iν ≡

∞∫
0

e−αy2
yνdy =

1

2α(ν+1)/2
0

(
ν+ 1

2

)
, ν >−1. (11)
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One can easily see that the foregoing integral satisfies the relationship

Iν+2 =−
∂

∂α
Iν . (12)

The integrals Iν appear so frequently in our study that we write down the values of some of them

explicitly:

I0 =
1
2

(π
α

)1/2
, I2 =

1
4

( π
α3

)1/2
, I4 =

3
8

( π
α5

)1/2
· · · , (13a)

while

I1 =
1

2α
, I3 =

1

2α2
, I5 =

1

α3
, · · · . (13b)

In connection with these integrals, it may as well be noted that

∞∫
−∞

e−αy2
yνdy = 0 if ν is an odd integer

= 2Iν if ν is an even integer. (14)

Next, we consider the product of two gamma functions, say 0(µ) and 0(ν). Using representa-

tion (9), with α = 1, we have

0(µ)0(ν)= 4

∞∫
0

∞∫
0

e−(x
2
+y2)x2µ−1y2ν−1dx dy, µ > 0,ν > 0. (15)

Changing over to the polar coordinates (r,θ), equation (15) becomes

0(µ)0(ν)= 4

∞∫
0

e−r2
r2(µ+ν)−1dr

π/2∫
0

cos2µ−1 θ sin2ν−1 θdθ = 20(µ+ ν)

π/2∫
0

cos2µ−1 θ sin2ν−1 θdθ . (16)

Now, defining the beta function B(µ,ν) by the integral

B(µ,ν)= 2

π/2∫
0

cos2µ−1 θ sin2ν−1 θdθ , µ > 0,ν > 0, (17)

we obtain an important relationship:

B(µ,ν)=
0(µ)0(ν)

0(µ+ ν)
= B(ν,µ). (18)

Substituting cos2 θ = η, equation (17) takes the standard form

B(µ,ν)=

1∫
0

ηµ−1(1− η)ν−1dη, µ > 0,ν > 0, (19)
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while the special case µ= ν = 1
2 gives

B
(

1
2 , 1

2

)
= 2

π/2∫
0

dθ = π . (20)

Coupled with equations (2) and (18), equation (20) yields

0
(

1
2

)
= π1/2. (21)

Stirling’s formula for ν!
We now derive an asymptotic expression for the factorial function

ν!=

∞∫
0

e−xxνdx (22)

for ν� 1. It is not difficult to see that, for ν� 1, the major contribution to this integral comes from

the region of x that lies around the point x = ν and has a width of order
√
ν. In view of this, we invoke

the substitution

x = ν+ (
√
ν)u, (23)

whereby equation (22) takes the form

ν!=
√
ν
(ν

e

)ν ∞∫
−
√
ν

e−(
√
ν)u
(

1+
u
√
ν

)ν
du. (24)

The integrand in (24) attains its maximum value, unity, at u= 0 and on both sides of the maximum

it falls rapidly to zero, which suggests that it may be approximated by a Gaussian. We, therefore,

expand the logarithm of the integrand around u= 0 and then reconstruct the integrand by taking

the exponential of the resulting expression; this gives

ν!=
√
ν
(ν

e

)ν ∞∫
−
√
ν

exp

{
−

u2

2
+

u3

3
√
ν
−

u4

4ν
+ ·· ·

}
du. (25)

If ν is sufficiently large, the integrand in (25) may be replaced by the single factor exp(−u2/2); more-

over, since the major contribution to this integral comes only from that range of u for which |u| is

of order unity, the lower limit of integration may be replaced by −∞. We thus obtain the Stirling

formula

ν!≈
√
(2πν)(ν/e)ν , ν� 1. (26)

A more detailed analysis leads to the Stirling series

ν!=
√
(2πν)

(ν
e

)ν [
1+

1
12ν
+

1

288ν2
−

139

51840ν3
−

571
2488320ν4 + ·· ·

]
. (27)
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Next, we consider the function ln(ν!). Corresponding to formula (27), we have, for large ν,

ln(ν!)=
(
ν+

1
2

)
ln ν− ν+

1
2

ln(2π)+
[

1
12ν
−

1

360ν3
+

1
1260ν5 −

1
1680ν7 + ·· ·

]
. (28)

For most practical purposes, we may write

ln(ν!)≈ (ν lnν− ν). (29)

We note that formula (29) can be obtained very simply by an application of the Euler–Maclaurin

formula. Since ν is large, we may consider its integral values only; then, by definition,

ln(n!)=
n∑

i=1

(ln i).

Replacing summation by integration, we obtain

ln(n!)'

n∫
1

(lnx)dx = (x lnx− x)

∣∣∣∣x=n

x=1

≈ (n lnn−n),

which is identical to (29).
We must, however, be warned that, whereas approximation (29) is fine as it is, it would be wrong

to take its exponential and write ν!≈ (ν/e)ν , for that would affect the evaluation of ν! by a factor
O(ν1/2), which can be considerably large; see (26). In the expression for ln(ν!), the corresponding
term is indeed negligible.

The Dirac δ-function
We start with the Gaussian distribution function

p(x,x0,σ)=
1

√
(2π)σ

e−(x−x0)
2/2σ2

, (30)

which satisfies the normalization condition

∞∫
−∞

p(x,x0,σ)dx = 1. (31)

The function p(x) is symmetric about the value x0 where it has a maximum; the height of this max-
imum is inversely proportional to the parameter σ while its width is directly proportional to σ ,
the total area under the curve being a constant. As σ becomes smaller and smaller, the function
p(x) becomes narrower and narrower in width and grows higher and higher at the central point x0,
condition (31) being satisfied at all σ ; see Figure B.1.

In the limit σ → 0, we obtain a function whose value at x = x0 is infinitely large while at x 6= x0

it is vanishingly small, the area under the curve being still equal to unity. This limiting form of the
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FIGURE B.1 Gaussian distribution function (30) for different values of σ .

function p(x,x0,σ) is, in fact, the δ-function of Dirac. Thus, we may define this function as the one

satisfying the following properties:

(i) δ(x− x0)= 0 for all x 6= x0, (32)

(ii)

∞∫
−∞

δ(x− x0)dx = 1. (33)

Conditions (32) and (33) inherently imply that, at x = x0, δ(x− x0)=∞ and that the range of integra-

tion in (33) need not extend all the way from −∞ to +∞; in fact, any range that includes the point

x = x0 would suffice. Thus, we may rewrite (33) as

B∫
A

δ(x− x0)dx = 1 if A< x0 < B. (34)

It follows that, for any well-behaved function f (x),

B∫
A

f (x)δ(x− x0)dx = f (x0) if A< x0 < B. (35)

Another limiting process frequently employed to represent the δ-function is the following:

δ(x− x0)= Lim
γ→0

γ

π{(x− x0)
2+ γ 2}

. (36)
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To see the appropriateness of this representation, we note that, for x 6= x0, this function vanishes like

γ while, for x = x0, it diverges like γ−1; moreover, for all γ ,

∞∫
−∞

γ

π{(x− x0)
2+ γ 2}

dx =
1
π

[
tan−1 (x− x0)

γ

]∞
−∞

= 1. (37)

An integral representation of the δ-function is

δ(x− x0)=
1

2π

∞∫
−∞

eik(x−x0)dk, (38)

which means that the δ-function is the “Fourier transform of a constant.” We note that, for x = x0,

the integrand in (38) is unity throughout, so the function diverges. On the other hand, for x 6= x0,

the oscillatory character of the integrand is such that it makes the integral vanish. And, finally, the

integration of this function, over a range of x that includes the point x = x0, gives

1
2π

∞∫
−∞

 x0+L∫
x0−L

eik(x−x0)dx

dk =

∞∫
−∞

eikL
− e−ikL

2π(ik)
dk =

∞∫
−∞

sin(kL)
πk

dk = 1, (39)

independently of the choice of L.

It is instructive to see how the integral representation of the δ-function is related to its previous

representations. For this, we introduce into the integrand of (38) a convergence factor exp(−γk2),

where γ is a small, positive number. The resulting function, in the limit γ → 0, should reproduce the

δ-function; we thus expect that

δ(x− x0)=
1

2π
Lim
γ→0

∞∫
−∞

eik(x−x0)−γk2
dk. (40)

The integral in (40) is easy to evaluate if we recall that

∞∫
−∞

cos(kx)e−γk2
dk = 2

∞∫
0

cos(kx)e−γk2
dk =

√(
π

γ

)
e−x2/4γ , (41)

while

∞∫
−∞

sin(kx)e−γk2
dk = 0. (42)

Accordingly, equation (40) becomes

δ(x− x0)= Lim
γ→0

1
√
(4πγ )

e−(x−x0)
2/4γ , (43)
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which is precisely the representation we started with.2

Finally, the notation of the δ-function can be readily extended to spaces with more than one

dimension. For instance, in n dimensions,

δ(r)= δ(x1) · · ·δ(xn), (44)

so that

(i) δ(r)= 0 for all r 6= 0, (45)

(ii)

∞∫
−∞

· · ·

∞∫
−∞

δ(r)dx1 · · ·dxn = 1. (46)

The integral representation of δ(r) is

δ(r)=
1

(2π)n

∞∫
−∞

· · ·

∞∫
−∞

ei(k·r)dnk. (47)

Once again, we may write

δ(r)=
1

(2π)n
Lim
γ→0

∞∫
−∞

· · ·

∞∫
−∞

ei(k·r)−γk2
dnk (48)

= Lim
γ→0

(
1

4πγ

)n/2

e−r2/4γ . (49)

C “Volume” and “surface area” of an
n-dimensional sphere of radius R

Consider an n-dimensional space in which the position of a point is denoted by the vector r, with

Cartesian components (x1, . . . ,xn). The “volume element” dVn in this space would be

dnr =
n∏

i=1

(dxi);

accordingly, the “volume” Vn of a sphere of radius R would be given by

Vn(R)=
∫
· · ·

∫
0≤

n∑
i=1

x2
i ≤R2

n∏
i=1

(dxi). (1)

2The reader may check that the introduction into (38) of a convergence factor exp(−γ |k|), rather than exp(−γk2),
leads to the representation (36).
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Obviously, Vn will be proportional to Rn, so let us write it as

Vn(R)= CnRn, (2)

where Cn is a constant that depends only on the dimensionality of the space. Clearly, the “volume

element” dVn can also be written as

dVn = Sn(R)dR= nCnRn−1dR, (3)

where Sn(R) denotes the “surface area” of the sphere.

To evaluate Cn, we make use of the formula

∞∫
−∞

exp(−x2)dx = π1/2. (4)

Multiplying n such integrals, one for each xi, we obtain

πn/2
=

xi=∞∫
· · ·

∫
xi=−∞

exp

(
−

n∑
i=1

x2
i

) n∏
i=1

(dxi)=

∞∫
0

exp(−R2)nCnRn−1dR= nCn ·
1
2
0
(n

2

)
=

(n
2

)
!Cn; (5)

here, use has been made of formula (B.11), with α = 1. Thus,

Cn = π
n/2
/(n

2

)
! , (6)

so that

Vn(R)=
πn/2

(n/2)!
Rn and Sn(R)=

2πn/2

0(n/2)
Rn−1, (7a,b)

which are the desired results.

Alternatively, one may prefer to use spherical polar coordinates right from the beginning — as,

for instance, in the evaluation of the Fourier transform

I(k)=
∫

f (r)eik·r dnr. (8)

In that case,

dnr = rn−1(sinθ1)
n−2
· · ·(sinθn−2)

1dr dθ1 · · ·dθn−2dφ, (9)

where the θi range from 0 to π while φ ranges from 0 to 2π . Choosing our polar axis to be in the

direction of k, equation (8) takes the form

I(k)=
∫

f (r)eikr cosθ1 rn−1(sinθ1)
n−2
· · ·(sinθn−2)

1dr dθ1 · · ·dθn−2dφ. (10)
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Integration over the angular coordinates θ1,θ2,θ3, . . . ,θn−2 and φ yields factors

π1/20

(
n− 1

2

)(
2

kr

)(n−2)/2

J(n−2)/2(kr) ×B
(

n− 2
2

,
1
2

)
·B
(

n− 3
2

,
1
2

)
· · ·B

(
1,

1
2

)
· 2π ,

where Jν(x) is the ordinary Bessel function while B(µ,ν) is the beta function; see equations (B.17) and

(B.18). Equation (10) now becomes

I(k)= (2π)n/2

∞∫
0

f (r)
(

1
kr

)(n−2)/2

J(n−2)/2(kr)rn−1dr, (11)

which is our main result.

In the limit k→ 0, Jν(kr)→
(

1
2 kr

)ν
/0(ν+ 1), so that

I(0)=
2πn/2

0(n/2)

∞∫
0

f (r)rn−1dr, (12)

consistent with (3) and (7b). On the other hand, if we take f (r) to be a constant, say 1/(2π)n, we

should obtain another representation of the Dirac δ-function in n dimensions; see equations (8) and

(B.47). We thus have, from (11),

δ(k)=
1

(2π)n/2

∞∫
0

(
1

kr

)(n−2)/2

J(n−2)/2(kr)rn−1dr. (13)

As a check, we introduce a factor exp(−αr2) in the integrand of (13) and obtain

δ(k)= Lim
α→0

1

(2π)n/2

∞∫
0

e−αr2
(

1
kr

)(n−2)/2

J(n−2)/2(kr)rn−1dr = Lim
α→0

(
1

4πα

)n/2

e−k2/4α , (14)

in complete agreement with (B.49). If, on the other hand, we use the factor exp(−αr) rather than

exp(−αr2), we get

δ(k)= Lim
α→0

0

(
n+ 1

2

)
α

{π(k2+α2)}(n+1)/2
, (15)

which generalizes (B.36).

D On Bose–Einstein functions
In the theory of Bose–Einstein systems we come across integrals of the type

Gν(z)=

∞∫
0

xν−1dx

z−1ex− 1
(0≤ z < 1,ν > 0;z = 1,ν > 1). (1)
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In this appendix we study the behavior of Gν(z) over the stated range3 of the parameter z. First of all,

we note that

Lim
z→0

Gν(z)=

∞∫
0

ze−xxν−1dx = z0(ν). (2)

Hence, it appears useful to introduce another function, gν(z), such that

gν(z)≡
1

0(ν)
Gν(z)=

1
0(ν)

∞∫
0

xν−1dx

z−1ex− 1
. (3)

For small z, the integrand in (3) may be expanded in powers of z, with the result

gν(z)=
1

0(ν)

∞∫
0

xν−1
∞∑

l=1

(ze−x)ldx =
∞∑

l=1

zl

lν
= z+

z2

2ν
+

z3

3ν
+ ·· · ; (4)

thus, for z� 1, the function gν(z), for all ν, behaves like z itself. Moreover, gν(z) is a monotonically

increasing function of z whose largest value in the physical range of interest obtains when z→ 1;

then, for ν > 1,gν(z) approaches the Riemann zeta function ζ(ν):

gν(1)=
∞∑

l=1

1
lν
= ζ(ν) (ν > 1). (5)

The numerical values of some of the ζ(ν) are

ζ(2)=
π2

6
' 1.64493, ζ(4)=

π4

90
' 1.08232, ζ(6)=

π6

945
' 1.01734,

ζ
(

3
2

)
' 2.61238, ζ

(
5
2

)
' 1.34149, ζ

(
7
2

)
' 1.12673,

and, finally,

ζ(3)' 1.20206, ζ(5)' 1.03693, ζ(7)' 1.00835.

For ν ≤ 1, the function gν(z) diverges as z→ 1. The case ν = 1 is rather simple, for the function

gν(z) now assumes a closed form:

g1(z)=

∞∫
0

dx

z−1ex− 1
= ln(1− ze−x)

∣∣∣∞
0
=− ln(1− z). (6)

As z→ 1, g1(z) diverges logarithmically. Setting z = e−α , we have

g1(e
−α)=− ln(1− e−α)−−−−−→

α→0
ln(1/α). (7)

3The behavior of Gν (z) for z > 1 has been discussed by Clunie (1954).
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For ν < 1, the behavior of gν(e−α), as α→ 0, can be determined as follows:

gν(e−α)=
1

0(ν)

∞∫
0

xν−1dx
eα+x− 1

≈
1

0(ν)

∞∫
0

xν−1dx
α+ x

.

Setting x = α tan2 θ and making use of equation (B.17), we obtain

gν(e−α)≈
0(1− ν)

α1−ν
(0< ν < 1). (8)

Expression (8) isolates the singularity of the function gν(e−α) at α = 0; the remainder of the function

can be expanded in powers of α, with the result (see Robinson, 1951)

gν(e−α)=
0(1− ν)

α1−ν
+

∞∑
i=0

(−1)i

i!
ζ(ν− i)αi, (9)

ζ(s) being the Riemann zeta function analytically continued to all s 6= 1.

A simple differentiation of gν(z) brings out the recurrence relation

z
∂

∂z
[gν(z)]≡

∂

∂(lnz)
gν(z)= gν−1(z). (10)

This relation follows readily from the series expansion (4) but can also be derived from the defining

integral (3). We thus have

z
∂

∂z
[gν(z)]=

z
0(ν)

∞∫
0

exxν−1dx

(ex− z)2
.

Integrating by parts, we get

z
∂

∂z

[
gν(z)

]
=

z
0(ν)

− xν−1

ex− z

∣∣∣∞
0
+ (ν− 1)

∞∫
0

xν−2dx
ex− z

 .

The integrated part vanishes at both limits (provided that ν > 1), while the part yet to be integrated
yields precisely gν−1(z). The validity of the recurrence relation (10) is thus established for all ν > 1.

Adopting (10) as a part of the definition of the function gν(z), the notion of this function may be

extended to all ν, including ν ≤ 0. Proceeding in this manner, Robinson showed that equation (9)

applied to all ν < 1 and to all nonintegral ν > 1. For ν =m, a positive integer, we have instead

gm(e−α)=
(−1)m−1

(m− 1)!

[m−1∑
i=1

1
i
− lnα

]
αm−1

+

∞∑
i=0

i 6=m−1

(−1)i

i!
ζ(m− i)αi. (11)

Equations (9) and (11) together provide a complete description of the function gν(e−α) for small α; it

may be checked that both these expressions conform to the recurrence relation

∂

∂α
gν(e−α)=−gν−1(e

−α). (12)
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For the special cases ν = 5
2 , 3

2 , and 1
2 we obtain from (9)

g5/2(α)= 2.36α3/2
+ 1.34− 2.61α− 0.730α2

+ 0.0347α3
+ ·· ·, (13a)

g3/2(α)=−3.54α1/2
+ 2.61+ 1.46α− 0.104α2

+ 0.00425α3
+ ·· ·, (13b)

g1/2(α)= 1.77α−1/2
− 1.46+ 0.208α− 0.0128α2

+ ·· · . (13c)

The terms quoted here are sufficient to yield a better than 1 percent accuracy for all α ≤ 1. The
numerical values of these functions have been tabulated by London (1954) over the range 0≤ α ≤ 2.

The values of several important integrals involving relativistic bosons in Chapters 7 and 9 are:

∞∫
0

x2 ln(1− e−x)dx =−2ζ(4)=−
π4

45
, (14a)

∞∫
0

x2

ex− 1
dx = 2ζ(3)' 2.40411, (14b)

∞∫
0

x3

ex− 1
dx = 6ζ(4)=

π4

15
. (14c)

E On Fermi–Dirac functions
In the theory of Fermi–Dirac systems we come across integrals of the type

Fν(z)=

∞∫
0

xν−1dx

z−1ex+ 1
(0≤ z <∞,ν > 0). (1)

In this appendix we study the behavior of Fν(z) over the entire range of the parameter z. For the same

reason as in the case of Bose–Einstein integrals, we introduce here another function, fν(z), such that

fν(z)≡
1

0(ν)
Fν(z)=

1
0(ν)

∞∫
0

xν−1dx

z−1ex+ 1
. (2)

For small z, the integrand in (2) may be expanded in powers of z, with the result

fν(z)=
1

0(ν)

∞∫
0

xν−1
∞∑

l=1

(−1)l−1(ze−x)ldx =
∞∑

l=1

(−1)l−1 zl

lν
= z−

z2

2ν
+

z3

3ν
− ·· · ; (3)

thus, for z� 1, the function fν(z), for all ν, behaves like z itself.

The functions fν(z) are related to the Bose–Einstein functions gν(z) as follows:

fν(z)= gν(z)− 21−νgν(z2) (0≤ z < 1, ν > 0; z = 1, ν > 1). (4)
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This is useful for determining the values of relativistic Fermi–Dirac integrals needed in Chapter 9:

∞∫
0

x2 ln(1+ e−x)dx =
7π4

360
, (5a)

∞∫
0

x2

ex+ 1
dx =

3ζ(3)
2
' 1.80309, (5b)

∞∫
0

x3

ex+ 1
dx =

7π4

120
. (5c)

The functions fν(z) and fν−1(z) are connected through the recurrence relation

z
∂

∂z
[ fν(z)]≡

∂

∂(lnz)
fν(z)= fν−1(z); (6)

this relation follows readily from the series expansion (3) but can also be derived from the defining
integral (2).

To study the behavior of Fermi–Dirac integrals for large z, we introduce the variable

ξ = lnz, (7)

so that

Fν(e ξ )≡ 0(ν)fν(e ξ )=

∞∫
0

xν−1dx
ex−ξ + 1

. (8)

For large ξ , the situation in (8) is primarily controlled by the factor (ex−ξ
+ 1)−1, whose departure

from its limiting values — namely, zero (as x→∞) and almost unity (as x→ 0) — is significant only

in the neighborhood of the point x = ξ ; see Figure E.1. The width of this “region of significance” is

O(1) and hence much smaller than the total, effective range of integration, which is O(ξ). Therefore,

in the lowest approximation, we may replace the actual curve of Figure E.1 by a step function, as

1.0

0.5

0
0 �24 �22 �12� �14

x

(e
x2

� 1
1)

2
1

FIGURE E.1
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shown by the dotted line. Equation (8) then reduces to

Fν(e ξ )≈

ξ∫
0

xν−1dx =
ξν

ν
(9)

and, accordingly,

fν(e ξ )≈
ξν

0(ν+ 1)
. (10)

For a better approximation, we rewrite (8) as

Fν(e ξ )=

ξ∫
0

xν−1
[

1−
1

eξ−x+ 1

]
dx+

∞∫
ξ

xν−1 1
ex−ξ + 1

dx (11)

and substitute in the respective integrals

x = ξ − η1 and x = ξ + η2, (12)

with the result

Fν(e ξ )=
ξν

ν
−

ξ∫
0

(ξ − η1)
ν−1dη1

eη1 + 1
+

∞∫
0

(ξ + η2)
ν−1dη2

eη2 + 1
. (13)

Since ξ � 1 while our integrands are significant only for η of order unity, the upper limit in the first

integral may be replaced by∞. Moreover, one may use the same variable η in both the integrals, with

the result

Fν(e ξ )≈
ξν

ν
+

∞∫
0

(ξ + η)ν−1
− (ξ − η)ν−1

eη + 1
dη (14)

=
ξν

ν
+ 2

∑
j=1,3,5,...

(
ν− 1

j

)ξν−1−j

∞∫
0

η j

eη + 1
dη

 ; (15)

in the last step the numerator in the integrand of (14) has been expanded in powers of η. Now,

1
0( j+ 1)

∞∫
0

η j

eη + 1
dη = 1−

1

2 j+1
+

1

3 j+1
− ·· · =

(
1−

1

2 j

)
ζ( j+ 1); (16)

see equations (2) and (3), with ν = j+ 1 and z = 1. Substituting (16) into (15), we obtain

fν(eξ )=
ξν

0(ν+ 1)

1+ 2ν
∑

j=1,3,5....

{
(ν− 1) · · ·(ν− j)

(
1−

1

2 j

)
ζ( j+ 1)

ξ j+1

}
=

ξν

0(ν+ 1)

[
1+ ν(ν− 1)

π2

6
1

ξ2
+ ν(ν− 1)(ν− 2)(ν− 3)

7π4

360
1
ξ4 + ·· ·

]
, (17)
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which is the desired asymptotic formula — commonly known as Sommerfeld’s lemma (see Sommer-
feld, 1928).4

By the same procedure, one can derive the following asymptotic result, which is clearly a

generalization of (17):

∞∫
0

φ(x)dx
ex−ξ + 1

=

ξ∫
0

φ(x)dx+
π2

6

(
dφ
dx

)
x=ξ
+

7π4

360

(
d3φ

dx3

)
x=ξ

+
31π6

15120

(
d5φ

dx5

)
x=ξ
+ ·· · , (18)

where φ(x) is any well-behaved function of x. It may be noted that the numerical coefficients in this
expansion approach the limiting value 2.

Blakemore (1962) has tabulated numerical values of the function fν(e ξ ) in the range −4≤ ξ ≤
+10; his tables cover all integral orders from 0 to +5 and all half-odd integral orders from − 1

2
to+ 9

2 .

F A rigorous analysis of the ideal Bose gas and
the onset of Bose–Einstein condensation

In this appendix we study the problem of the ideal Bose gas without arbitrarily extracting the conden-
sate term (ε = 0) from the original sum for N in equation (7.2.1) and approximating the remainder
by an integral ranging from ε = 0 to ε =∞. We will instead evaluate the original sum as it is with
the help of certain mathematical identities dating back to Poisson and Jacobi in the early nine-
teenth century. Luckily, these identities obviate the necessity of approximating sums by integrals
and yield results valid for arbitrary values of N (though, for all practical purposes, we may assume
that N � 1). For pertinent details of this procedure, see Pathria (1983) and the references quoted
therein.

We consider an ideal Bose gas consisting of particles of mass m confined to the cubic geometry

L×L×L and subject to periodic boundary conditions so that the single-particle energy eigenvalues

are given by

ε =
h2

2mL2

(
n2

1+n2
2+n2

3

)
, (ni = 0,±1,±2, . . .) . (1)

4A more careful analysis carried out by Rhodes (1950), and followed by Dingle (1956), shows that the passage from
equation (13) to (14) omits a term which, for large ξ , is of order e−ξ . This term turns out to be cos{(ν− 1)π} Fν (e−ξ )≡
cos{(ν− 1)π}Fν (1/z). For large z, this would be very nearly equal to cos{(ν− 1)π}/z and hence negligible in comparison
with any of the terms appearing in (17). Of course, for ν = 1

2 , 3
2 , 5

2 , . . ., which are the values occurring in most of the
important applications of Fermi–Dirac statistics, the missing term is identically zero.

For ν = 2, the inclusion of the missing term leads to the identity

f2(e ξ )+ f2(e−ξ )= 1
2 ξ

2
+

π2

6 ,

which is relevant to the contents of Section 8.3.B.
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The sum (7.1.2) then takes the form

N =
∑
ε

(
eα+βε − 1

)−1
=

∑
ε

∞∑
j=1

e−j(α+βε)

=

∞∑
j=1

e−jα

∑
n1

e−jwn2
1
∑
n2

e−jwn2
2
∑
n3

e−jwn2
3

, (2)

where α =−µ/kT , β = 1/kT , and

w =
βh2

2mL2
= π

(
λ

L

)2

, (3)

λ (= h/
√

2πmkT) being the mean thermal wavelength of the particles.

To evaluate the sums in (2), we make use of the Poisson summation formula (see Schwartz, 1966):

∞∑
n=−∞

f (n)=
∞∑

q=−∞

F(q); F(q)=

∞∫
−∞

f (x)e2π iqxdx. (4)

The function F(q) is, of course, the Fourier transform of the original function f (n). Choosing f (n)=

e−jwn2
, we obtain the remarkable identity

∞∑
n=−∞

e−jwn2
=

√
π

jw

∞∑
q=−∞

e−π
2q2/jw. (5)

It is instructive to note that the q= 0 term in (5) is precisely the result one would obtain if the

summation over n were replaced by integration, as is customarily done in the treatment of this

problem. Terms with q 6= 0, therefore, represent corrections that arise from the discreteness of the

single-particle states. Using equation (5) for each of the three summations in (2), we obtain

N =
∞∑

j=1

e−jα
3∏

i=1

√ π

jw

∑
qi

e−π
2q2

i /jw


=

( π
w

)3/2∑
q

∞∑
j=1

e−jα

j3/2
exp

[
−
π2

jw

(
q2

1+q2
2+q2

3

)]

=
L3

λ3

∞∑
j=1

e−jα

j3/2
+

∑
q

′ e−jα

j3/2
exp

(
−
π2

jw

(
q2

1+q2
2+q2

3

)) , (6)

where the primed summation in the second set of terms implies that the term with q = 0 has been
taken out of this sum.

The q = 0 term in (6) is precisely the bulk result for the total number of particles in the excited

states of the system, namely Vg3/2(e−α)/λ3. In the second set of terms, the summation over j may be
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carried out with the help of a straightforward generalization of identity (4), namely

b∑
n=a

f (n)=
1
2

f (a)+
1
2

f (b)+
∞∑

l=−∞

Fa,b(l); Fa,b(l)=

b∫
a

f (x)e2π ilxdx, (7)

where a and b are integers such that b> a. Applying (7) to the primed sum in (6), we obtain

∞∑
j=1

j−3/2e−jαe−γ (q)/j
=

∞∑
j=0

j−3/2e−jαe−γ (q)/j

=

√
π

γ (q)

∞∑
l=−∞

exp
[
−2
√
γ (q)

(
α+ 2π il

)1/2
]

, (8)

where

γ (q)=
π2q2

w
=
πL2q2

λ2
> 0.

We readily note that, whatever the value of α, terms with l 6= 0 are at most of order exp(−L/λ)which,

for L� λ, are altogether negligible. As a consequence, no errors of order (λ/L)n are committed if we

retain only the term with l = 0. We thus obtain

N ≈
L3

λ3

[
g3/2

(
e−α

)
+π1/2α1/2S

(
y
)]

, (9)

where

S(y)=
∑

q

′ e−2R(q)

R(q)
; R(q)= y

√
q2

1+q2
2+q2

3, (10)

while y is given by

y = π1/2α1/2 L
λ

. (11)

In view of equation (13.6.36), the parameter y is a measure of the lateral dimension L of the system
in terms of its correlation length ξ — to be precise, y = L/2ξ . We, therefore, expect that, as we lower
the temperature of the system and enter the region of phase transition, this parameter will go from
very large values to very small values over an infinitesimally small range of temperatures around the
transition point. We’ll examine this aspect of the problem a little later.

At this point, it is worthwhile to note that if the summation over q that appears in equation (10)

is replaced by integration, which is justifiable only in the limit y→ 0, we obtain from equation (9)

N ≈
L3

λ3

[
g3/2

(
e−α

)
+π1/2α1/2

(
π

y3

)]
=

L3

λ3
g3/2

(
e−α

)
+

1
α

, (12)
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in perfect agreement with the bulk result obtained in Section 7.1, with α� 1. To have an idea of the

“degree of error” committed in making this replacement, we must evaluate this sum more accurately.

For this, we make use of another mathematical identity, first established by Chaba and Pathria (1975),

namely

∑
q

′

[
y2

q2
(
y2+π2q2

) + π
q

e−2yq

]
= 2πy+

π2

y2
+C3, (13)

where

C3 = π lim
y→0

∑
q

′ e−2yq

q
−

∫
all q

e−2yq

q
dq

'−8.9136. (14)

It is important to note that the constant C3 is directly related to the Madelung constant of a simple

cubic lattice; see, for instance, Harris and Monkhorst (1970). Now, since the second part of the sum

appearing on the left side of (13) is directly proportional to S(y), we can rewrite (9) in the form

N ≈
L3

λ3
g3/2

(
e−α

)
+

L2

λ2

π

y2
+

L2

λ2

C3

π
+ 2y−

y2

π

∑
q

′ 1

q2
(
y2+π2q2

)
. (15)

We observe that the second term on the right side of (15) is equal to 1/α — which is precisely N0

when α� 1. The condensate, therefore, emerges naturally in our analysis and does not have to be
extracted prematurely, as is done in the customary treatment.

Now, in view of the fact that, for small α,

g3/2
(
e−α

)
≈ ζ

(
3
2

)
− 2π1/2α1/2, (16)

equation (15) is further simplified to

N ≈
L3

λ3
ζ (3/2)+N0+

L2

λ2

C3

π
−

y2

π

∑
q

′ 1

q2
(
y2+π2q2

)
 . (17)

Introducing the bulk critical temperature Tc(∞), as defined in equation (7.1.24),

Tc(∞)=
h2

2πmk

 N

L3ζ
(

3
2

)
2/3

= T
λ2

L2

 N

ζ
(

3
2

)
2/3

; (18)

we obtain from (17) the desired result, namely

N0 =N

[
1−

(
T

Tc(∞)

)3/2
]
+

L2

λ2

−C3

π
+

y2

π

∑
q

′ 1

q2
(
y2+π2q2

)
. (19)
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The first part of this expression is the standard bulk result for N0, while the second part represents
the “finite-size correction” to this quantity. More important, while the main term here is of order
N , the correction term is of order N2/3. In the thermodynamic limit, the correction term loses its
importance altogether and we are left with the conventional result following from the customary
treatment.

Finally, we study the variation of the scaling parameter y as a function of T ; this will also enable
us to examine the manner in which the correlation length ξ and the condensate fraction f (=N0/N)
build up as we move from temperatures above Tc(∞) to those below Tc(∞). For this, we introduce
a scaled temperature, defined by t = [T −Tc(∞)]/Tc(∞), and study the problem in three distinct
regimes:

(a) For t > 0, such that 1� t�N−1/3, we make use of the result for α, as stated in Problem 7.3.

Combining this result with equation (11), we get

y ≈
3
4

[
ζ

(
3
2

)]2/3

N1/3t, (20a)

ξ ≈
2
3

[
ζ

(
3
2

)]−2/3

`t−1, (20b)

f ≈
16π

9

[
ζ

(
3
2

)]−2

N−1t−2, (20c)

where ` (= L/N1/3) is the mean interatomic distance in the system.
(b) For |t| =O(N−1/3), the parameter y =O(1) and its value has to be determined numerically. At

t = 0, this value is determined by the equation S(y0)= 2; see equations (9) and (16). We thus
get: y0 ' 0.973. The correlation length ξ in this regime is O(L) and the condensate fraction is
O(N−1/3).

(c) For t < 0, such that 1� |t| �N−1/3, we get

y ≈

√
2π
3

[
ζ

(
3
2

)]−1/3

N−1/6
|t|−1/2, (21a)

ξ ≈

√
3

8π

[
ζ

(
3
2

)]1/3 L3/2

`1/2
|t|1/2 , (21b)

f ≈
3
2
|t|. (21c)

We thus see how, over an infinitesimally small range of temperatures O(N−1/3) around t = 0,
the parameter y descends from values O(N1/3) to values O(N−1/6) while the correlation length ξ

grows from values O(`) to values O(L3/2/`1/2), and the condensate fraction f grows from values
O(N−1) to values O(1). As N→∞, the transition region collapses onto a singular point t = 0 and
the phenomenon of Bose–Einstein condensation becomes a critical one.
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G On Watson functions
In this appendix we examine the asymptotic behavior of the functions

Wd(φ)=

∞∫
0

e−φx [e−xI0(x)
]d dx (1)

for 0≤ φ� 1. First of all, we note that if we set φ = 0 the resulting integral converges only if d > 2. To

see this, we observe that, with φ = 0, convergence problems may arise in the limit of large x where

the integrand

[
e−xI0(x)

]d
≈ (2πx)−d/2 (x� 1). (2)

Clearly, the integral will converge if d > 2; otherwise, it will diverge. We, therefore, conclude that

Wd(0)=

∞∫
0

[e−xI0(x)]
d dx (3)

exists for d > 2.

Next we look at the derivative

W ′d(φ)=−

∞∫
0

e−φx[e−xI0(x)]
dx dx. (4)

By the same argument as above, we conclude that

W ′d(0)=−

∞∫
0

[
e−xI0(x)

]d x dx (5)

exists for d > 4. The manner in which W ′d(φ) diverges for d < 4, as φ→ 0, can be seen as follows:

W ′d(φ)=−

∞∫
0

e−y
[

e−y/φI0(y/φ)
]d 1

φ2
y dy

≈−
1

(2π)d/2φ(4−d)/2

∞∫
0

e−yy(2−d)/2dy (φ� 1)

=−
0{(4−d)/2}

(2π)d/2φ(4−d)/2
. (6)
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Integrating (6) with respect to φ, and remembering the comments made earlier about Wd(0), we
obtain the desired results:

Wd(φ)≈


(2π)−d/20{(2−d)/2}φ−(2−d)/2

+ const. for d < 2 (7a)

(2π)−1ln(1/φ)+ const. for d = 2 (7b)

Wd(0)− (2π)
−d/2
|0{(2−d)/2}|φ(d−2)/2 for 2< d < 4. (7c)

For d > 4, we have a simpler result:

Wd(φ)≈Wd(0)− |W
′

d(0)|φ, (8)

for, in this case, both Wd(0) and W ′d(0) exist.

The borderline case d = 4 presents some problems that can be simplified by splitting the integral

in (4) into two parts:

∞∫
0

=

1∫
0

+

∞∫
1

. (9)

The first part is clearly finite; the divergence of the function W ′4(φ), as φ→ 0, arises from the second

part which, for φ� 1, can be written as

≈

∞∫
1

e−φx(2πx)−2x dx =
1

4π2
E1(φ), (10)

where E1(φ) is the exponential integral; see Abramowitz and Stegun (1964), Chapter 5. Since E1(φ)≈

− lnφ for φ� 1, we conclude that

W ′4(φ)≈
1

4π2
lnφ. (11)

Integrating (11) with respect to φ, we obtain

W4(φ)≈W4(0)−
1

4π2
φ ln(1/φ). (12)

Equations (7), (8), and (12) constitute the main results of this appendix.

For the record, we quote a couple of numbers:

W3(0)= 0.50546, W4(0)= 0.30987. (13)

H Thermodynamic relationships
The following four equations relating partial derivatives are sometimes known as the Four Famous

Formulae. They make it easy to derive thermodynamic relations in any one assembly or to convert
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relations from one assembly to another; by assembly we mean the set of thermodynamic parameters

on which a system depends. If the quantities x, y, z are mutually related, then(
∂x
∂y

)
z
= 1

/(
∂y
∂x

)
z

, (1a)(
∂

∂z

(
∂y
∂x

)
z

)
x
=

(
∂

∂x

(
∂y
∂z

)
x

)
z

, (1b)(
∂x
∂y

)
z

(
∂y
∂z

)
x

(
∂z
∂x

)
y
=−1, (1c)

(
∂x
∂y

)
w
=

(
∂x
∂y

)
z
+

(
∂x
∂z

)
y

(
∂z
∂y

)
w

. (1d)

Entropy S(N ,V ,U) and the microcanonical ensemble

The entropy describes a closed, isochoric, adiabatic assembly, so it is a function of internal energy,

volume, and number of molecules:

dS=
1
T

dU +
P
T

dV −
µ

T
dN , (2a)

1
T
=

(
∂S
∂U

)
V ,N

, (2b)

P
T
=

(
∂S
∂V

)
U ,N

, (2c)

µ

T
=−

(
∂S
∂N

)
U ,V

. (2d)

The Maxwell relations for the entropy are(
∂(1/T)
∂V

)
U ,N
=

(
∂(P/T)
∂U

)
V ,N

, (3a)

(
∂(1/T)
∂N

)
U ,V
=−

(
∂(µ/T)
∂U

)
V ,N

, (3b)

(
∂(P/T)
∂N

)
U ,V
=−

(
∂(µ/T)
∂V

)
U ,N

. (3c)

The entropy is determined from the number of microstates in the microcanonical ensemble

0(N ,V ,U ;1U)= Tr
(
11U (H −U)

)
, (4)

where H is the Hamiltonian of the system and 11U (x) is the step function that is unity in the

range 0 to1U and zero otherwise. The quantity 0(N ,V ,U ;1U) here denotes the number of discrete
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quantum states in the energy range between U and U +1U . The entropy is then given by

S(N ,V ,U)= k ln0(N ,V ,U ;1U). (5)

The bulk value of the entropy does not depend on the value chosen for1U .

Helmholtz free energy A(N ,V ,T)=U −TS
and the canonical ensemble

The Helmholtz free energy describes a closed, isochoric, isothermal assembly, so it is a function of

temperature, volume, and number of molecules:

dA=−SdT −PdV +µdN, (6a)

S=−
(
∂A
∂T

)
V ,N

, (6b)

P =−
(
∂A
∂V

)
T ,N

, (6c)

µ=

(
∂A
∂N

)
T ,V

. (6d)

The Maxwell relations for the Helmholtz free energy are

(
∂S
∂V

)
T ,N
=

(
∂P
∂T

)
V ,N

, (7a)

(
∂S
∂N

)
T ,V
=−

(
∂µ

∂T

)
V ,N

, (7b)

(
∂P
∂N

)
T ,V
=−

(
∂µ

∂V

)
T ,N

. (7c)

The Helmholtz free energy is determined from the canonical partition function

QN (V ,T)= Tr
(
exp(−βH)

)
=

∫
e−βU

{
1
1U

0(N ,V ,U ;1U)
}

dU . (8)

The Helmholtz free energy is given by

A(N ,V ,T)=−kT lnQN (V ,T). (9)
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Thermodynamic potential 5(µ,V ,T)=−A+µN = PV
and the grand canonical ensemble

The thermodynamic potential describes an open, isochoric, isothermal assembly, so it is a function

of temperature, volume, and chemical potential:

d5= SdT +PdV +Ndµ , (10a)

S=
(
∂5

∂T

)
V ,µ

, (10b)

P =
(
∂5

∂V

)
T ,µ

, (10c)

N =
(
∂5

∂µ

)
T ,V

. (10d)

The Maxwell relations for the thermodynamic potential are(
∂S
∂V

)
T ,µ
=

(
∂P
∂T

)
V ,µ

, (11a)

(
∂S
∂µ

)
T ,V
=

(
∂N
∂T

)
V ,µ

, (11b)

(
∂P
∂µ

)
T ,V
=

(
∂N
∂V

)
T ,µ

. (11c)

The thermodynamic potential is a function only of a single extensive quantity, V , so 5(µ,V ,T)=

P(µ,T)V , that is, the pressure is the thermodynamic potential per unit volume. Therefore, we can

write simpler thermodynamic relations in terms of pressure P, entropy density s= S/V , and number

density n= n/V :

dP = sdT +ndµ , (12a)

s=
(
∂P
∂T

)
µ

, (12b)

n=
(
∂P
∂µ

)
T

, (12c)

(
∂s
∂µ

)
T
=

(
∂n
∂T

)
µ

. (12d)

The thermodynamic potential and pressure are determined from the grand canonical partition

function

Q(µ,V ,T)= Tr
(
exp(−βH +βµN)

)
=

∞∑
N=0

eβµN QN (V ,T), (13)
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with the result

P(µ,T)=
5(µ,V ,T)

V
=

kT
V

lnQ(µ,V ,T). (14)

Gibbs free energy G(N ,P,T)= A+PV =U −TS+PV = µN
and the isobaric ensemble

The Gibbs free energy describes a closed, isobaric, isothermal assembly, so it is a function of

temperature, pressure, and number of molecules:

dG =−SdT +VdP+µdN , (15a)

S=−
(
∂G
∂T

)
P,N

, (15b)

V =
(
∂G
∂P

)
T ,N

, (15c)

µ=

(
∂G
∂N

)
T ,P

. (15d)

The Maxwell relations for the Gibbs free energy are(
∂S
∂P

)
T ,N
=−

(
∂V
∂T

)
P,N

, (16a)(
∂S
∂N

)
T ,P
=−

(
∂µ

∂T

)
P,N

, (16b)(
∂V
∂N

)
T ,P
=

(
∂µ

∂P

)
T ,N

. (16c)

The Gibbs free energy is a function only of a single extensive quantity, N , so G(N ,P,T)=Nµ(P,T),

that is, the chemical potential is the Gibbs free energy per particle. Therefore, we can write sim-

pler thermodynamic relations in terms of the pressure P, entropy per particle s= S/N , and specific

volume v = V /N :

dµ=−sdT + vdP, (17a)

s=−
(
∂µ

∂T

)
P

, (17b)

v =
(
∂µ

∂P

)
T

, (17c)(
∂s
∂P

)
T
=−

(
∂v
∂T

)
P

. (17d)

The Gibbs free energy and the chemical potential are determined from the isobaric partition

function

YN (P,T)= Tr
(
exp(−βH −βPV )

)
=

1

λ3

∞∫
0

e−βPV QN (V ,T)dV ; (18)
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the cube of the thermal deBroglie wavelength is employed here to make the partition function

dimensionless and is irrelevant in the classical thermodynamic limit. This leads us to the result

G(N ,P,T)=Nµ(P,T)=−kT lnYN (P,T). (19)

The isobaric ensemble is often used in computer simulations to avoid two-phase regions that are
present at first-order phase transitions.

Internal Energy U(N ,V ,S)

The internal energy describes a closed, isochoric, adiabatic assembly, so it is a function of entropy,

volume, and number of molecules:

dU = TdS−PdV +µdN , (20a)

T =
(
∂U
∂S

)
V ,N

, (20b)

P =−
(
∂U
∂V

)
S,N

, (20c)

µ=

(
∂U
∂N

)
S,V

. (20d)

Maxwell relations for the internal energy are

(
∂T
∂V

)
S,N
=−

(
∂P
∂S

)
V ,N

, (21a)

(
∂T
∂N

)
S,V
=

(
∂µ

∂S

)
V ,N

, (21b)

(
∂P
∂N

)
S,V
=−

(
∂µ

∂V

)
S,N

. (21c)

Enthalpy H(N ,P,S)=U +PV

The enthalpy describes a closed, isobaric, adiabatic assembly, so it is a function of entropy, pressure,

and number of molecules.

dH = TdS+VdP+µdN , (22a)

T =
(
∂H
∂S

)
P,N

, (22b)

V =
(
∂H
∂P

)
S,N

, (22c)

µ=

(
∂H
∂N

)
S,P

. (22d)
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The Maxwell relations for the enthalpy are

(
∂T
∂P

)
S,N
=

(
∂V
∂S

)
P,N

, (23a)(
∂T
∂N

)
S,P
=

(
∂µ

∂S

)
P,N

, (23b)(
∂V
∂N

)
S,P
=

(
∂µ

∂P

)
S,N

. (23c)

This assembly is often used by chemists to describe chemical reactions that take place rapidly in the
laboratory at fixed pressure where the speed of the reaction is too fast to allow a substantial heat
exchange with the environment.

Magnetic free energy F(T ,H)=U(S,M)−TS−HM

The magnetic free energy describes a system with a fixed number of magnetic dipoles, at tempera-

ture T and magnetic field H . The thermodynamic relations and Maxwell relations are

dF =−SdT −MdH , (24a)

S=−
(
∂F
∂T

)
H

, (24b)

M =−
(
∂F
∂H

)
T

, (24c)(
∂S
∂H

)
T
=

(
∂M
∂T

)
H

. (24d)

This assembly is defined by the fixed-field canonical ensemble where the canonical partition

function for spins {si}with dipole moment µ and exchange energies Jij is

QN (T ,H)= Tr
(
exp(−βH)

)
=

∑
{s}

exp

∑
(i,j)

Kijsi · sj +h
∑

i

sz,i

, (25)

where the coupling constants are Kij = Jij/kT and the field coupling is h= µH/kT . The magnetic free

energy is then given by

F(T ,H)=−kT lnQN (T ,H). (26)

Convexity and variances

The convexity of the entropy S that follows from the second law of thermodynamics requires that

all second derivatives of free energies have a unique sign. These derivatives are all proportional

to variances of different statistical quantities. A few important examples are the heat capacity, the
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isothermal compressibility, and the magnetic susceptibility:

CV = T
(
∂S
∂T

)
V ,N
=−

(
∂2A

∂T 2

)
V ,N

=

〈
H2〉
−〈H〉2

kT 2
≥ 0, (27)

κT =
1

n2

(
∂n
∂µ

)
T
=

1

n2

(
∂2P

∂µ2

)
T

=

(
1

nkT

) 〈
N2〉
−〈N〉2

〈N〉
≥ 0, (28)

χT =

(
∂M
∂H

)
T
=−

(
∂2F

∂H2

)
T

=

〈
M2〉
−〈M〉2

kT
≥ 0. (29)

I Pseudorandom numbers
The random numbers used in computer simulations are not truly random but rather
pseudorandom. They are intended to display as many of the characteristics of a random
sequence as possible but are generated using simple integer algorithms. “Anyone who
considers arithmetical methods of producing random digits is, of course, in a state of sin.
For, as has been pointed out several times, there is no such thing as a random number —
there are only methods to produce random numbers, and a strict arithmetic procedure
of course is not such a method” (von Neumann, 1951). von Neumann’s quip was not
intended to dissuade the use of pseudorandom numbers but rather to encourage users
to understand how such numbers are generated, their statistical properties and potential
weaknesses. Pseudorandom number generators are essential in computer simulations in
many fields but a generator should not blindly be trusted unless it has been thoroughly
tested. There is an extensive literature on theoretical methods for creating and empirically
testing pseudorandom number generators; see Knuth (1997), L’Ecuyer (1988, 1999), and
Press et al. (2007).

The most commonly used and tested classes of pseudorandom number generators are
based on integer arithmetic modulo large, usually prime, numbers. The simplest class
of generators is the prime modulus linear congruential method that generates pseudo-
random numbers in the range [1,2, . . . ,m− 1], where m is a prime number. Each new
number is based on the previous number according to the formula

rj = a rj−1mod m, (1)

where the multiplier a is a carefully chosen and empirically tested integer less than m.
If a is chosen properly, the generator will produce a sequence of integers that includes
every integer in the range [1,2, . . . ,m− 1] exactly once before the sequence begins to repeat
after m− 1 calls to the generator. Pseudorandom floating-point numbers in the open range
(0,1) are produced by a floating-point multiplication by m−1. This produces a uniformly
distributed set of floating-point numbers on a comb of m− 1 values between zero and one.
The floating-point numbers 0.0 and 1.0 will not appear in the sequence. Often, in imple-
mentations, the modulus chosen is less than 231 to allow for the integers to be represented
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by four-byte words. Generators of this form will repeat after about two billion calls. This
may be fine for some applications but is often inadequate for a scientific code. Even a
modest simulation can exhaust such a simple generator. However, linear congruential gen-
erators with different moduli and multipliers can be combined to give much longer periods
and less statistical correlation (L’Ecuyer, 1988). The following algorithm to generate a uni-
formly distributed pseudorandom floating-point number r using two linear congruential
generators gives a much longer sequence before repeating than does a single generator.

ALGORITHM
qj = a1 qj−1 mod m1

sj = a2 sj−1 mod m2

z = (qj− sj)

if z ≤ 0, then z = z+m1− 1

r = z m−1
1

The length of the period of the combined generator is equal to the product of the non-
common prime factors of m1− 1 and m2− 1. L’Ecuyer (1988) recommended the follow-
ing multiplers and moduli: m1 = 2147483563= 231

− 85, a1 = 40014, m2 = 2147483399=
231
− 249, and a2 = 40692. The two individual generators do well on the spectral test and

other tests of correlations (Knuth, 1997) and (m1− 1)/2 and (m2− 1)/2 are relatively prime,
so the period of the generator is 2.3× 1018. This can be implemented very easily in high-
level languages using IEEE double precision floating-point arithmetic since aimi < 253.
L’Ecuyer (1988) and Press et al. (2007) also showed how the generators can be imple-
mented using four-byte integer arithmetic. The exact order of the pseudorandom numbers
can also be shuffled to improve statistics (Bays and Durham, 1976).

There are several other classes of pseudorandom number algorithms and many good
generators available that have been extensively tested in the computing literature and are
in wide use in the scientific literature; for summaries, see Newman and Barkema (1999),
Gentle (2003), and Landau and Binder (2009). However, note that subtle correlations in a
pseudorandom sequence can produce very large deviations compared to exact results, so
care is warranted; see Ferrenberg, Landau, and Wong (1992), Beale (1996), and Figure I.1.
Different classes of generators have different correlation properties, so substituting a gen-
erator based on a different algorithm can sometimes be a useful strategy for testing a
computer code.

Gaussian distributed pseudorandom numbers

One often needs pseudorandom numbers that are drawn from a Gaussian distribu-
tion centered at the origin with unit variance: P(g)= exp

(
−g2/2

)
/
√

2π . The following
algorithm for generating Gaussian-distributed pseudorandom numbers from pairs of
uniformly distributed pseudorandom numbers is based on an algorithm by Box and Muller
(1958).
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FIGURE I.1 (a) The exact energy distribution for a 32×32 Ising lattice at the critical temperature (solid line) and the
distribution calculated from 107 configurations using the Wolff Monte Carlo algorithm with the R250 feedback
shift-register pseudorandom number generator (error bars).5 The distribution calculated using the Wolff algorithm
with Numerical Recipes ran2( ) (Press et al., 2007) is also shown, but is almost indistinguishable from the exact solid
curve on this scale. (b) Deviation of the Monte Carlo results from the exact distribution in units of the statistical
uncertainty of each point. The +′s indicate the ran2( ) results and the ×′s indicate the feedback shift-register
results. The χ2-value for the two cases yields χ2

= 190 for 210 nonzero points and χ2
= 2.8×104 for 217 nonzero

points, giving deviations of −0.95σ and 1300σ , respectively; see Section 13.4.A and Beale (1996).

ALGORITHM
To generate pairs of Gaussian pseudorandom numbers g1 and g2 from uniformly dis-
tributed pseudorandom numbers x and y.

REPEAT
x = 2rand()− 1.0
y = 2rand()− 1.0
s= x2

+ y2

UNTIL s< 1

w =
√
−2lns

s

g1 = x w
g2 = y w

5An example of a widely used and trusted pseudorandom number generator whose subtle correlations have been
shown to adversely affect the results of some MC simulations is the R250 feedback shift-register generator. R250 gener-
ates a pseudorandom positive four-byte integer 0≤ ri < 231 by taking an exclusive or of two previous random integers
kept in a 250 element table: ri = ri−103 ∧ rj−250. As with other generators, the floating-point numbers on [0,1] are pro-
duced by dividing the pseudorandom integer by 231. This particular feedback shift-register algorithm is very fast and
produces fairly uncorrelated random pairs

〈
rkrk−i

〉
= 1/4 for i 6= 0. Triplets are also uncorrelated

〈
rkrk−irk−j

〉
= 1/8, except

for one particular triplet correlation, 〈rkrk−103rk−250〉, which can be shown to give (6/7)(1/8) rather than the correct value
of 1/8; see Heuer, Dunweg, and Ferrenberg (1997). All higher order correlations that involve these same triplets are sim-
ilarly affected. This triplet correlation being off by 14% can greatly affect Monte Carlo results (Ferrenberg, Landau, and
Wong, 1992; Beale, 1996).
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Vollhardt, D., and Wölfle, P. (1990). The Superfluid Phases of Helium 3 (Taylor and Francis, London).

von Neumann, J. (1927). Gottinger Nachr. 1, 24, 273.

von Neumann, J. (1951). In Monte Carlo Method, eds. A. S. Householder, G. E. Forsythe, and H. H. Germond
(NBS-Appl. Math. Ser, U. S. Government Printing Office, Washington, DC).

Voronel, A. V. (1976). In Phase Transitions and Critical Phenomena, eds. C. Domb and M. S. Green
(Academic Press, London), Vol. 5b, pp. 343–394.

Walker, C. B. (1956). Phys. Rev. 103, 547.

Wallace, D. J. (1976). In Phase Transitions and Critical Phenomena, eds. C. Domb and M. S. Green
(Academic Press, London), Vol. 6, pp. 293–356.

Walton, A. J. (1969). Contemp. Phys. 10, 181.

Wang, F., and Landau, D. P. (2001). Phys. Rev. Lett. 86, 2050; Phys. Rev. E 64, 056101.

Wannier, G. H. (1945). Rev. Mod. Phys. 17, 50.

Wannier, G. H. (1966). Statistical Physics (John Wiley, New York).

Waterston, J. J. (1892). Philos. Trans. R. Soc. Lond. A 183, 5, 79; reprinted in his collected papers (1928),
ed. J. S. Haldane (Oliver & Boyd, Edinburgh), pp. 207, 318. An abstract of Waterston’s work did appear
earlier; see Proc. R. Soc. Lond. A 5, 604 (1846).

Watson, P. G. (1969). J. Phys. C 2, 1883, 2158.

Wax, N. (ed.). (1954). Selected Papers on Noise and Stochastic Processes (Dover Publications, New York).

Weeks, J. D., Chandler, D., and Andersen, H. C. (1971). Chem. Phys. 54, 5237.

Weinberg, S. (1993). The First Three Minutes, 2nd ed. (Basic, New York).

Weinberg, S. (2008). Cosmology (Oxford University Press, New York).

Weinstock, R. (1969). Am. J. Phys. 37, 1273.

Weller, W. (1963). Z. Naturforsch. 18A, 79.

Wergeland, H. (1969). Lettere al Nuovo Cim. 1, 49.

Wertheim, M. S. (1963). Phys. Rev. Lett. 10, 321.

Whitmore, S. C., and Zimmermann, W. (1965). Phys. Rev. Lett. 15, 389.

Widom, B. (1965). J. Chem. Phys. 43, 3892, 3898.

Wiebes, N.-H., and Kramers (1957). Physica 23, 625.

Wien, W. (1896). Ann. Phys. 58, 662.

Wiener, N. (1930). Act. Math. Stockholm 55, 117.

Wilczek, F. (1990). Fractional Statistics and Anyon Superconductivity (World Scientific, Singapore).

Wilks, J. (1961). The Third Law of Thermodynamics (Oxford University Press, Oxford).

Wilson, A. H. (1960). Thermodynamics and Statistical Mechanics (Cambridge University Press, Cam-
bridge, UK).

Wilson, K. G. (1971). Phys. Rev. B 4, 3174, 3184.

Wilson, K. G. (1972). Phys. Rev. Lett. 28, 548.

Wilson, K. G. (1975). Rev. Mod. Phys. 47, 773.

Wilson, K. G., and Fisher, M. E. (1972). Phys. Rev. Lett. 28, 240.

Wolff, U. (1989). Phys. Rev. Lett. 62, 361.

Wood, W. W., and Parker, F. R. (1957). J. Chem. Phys. 27, 720.



Bibliography 705

Woods, A. D. B. (1966). Quantum Fluids, ed. D. F. Brewer (North-Holland, Amsterdam), p. 239.

Wright, E. L. et al. (1994). Astrophys. J. 420, 450.

Wu, F. Y. (1982). Rev. Mod. Phys. 54, 235.

Wu, T. T. (1959). Phys. Rev. 115, 1390.

Wu, T. T., McCoy, B. M., Tracy, C. A., and Barouch, E. (1976). Phys. Rev. B 13, 316.

Yang, C. N. (1952). Phys. Rev. 85, 808.

Yang, C. N., and Lee, T. D. (1952). Phys. Rev. 87, 404; see also ibid., 410.

Yang, C. N., and Yang, C. P. (1964). Phys. Rev. Lett. 13, 303.

Yang, C. P. (1962). J. Math. Phys. 3, 797.

Yarnell, J. L. et al. (1959). Phys. Rev. 113, 1379, 1386.

Yarnell, J. L., Katz, M. J., Wenzel, R. G., and Koenig, S. H. (1973). Phys. Rev. A 7, 2130.

Yeomans, J. M. (1992). Statistical Mechanics of Phase Transitions (Clarendon Press, Oxford).

Young, A. P. (1979). Phys. Rev. B 19, 1855.

Zasada, C. S., and Pathria, R. K. (1976). Phys. Rev. A 14, 1269.

Zermelo, E. (1896). Ann. Phys. 57, 485; 59, 793.

Zernike, F. (1916). Proc. Akad. Sci. Amsterdam 18, 1520; reproduced in The Equilibrium Theory of Classical
Fluids, eds. A. L. Frisch and J. L. Lebowitz (W. A. Benjamin, New York, 1964).

Zwierlein, M. W., Stan, C. A., Schunck, C. H., Raupach, S. M. F., Gupta, S., Hadzibabic, Z. M., and Ketterle, W.
(2003). Phys. Rev. Lett. 91, 250401.



Index

A
Adiabatic, 285, 289

processes, 11, 16, 23, 190, 340
Adiabats

of blackbody radiation, 206
of a Bose gas, 190
of a Fermi gas, 190, 271

Adsorption, 112
Anharmonic oscillators, 87, 88
Antiferromagnetism, 401, 413
Anti-Stokes scattering, 625
Argon, 106–108, 338
Autocorrelation functions, 596, 610–611,

613–615, 617–618, 633–634

B
Bardeen, Cooper, and Schrieffer (BCS), 108,

392–394
Barometric formula, 175
Baryon number density, 279, 286
Baryon-to-photon ratio, 279, 280, 281, 283,

289, 291, 292, 294
BCS/BEC crossover, 393, 394
Beta decay, 286
Beta function, 657
Beta-equilibrium, 285, 289
Bethe approximation to the Ising lattice,

427–428, 431, 433–434, 437, 466–467,
476, 479, 490, 498–499

Beth–Uhlenbeck formalism, 320–325, 342
Big Bang, 275–280, 287, 290, 295
Binary alloys, 414, 420
Binary collision method, 331, 357, 364, 385,

397
Binding energy of a Thomas–Fermi atom,

264–269
Blackbody radiation, 65, 130, 151, 200–205,

277, 278, 279n4, 281, 290
Bloch’s T3/2-law, 465

Block-spin transformation, 540
Bogoliubov transformation, 363, 366, 526
Bohr–van Leeuwen theorem, 90, 245
Boltzmann factor, 53, 59–60, 121, 138, 342,

501–502, 625
Boltzmannian systems

classical, 9, 25, 54, 143–147, 150, 152,
299–314

quantum-mechanical, 331, 341
Bose condensation, 108
Bose gas, imperfect, 355–366
Bose liquids, energy spectrum of, 366–369
Bose-condensed fraction, 193, 194, 197
Bose-condensed peak, 196
Bose–Einstein condensation (BEC), 108, 181,

183–184, 188–189, 191–199, 223,
358–361

distribution function, 195
functions, 181, 664–667
with interactions, 355–358, 367, 395–396
statistics, 108, 132, 141–152, 165–167

Bose–Einstein systems, 133–138, 141–152,
179–229, 320–331

multidimensional, 519–526
nonuniform, 373–376

Boundary conditions, 653–655
Box–Muller algorithm, 651, 685
Bragg peak, 339
Bragg–Williams approximation to the Ising

lattice, 420–427, 433, 434, 466–467, 494,
497–499

Brillouin function, 75–76
Brillouin scattering, 625
Brillouin zone, 625
Broad histogram method, 507, 642n5
Broken symmetry, 423
Brownian motion, 583, 587–605, 607–608, 619

of harmonic oscillator, 601–603
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Brownian motion (continued)
observation of, 587, 591, 599
of a suspended mirror, 607–608

C
Canonical distribution, 49, 50, 88, 89
Canonical ensemble, 29, 39–83, 121–124, 133,

146, 334, 678, 679
Canonical partition function, 678, 679, 682
Canonical transformations, 37, 63
Carbon dioxide, 172
Carbon monoxide, 172
Carbon tetrachloride, 626
Carnahan–Starling equation of state, 314, 648
Catalyst, 168, 171, 172
Catalytic converter, 172
Cepheid variable stars, 275
Chandrasekhar limit, 264
Chemical equilibrium, 170–172
Chemical potential, 7, 51, 91–93, 109, 110, 158,

159, 161, 170, 171, 679–681
of a Bose gas, 357–358
of a classical gas, 19–20
of a Fermi gas, 237, 241–242, 252–253,

269–273
of a Fermi liquid, 389, 399
of a gas of phonons, 207
of a gas of photons, 207
see also Fugacity

Circulation, quantized, 370–376
Classical limit, 22, 70, 127, 136–137, 141, 181,

186, 333, 366, 623
Classical systems, 9–16, 25–29, 54–58

in the canonical ensemble, 54–58, 145
in the grand canonical ensemble, 137, 145
interacting, 61–65, 299–314
in the microcanonical ensemble, 145

Clausius–Clapeyron equation, 109–111
Cluster expansions

classical, 299–307
general, 315–319
quantum-mechanical, 325–331

Cluster functions, 328

Cluster integrals, 303–304, 307, 315–316,
324–325, 329–330

irreducible, 308, 317–318
Coexistence line, 106–107
Coexistence pressure, 109, 110
Combustion, 172
Complexions, see Microstates
Compressibility

adiabatic, 224, 270, 390, 468, 521, 586
equation of state, 336
isothermal, 104, 107, 224, 270, 335, 343, 390,

410, 435, 442, 452, 468, 472, 474,
521–522, 586, 647, 683

Computer simulation, 637–651
Condensation, 392–394, 402–407

in Fermi systems, 392–394
scaling hypothesis for, 468
of a van der Waals gas, 407–411
Yang–Lee theory of, 494
see also Bose–Einstein condensation

Conductivity
electrical, 247, 627
thermal, 247, 627

Configuration integral, 300, 301, 306, 308, 315,
324, 326, 328

Conformal transformation, 569
Continuous transition, 107
Convexity, 682–683
Cooper pair, 392, 393
Cooperative phenomena, see Phase transitions
Coordination number, 416–417, 489, 564
Correlation function

of an n-vector model, 484–486
of a Bose gas, 524–525, 534
of a fluid, 332–335, 370, 647, 649
of the Ising model, 481, 499–500, 533
in the mean-field approximation, 453–455,

461
in the scaled form, 457, 576
of the spherical model, 515–517, 535
of the XY model, 527

Correlation length, 333, 334
of an n-vector model, 485–487, 533
of a Bose gas, 525, 534
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of the Ising model, 481–482, 499–500, 531,
532

in fluids, 333–334
in the mean-field approximation, 454–455,

462
of the spherical model, 516–517, 535
of the XY model, 526–527

Correlations, 107, 331–340
spatial, 137–139, 332, 583
spin-spin, 451, 462, 480, 516–518
statistical, 151–152, 585, 594, 596
time, 639

Corresponding states, law of, 409
Cosmic Background Explorer (COBE), 277, 278
Cosmic microwave background (CMB),

277–279, 293, 295
Covariance matrix, 632
Critical behavior

of a Bose gas, 184–188, 522–524, 535–536
of a fluid, 467
of the Ising model, 429–433, 480–482,

497–500, 533, 559, 560–563
of a magnetic system, 443–444, 448–449,

454–456, 467
of the spherical model, 512–515, 535
of a van der Waals gas, 408–411, 463
of the XY model, 526–527

Critical curve, 562–563, 566
Critical dimension

lower, 570, 578
upper, 461, 528, 570, 578

Critical exponents
of an n-vector model, 486–487, 530
of a Bose gas, 522–526
experimental values of, 437
hyperscaling relation among, 459, 570
of the Ising model, 480, 482, 500, 530, 559,

560
mean-field values of, 455–456, 530, 557–558
of polymers, 529
scaling relations among, 457–459
of the spherical model, 512–513, 515–518,

535
theoretical values of, 529
thermodynamic inequalities for, 438–442

Critical opalescence, 104, 450, 583
Critical point, 106–108
Critical surface, 553, 555–556, 562
Critical temperature, 107, 108
Critical trajectories, 554
Critical velocity of superflow, 222–223, 376, 378
Crossover phenomena, 569
Crystalline solid, 331, 338–340
Curie temperature, 422, 430
Curie’s law, 73, 75, 89, 238–239, 246, 426
Curie–Weiss law, 425–426

D
Dark ages, cosmic, 279n4, 282, 295
Dark energy, 279, 281
Dark matter, 279, 295
Darwin–Fowler method, 44, 94
deBroglie wavelength, 107
Debye function, 209–210
Debye temperature, 210–211, 249
Debye’s theory of specific heats, 210–211
Debye–Waller factor, 339
Decimation transformation, 541, 552, 579–580
Degeneracy criterion, 137, 156, 179

see also Classical limit
Delta function, 69, 139
Density fluctuations, 104–105, 342, 586–587

in the critical region, 586
Density function in phase space, 25–29
Density matrix, 115–121, 123–124, 621–622

of an electron, 122–123
of a free particle, 123–125
of a linear harmonic oscillator, 125–127
of a system of free particles, 133–138
of a system of interacting particles, 325–328

Density of states, 53, 57–58, 192, 234, 258
for a free particle, 33, 272, 653–655
for a system of harmonic oscillators, 68–69

Detailed balance, 118, 640, 642
Deuterium, 290, 292
Diamagnetism, Landau, 239, 243–247
Diatomic molecules, 88, 111, 158–168
Dietrici equation of state, 463
Diffusion

Brownian motion in terms of, 591–592
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Diffusion (continued)
coefficient, 591–592, 595, 618, 627
equation, 592, 606

Dimensionless parameters, 645
Dipole-dipole interaction, 89
Dirac delta function, 69, 139
Dispersion, 602
Dissipation, 602, 603
Dissipative phenomena, 583, 594, 617, 619
Doppler broadening, 174
Doppler red shift, 275
Duality transformation, 492–494
Dulong–Petit law, 207
Dynamical structure factor, 624–626

E
ε-expansion, 563–567
Early universe, 275–295
Edge effects, 654
Effective mass, 222, 246, 248, 388
Effusion, 155

of electrons from metals, 247–257
of photons from a radiation cavity, 204

Einstein function, 207
Einstein’s relations, 583
Einstein–Smoluchowski theory of the

Brownian motion, 587–593
Electron gas in metals, 247–257
Electron-positron annihilation, 287–289
Electrons, 282–285, 287–289

in a magnetic field, 122–123
Elementary excitations

in an imperfect Bose gas, 361–366, 395–396
in a Bose liquid, 366–376, 396–397
in a Fermi liquid, 385–392
in liquid helium II, 215–223

Energy
cells, 141
density, 276, 278, 279n4, 281, 283, 284
distribution, 504, 506, 507
fluctuations, 58–61, 103–105
hypersurface, 638, 644, 651

Ensemble average, 26, 29–31, 48, 54, 116, 122
Ensemble of Brownian particles, 592–593, 603,

606–607

Ensemble theory, 25–37
Enthalpy, 8, 681–682
Entropy, 677–678

of an Ising ferromagnet, 425, 465, 466, 533
density, 279n5, 283–285, 679
of mixing, 16–20
in nonequilibrium states, 584–586, 627–630
statistical interpretation of, 5, 51–52, 105,

119
Equation of state

of a Bose gas, 181–182, 324–325
of classical systems, 9, 15, 64–65, 307–314,

317–319
of a Fermi gas, 233, 324–325
of a lattice gas, 464, 532–533
of quantum-mechanical systems, 317–319,

330
reduced, 409
see also van der Waals equation of state

Equilibrium
approach to, 3–6, 583, 603–608
average, 638, 644
constant, 171–172, 176–178, 401, 431
deviations from, 584–587, 632–633
persistence of, 583
probability distribution, 640

Equipartition theorem, 63–64, 67, 87, 160,
162, 169, 247, 487, 537, 602, 606, 614,
616, 646

Ergodic, 644
hypothesis, 31

Evaporative cooling, 192, 194
Exchange interaction, 413–414
Exclusion principle, 21, 132, 231, 236, 264, 350,

352, 604
Extensive variables, 1–2, 8, 16–17, 19

F
Factorial function, 655, 658
Fermi degeneracy, 259
Fermi energy, 234, 242, 248–249, 252, 254,

257–258, 260, 271, 273, 399
Fermi gas, imperfect, 379–385, 399
Fermi liquids, energy spectrum of, 385–392
Fermi momentum, 234, 260, 265, 387
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Fermi oscillators, 88
Fermi temperature, 237, 248, 258, 260, 393
Fermi velocity, 271
Fermi–Dirac distribution, 247–248
Fermi–Dirac functions, 231, 381, 387, 667–670
Fermi–Dirac statistics, 108, 132, 138, 179, 212,

247–248
Fermi–Dirac systems, 133–138, 141–149,

231–273, 320–331
n-dimensional, 272

Ferromagnetism, 401, 411–413, 465, 488
see also Spontaneous magnetization

Feshbach resonance, 359, 361, 393
Feynman’s circulation theorem, 370
Feynman’s theory of a Bose liquid, 367
Fick’s law of diffusion, 591
Field-theoretic approach, 345–355
Finite-size effects, 501, 579
Finite-size scaling, 570–579
First-order transition, 107
Fixed point, 313, 528, 553–557, 559–565,

568–569
Gaussian, 564–565
non-Gaussian, 564–565

Fluctuation–compressibility relation, 338
Fluctuation–dissipation theorem, 338, 452,

583, 603, 617–626, 630
Fluctuations

in an electrical resistor, 619–620
in an (L,R)-circuit, 616–617
in the canonical ensemble, 47–48, 58–61, 86
critical, 104
frequency spectrum of, 609–617
in the grand canonical ensemble, 103–105
in a multiphase system, 406
of occupation numbers, 151–153
thermodynamic, 584–587
see also Brownian motion; Phase transitions

Flux quantization in superconductors, 372
Fokker–Planck equation, 603–608
Four famous formulae, 676
Fourier analysis of fluctuations, 609–617
Fowler plot, 257
Free volume, 85

Fugacity, 96, 101, 122, 148, 150, 180, 185, 193,
197–198, 198, 381, 520–521

of a Bose gas, 184–185, 358, 395
of a Fermi gas, 252, 272, 398
of a gas of phonons, 207
of a gas of photons, 207
of a lattice gas, 417–418, 532
of a two-phase system, 102
see also Chemical potential

G
Gamma function, 655, 657
Gaussian model, 508
Gibbs free energy, 8, 20, 51, 96, 109–111,

170–172, 680–681
Gibbs paradox, 16–20
Ginzburg criterion, 460
Goldstone modes, 488
Grand canonical ensemble, 91–110, 646n8,

679–680
Grand canonical partition function, 679
Grand partition function, 96, 103

of an ideal gas, 148–149, 180, 231
of an imperfect gas, 306, 315, 395, 399
of a lattice gas, 417
of a multiphase system, 403–407

Gross–Pitaevskii equation, 358, 359
Ground-state properties

of a Bose gas, 355–361, 396
of a Fermi gas, 233–236, 239–240, 242, 246,

261, 269, 272–273, 384–385, 390–392,
397–398

H
Hard disk fluid, 334
Hard sphere fluid, 85, 314, 333, 335, 341, 364,

471–473, 475, 647–650
Harmonic approximation, 169, 205
Harmonic oscillators, 33–35, 65–70, 98,

100–102, 125–127, 192–194, 200,
205–206, 358, 360, 601–603, 644

Heat capacity, 197, 199
Heisenberg model, 414, 427, 464–465, 488, 528
Helicity, 283

modulus, 469
Helium, 108
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Helium-4, 108, 290–293; see also Liquid He4

Helium-3 (3He), 293; see also Liquid He3

Helmholtz free energy, 8, 20, 50, 97, 171, 678
Hexatic phase, 340
High temperature series, 504
H-theorem, 1
Hubble expansion, 276, 280
Hubble parameter, 276–278, 280
Hubble relation, 276
Hyperscaling relation, 459, 461, 482, 529,

557–558, 570

I
Ice, 109
Ideal gas

of bosons, 180–191, 519–526, 536
classical, 9–16, 32–35, 54–58, 60–61, 64,

98–99
of fermions, 231–247
quantum-mechanical, 128–132, 141–149

Importance sampling, 638, 640
Indistinguishability

of particles, 20–21, 98, 119, 129, 136, 141, 179
of photons, 65

Inelastic scattering, 624–626
Inertial density of excitations, 212–215, 220,

228
Integrating factor for heat, 95
Intensive variables, 17, 100, 403
Internal energy, 196–199, 335, 681
Internal molecular field, 422

see also Ferromagnetism
Internal motions of molecules, 155–170
Ionization, 157
Irrelevant variables, 554–558, 565–566

dangerously, 565
Irreversible phenomena, 589, 628–629
Ising model, 414, 417, 419–435, 464

in one dimension, 471, 476–482, 501,
559–560

in three dimensions, 527–530
in two dimensions, 457, 488–507, 534, 537,

560–563
Isobaric ensemble, 471, 473–475, 646n9,

680–681

Isobaric partition function, 680
Isothermal processes, 16

see also Compressibility
Isotherms

of a Bose gas, 189
of a multiphase system, 403–407
of a van der Waals gas, 408

J
Joule–Thomson coefficient, 340–341

K
Kinetic coefficients, 627
Kinetic pressure, 154
Kirkwood approximation, 466
Kosterlitz–Thouless transition, 340, 526–527
Kramers’ q-potential, 95

see also q-potential
Kramers–Kronig relation, 623
Kubo’s theorem, 620

L
Lagrange multipliers, method of, 43, 201, 359
Lambda-transition in liquid He4, 108, 188–189,

222
Landau diamagnetism, 239, 243–247
Landau–Placzek ratio, 626
Landau’s condition for superflow, 223

see also Critical velocity of superflow
Landau’s spectrum for elementary excitations

in a Bose liquid, 366–369
Landau’s theory of a Fermi liquid, 385–392
Landau’s theory of phase transitions, 442–445
Langevin function, 72, 245
Langevin random force, 646n9
Langevin’s theory of the Brownian motion,

593–603
as applied to a resistor, 619

Langmuir equation, 112
Laser cooling, 191–192, 258
Last scattering, 276n3, 278, 282, 294, 295
Latent heat

of melting, 112
of sublimation, 112
of vaporization, 110
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Lattice gas, 417–420, 464, 532–534
Law of mass action, 171, 431
Leap-frog algorithm, 644
Length transformation, 528, 539
Lennard-Jones interaction, 645
Lennard-Jones potential, 309, 311–312
Light scattering by a fluid, 450
Light-year, 276, 277
Linear congruential method, 683
Linear response theory, 621–623
Liouville’s theorem

classical, 272–279
quantum-mechanical, 117

Liquid He3, specific heat of, 189
Liquid He4

elementary excitations in, 366–369
normal fraction in, 189, 216
specific heat of, 189

Liquid phase, 107, 108
Liquid-crystal, 331
Liquid–vapor coexistence, 106–108
Long-range interactions, 519, 569, 643
Long-range order, 331–332, 339, 340, 420

in the Bethe approximation, 428–429
in a binary alloy, 465–466
in a Bose gas, 525
in the Heisenberg model, 464–465
in the spherical model, 518–519
in a square lattice, 498–499
in the Weiss ferromagnet, 422–425
see also Spontaneous magnetization

Lorenz number, 247, 250
Low temperature series, 502, 505, 506, 507n2

M
Macrostates, 11
Magnetic field, 682
Magnetic Helmholtz free energy, 678
Magnetic systems, thermodynamics of, 77–83

see also Diamagnetism; Ferromagnetism;
Paramagnetism

Magnetic trap, 191–193, 258
Marginal variables, 555
Markovian processes, 604

Mass motion, 212–214, 221–222, 228, 370
nonuniform, 370–376

Mass-radius relationship for white dwarfs,
263–265

Master equation, 603–604
Maxwell distribution, 645
Maxwell relation, 677–682
Maxwell–Boltzmann statistics, 1, 5, 31, 143,

145, 147, 150, 152, 173, 200, 248
see also Classical limit; Classical systems

Maxwell’s construction, 404, 408, 443, 445
Mayer’s function, 300–301, 328, 343
Mayer’s theory of cluster expansions, 315–319
Mean field theories, 420, 422, 427–430, 453,

456, 497, 500, 508
limitations of, 460–463

Mean values, method of, 44–49
Megaparsec, 276, 277
Meissner effect in superconductors, 372
Memory functions, see Autocorrelation

functions
Mermin–Wagner theorem, 526
Methane, 178
Metropolis method, 641–643
Microcanonical ensemble, 29–35, 39, 52,

58–61, 103, 119–121, 141–145, 643–644,
646, 677–678

Microcanonical entropy, 506, 507
Microstates, 2–5, 11–14, 33, 119, 129–130,

141–145, 638–641, 643, 644
of an Ising ferromagnet, 425, 464, 531
of a binary alloy, 465–466
“correct” enumeration of, 20–22

Migdal–Kadanoff transformation, 580
Mobility, 583, 595, 605, 618
Molecular dynamics simulations, 643–646
Monte Carlo simulations, 473, 506, 529,

640–643, 650
Monte Carlo Renormalization Group, 642n5,

650
Monte Carlo sweep, 639, 642, 643
Most probable distribution, 42, 84, 144
Most probable values, method of, 42–44, 149
Mulholland’s formula, 162
Multicanonical Monte Carlo, 642n5
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N
Néel temperature, 465
Negative temperatures, 77–83
Nernst heat theorem, see Third law of

thermodynamics
Nernst relation, 595
Neutrino, 279n4, 282–285, 289–290
Neutron, 285–287, 292
Neutron scattering, 107, 338
Newton’s equations of motion, 638, 643
Noise, 452

in an (L,R)-circuit, 616–617
white, 612, 615–617, 621

Nonequilibrium properties, 617
see also Fluctuation–dissipation theorem

Normal modes
of a liquid, 211
of a solid, 206–210, 227–228

n-particle density, 332
Nucleosynthesis, 279n6, 287, 290–293, 294
Number density, 278, 279, 283, 284, 286–288,

291, 679
Number of molecules, 677, 678, 680, 681
Nyquist theorem, 616

O
Occupation numbers, 21–22, 149–152, 202,

206–207, 213, 219, 221, 234, 381
One-body density, 332
One-dimensional fluid, 471–475
Onsager relations, 626–632
Order parameter, 435, 437, 442, 445, 452, 469,

471, 497, 524, 526, 529, 576
Ortho- and para-components, 166–167

P
Padé approximants, 528
Pair correlation function, 332–338, 332–336,

338, 343, 368, 472–473, 473, 475, 524,
647–649

see also Correlation function; Correlations
Pair distribution function, 138–139
Parallel tempering, 650
Paramagnetism, 70–76, 239–243, 247, 272

Particle simulations, 646–650
Particle-number representation, 351
Partition function

of an interacting system, 300–304, 315, 320,
325–331

of an n-vector model, 483–484, 533
of a Bose gas, 357
of a classical ideal gas, 55–58, 85, 98, 147
of a Fermi gas, 240–241
of the Ising model, 477–478, 489–495,

531–533, 543–546, 549–552
of the lattice gas, 417
of the spherical model, 508–510, 547–548,

579
of a system of free particles, 133–138,

146–149
of a system of harmonic oscillators, 65, 66,

68, 82
of a system of magnetic dipoles, 70, 77, 78,

80, 81
of a two-phase system, 402–405

Pauli paramagnetism, 238–243, 272
Pauli repulsion, 645
Pauli’s exclusion principle, see Exclusion

principle
Percus–Yevick approximation, 333
Perturbation theory, 380
Phase diagram, 105–108
Phase equilibrium, 109–110
Phase separation in binary mixtures, 401, 411
Phase space, 25–29, 32–35, 38, 54, 136, 638,

643, 644
Phase transitions, 401–469, 500

and correlations, 430–431, 449–456, 539, 583
a dynamical model of, 411–417
in finite-sized systems, 570–579
first-order, 107, 110, 642, 650
and fluctuations, 449–456, 460–463, 519
interfacial, 569
Landau’s theory of, 442–445, 467
second-order, 107, 442, 578, 650
see also Critical behavior

Phonons
in a Bose fluid, 366, 369
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effective mass of, 228
in liquid helium II, 214–216
in mass motion, 212–214, 221

Photoelectric emission from metals, 250,
255–257

Photons, 35–36, 200–204, 226–227
Plasma, 178, 277, 281, 293, 295
Poisson equation, 266
Polyatomic molecules, 168–170
Positron, 282–285, 287–289
Postulate of equal a priori probabilities, 2, 29,

119–120
Postulate of random a priori phases, 120
Potassium (K), 258, 259
Power spectrum, 603, 623
Power spectrum, of a stationary variable, 603,

610, 612–614, 623–624, 634
Predictability of a variable, 609, 611, 612
Pressure, 283, 284, 679–681
Probability density operator, 254–256

see also Density matrix
Probability distribution, 640

for Brownian particles, 587–593, 604–607
for thermodynamic fluctuations, 584–587,

632–633
Proton, 278, 285, 286, 290, 294
Pseudopotential approach, 355, 357, 364, 366,

385, 397
Pseudorandom numbers, 640–641, 683–685

Q
q-potential, 95–96, 98

of an ideal gas, 145
of a two-phase system, 406–407
see also Grand partition function

Quantized circulation in a Bose fluid, 370–376,
396–397

Quantized fields, method of, 345–400
Quantized flux, 372
Quantum statistics, 21, 97, 107, 115–140, 150,

238
see also Bose–Einstein systems; Fermi–Dirac

systems
Quark-gluon plasma, 282n7

Quasichemical approximation to the Ising
lattice, 427, 431, 531

see also Bethe approximation to the Ising
lattice

Quasielastic scattering, 336
Quasi-long-range order, 331, 340
Quasiparticles, see Elementary excitations

R
Raman scattering, 625
Random close-packed, 650
Random mixing approximation, 426, 431, 432,

464
see also Mean field theories

Random walk problem, 588, 592
Randomness of phases, 120–121, 610
Ratio method, 528
Rayleigh scattering, 625
Rayleigh–Jeans law, 202–203
Recombination, 279n4, 282, 293–295
Relativistic gas, 38, 86, 175

of bosons, 526, 535–536
of electrons, 260–262, 273
of fermions, 236

Relativistic Heavy Ion Collider (RHIC), 282n7,
296

Relaxation time, 594, 599, 604–605, 607, 609,
615, 619, 634

Relevant variables, 555, 562, 565
Renormalization group approach, 528–529,

539–569
general formulation of, 552–558
to the Ising model, 543–546, 549–552,

559–562
to the spherical model, 547–549, 560

Renormalization group operator, 552, 556
linearized, 554, 580

Response function, 601–603, 623
Response time, 615–616
Richardson effect, 251–255
Riemann zeta function, 665–666
Rigid rotator, 37, 161
Rotational Brownian motion, 599
Rotons

in a Bose fluid, 367–369
in liquid helium II, 218–223
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Rubidium (Rb), 191, 197, 199
Rydberg, 293

S
Sackur–Tetrode equation, 19
Saddle-point method, 44, 46, 83, 509
Saha equation, 178, 291, 294
Scalar models, 456, 461, 482, 487, 499, 540, 578
Scaling fields, 555, 561
Scaling hypothesis, 446–449, 457, 468
Scaling relations, 457–458, 461, 468, 500, 529,

543, 558
Scaling theory, 540–543, 555–557
Scattering, 107, 331–340

of electromagnetic waves by a fluid,
449–450, 455–456

form factor, 336
length, 358, 359, 393, 394

Schottky effect, 79, 254–255
Second quantization, 345–355

see also Quantized fields
Second-order transition, 107
Shape scattering, 337
Short-range order, 331–332, 334, 427, 432, 466
Singularities in the thermodynamic functions,

224, 225, 357–358, 523–525
see also Critical behavior; Specific-heat

singularity
Smoluchowski equation, 589
Sodium (Na), 191
Solid phase, 106–108
Solid–liquid coexistence, 106, 108
Solid–vapor coexistence, 101, 106
Sommerfeld’s lemma, 236, 256, 670
Sommerfeld’s theory of metals, 248
Sound waves, 205–212

inertial density of, 212–215
see also Phonons

Specific heat, 198, 199
of an imperfect gas, 395–397
of an Ising lattice, 432–433, 478–479,

495–497
of an n-vector model, 486–487
of blackbody radiation, 205

of a Bose gas, 182, 185–187, 190, 224,
521–524, 535

of a classical gas, 15
of diatomic gases, 158–168
of a Fermi gas, 233, 237–238, 248–249,

270–272
of liquid helium II, 188, 222
of magnetic materials, 77, 79, 83, 89
of polyatomic gases, 169
of solids, 207–212, 227, 249
of the spherical model, 511–518
of a system of harmonic oscillators, 68,

87–88, 207–212, 227
of the XY model, 526

Specific volume, 680
Specific-heat singularity, 447, 462, 467, 488,

495–497
Spectral analysis of fluctuations, 609–617
Spherical constraint, 508, 509, 511–512, 534,

547, 548, 579
Spherical field, 511

reduced, 512
Spherical model, 487, 508–519, 533–535,

547–549, 579
Spin and statistics, 132, 165–168, 341, 353
Spin degeneracy, 283
Spontaneous magnetization, 412, 415, 422,

424, 429–430, 439–440, 443, 499
in the Ising model, 428–429, 497–498, 533
in the spherical model, 511–518, 534
see also Long-range order

Standard candle, 275, 276
Standard pressure, 171
Standard states, 171
Static structure factor, 336–338, 340
Stationary ensembles, 27, 596, 619
Stationary variables, Fourier analysis of,

609–617, 633–634
Statistical potential, 138, 324
Steepest descent, method of, 44, 509–510
Stefan–Boltzmann law, 203
Stirling’s formula, 658–659
Stochastic rate equation, 640
Stoichiometric coefficients, 170
Stoichiometric point, 172



Index 717

Stokes law, 593
Stokes scattering, 625
Structure factor, 107, 337, 339, 475

of a liquid, 368–370
Sublimation, 106
Superconductor, 392
Supercritical phase, 107
Superfluid, 108

density near critical point, 468
in mass motion, 222, 370–379
transition in liquid He4, 188, 222, 469

Superfluidity
breakdown of, 222, 376–379
Landau’s criterion for, 222–223, 378–379
see also Critical velocity of superflow

Supernova, 264, 275, 295
Supersolid, 108
Surface effects, 653–655
Surface tension near critical point, 469, 500
Susceptibility, magnetic

of an n-vector model, 533
of a Fermi gas, 239, 242, 245–246, 272, 399
of the Ising model, 425, 443, 467, 478, 533
of the spherical model, 511–518, 534
see also Singularities

Sutherland potential, 340
Swendsen–Wang algorithm, 641n3
Symmetry properties of wavefunctions, 132,

136, 346–348, 627, 630
Symplectic, 644

T
Takahashi method, 473
Temperature, 672–674, 678–680
Thermal deBroglie wavelength (equivalent to

mean thermal wavelength), 107, 195,
286, 294

Thermal expansion, coefficient of, 228
Thermal wavelength, mean, 125, 135–137, 139,

147, 179, 227, 231, 245, 300, 327, 354,
381, 520

Thermionic emission from metals, 251–255
Thermodynamic limit, 1, 40, 64, 70, 100, 111,

193, 337, 403, 472–473, 475, 486–487,
570

Thermodynamic potential, 679–680
Thermodynamic pressure, 7, 145, 152, 403
Thermodynamic temperature, 5
Thermodynamics of the early universe,

275–295
Thermostat, 644, 646
Third law of thermodynamics, 5, 52, 119, 238,

488
Thomas–Fermi equation, 359
Thomas–Fermi model of the atom, 264–269
Thomson scattering, 281
Tie line, 106–107
Time-of-flight, 258, 360, 394

experiment, 194
T3-law of specific heats, 210–211
Tonks gas, 472
Transfer matrix, 501

method, 476, 482, 488, 501, 531–532, 579
Transition rate, 640, 641
Transport phenomena, 604
Trial state, 641–642
Tricritical point, 468
Triple point, 106, 107
Two-body density, 332
Two-fluid model of superfluidity, 188, 215, 370

U
Ultracold atomic gases, 191–199, 258–259,

358–361, 394
Universality, 445, 500, 568

classes, 449, 451, 457, 463, 471, 519, 526, 569,
571

Ursell functions, see Cluster functions

V
van der Waals attraction, 645
van der Waals equation of state, 310–311, 340,

404, 409, 426, 436, 446, 464
Vapor phase, 106–108
Vapor pressure of a solid, 102
Variance, 682–683
Vector models, 456, 482–488, 499, 519, 528
Verlet algorithm, 644
Virial, 335

coefficients, 182, 307–317, 309–314, 319–325,
320–325



718 Index

Virial (continued)
equation of state, 335, 647, 648
expansion of the equation of state, 182, 233,

307–309
theorem, 63–64, 86, 273

Viscosity, 593–595, 601, 614, 616
Viscous drag, 593, 605
Volume, 662–664
Vortex motion in a Bose liquid, see Quantized

circulation in a Bose fluid

W
Water, 109, 110
Water vapor, 172
Watson functions, 513, 675–676
Weeks–Chandler–Andersen (WCA) potential,

652
Weiss theory of ferromagnetism, 412, 420–427

see also Mean field theories
White dwarf stars, 259–264
Wiedemann–Franz law, 247, 250
Wiener–Khintchine theorem, 583, 609–617
Wien’s distribution law, 202

Wilkinson Microwave Anisotropy Probe
(WMAP), 277, 278, 279n4, 283n9

Wolff algorithm, 641n3, 684
Work function, 252, 257

X
XY model, 414, 526

Y
Yang–Lee theory of condensation, 407

Z
Zero-point energy

of a Bose system, 356, 365, 396
of a Fermi system, 234, 269, 272, 384, 398
of a solid, 205, 227

Zero-point pressure
of a Bose system, 356, 365, 396
of a Fermi system, 261–262, 272, 384, 398

Zero-point susceptibility of a Fermi system,
239, 242, 246

Zeros of the grand partition function, 407
Zeroth law of thermodynamics, 5
Zeta function, 665–666
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