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Failure Examples

(a) (b)

Fig. 5-1

« Failure of truck driveshaft spline due to corrosion fatigue
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Failure Examples

 Impact failure of a lawn-mower blade driver hub.
» The blade impacted a surveying pipe marker.
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Failure Examples

« Failure of an overhead-pulley retaining bolt on a weightlifting
machine.

» A manufacturing error caused a gap that forced the bolt to take
the entire moment load.

Shigley’s Mechanical Engineering Design



Failure Examples

| Fig. 5-4

(a)

Chain test fixture that failed in one cycle.
To alleviate complaints of excessive wear, the manufacturer decided to

case-harden the material

(a) Two halves showing brittle fracture initiated by stress concentration
(b) Enlarged view showing cracks induced by stress concentration at

the support-pin holes

Shigley’s Mechanical Engineering Design



Failure Examples

Fig. 5-5

» Valve-spring failure caused by spring surge in an oversped
engine.
» The fractures exhibit the classic 45 degree shear failure

Shigley’s Mechanical Engineering Design



Static Strength

» Failure of the part would endanger human life, or the part is made in
extremely large quantities; consequently, an elaborate testing program
IS justified during design.

» The part is made in large enough quantities that a moderate series of
tests is feasible.

» The part is made in such small quantities that testing is not justified at
all; or the design must be completed so rapidly that there is not enough
time for testing.

» Experimental test data is better, but generally only warranted for large
quantities or when failure is very costly (in time, expense, or life)

» The part has already been designed, manufactured, and tested and
found to be unsatisfactory. Analysis is required to understand why the
part is unsatisfactory and what to do to improve it.



Ductility and Percent Elongation

Ductility is the degree to which a material will deform before
ultimate fracture.

Percent elongation is used as a measure of ductility.
Ductile Materials have % € > 5%

Brittle Materials have % € < 5%
For machine members subject to repeated or shock or impact

loads, materials with % € > 12% are recommended.



Ductile materials - extensive plastic deformation and
energy absorption (toughness) before fracture

Brittle materials - little plastic deformation and low energy
absorption before failure

Brittle

Ductile

\

Stress

Strain



DUCTILE VS BRITTLE FAILURE

 Classification:

(a) Highly ductile fracture in
which the specimen necks down to a point.
(b) Moderately ductile fracture after some

necking. (c¢) Brittle fracture without any

plastic deformation. /\ m
(J (b) (c)




DUCTILE FAILURE

» Evolution to failure: Void growth
Void and Crack
Necking  nucleation coalescence propagation Fracture

M >i< %1%
ARCLRCEI LR

fa) (b) fc) {d) (e)

“cup and cone” fracture

* Resulting
fracture
surfaces

(steel)

y 3
v

O pum

particles serve as void

nucleation sites.
1um=1X10%m =0.001 mm




Stress Concentration

 Localized increase of stress near discontinuities
» K. is Theoretical (Geometric) Stress Concentration Factor

Kf — (7111_3.)( KIS — rm—ax (3_48)

= 1 >
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Theoretical Stress Concentration Factor

Graphs available for
standard configurations Figure A-15-1

Bar in tension or simple

See Appendix A-15 and

hode. og = FfA, where
A= (w —d)i and { is the

A—-16 for common
examples

Many more In Peterson s
Stress-Concentration
Factors

Note the trend for higher |Fovre a1
K. at sharper discontinuity | »eoses - e wee
radius, and at greater

disruption




Stress Concentration for Static and Ductile Conditions

o With static loads and ductile materials
> Highest stressed fibers yield (cold work)
o Load is shared with next fibers
- Cold working is localized

> Overall part does not see damage unless ultimate strength is
exceeded

o Stress concentration effect is commonly ignored for static
loads on ductile materials

» Stress concentration must be included for dynamic loading (See
Ch. 6)

o Stress concentration must be included for brittle materials, since
localized yielding may reach brittle failure rather than cold-
working and sharing the load.



Need for Static Failure Theories

Failure theories are used to predict if failure would occur under
any given state of stress

The generally accepted theories are:
*Ductile materials (yield criteria)
oMaximum shear stress (MSS),
oDistortion energy (DE),

oDuctile Coulomb-Mohr (DCM),

Brittle materials (fracture criteria)
oMaximum normal stress (MNS),
oBrittle Coulomb-Mohr (BCM),
oModified Mohr (MM),



Maximum Shear Stress Theory (MSS)

Theory: Yielding begins when the maximum shear stress in a
stress element exceeds the maximum shear stress in a tension
test specimen of the same material when that specimen begins to
yield.

For a tension test specimen, the maximum shear stress Is o /2.
Atyielding, when o; = S, the maximum shear stress is S, /2 .
Could restate the theory as follows:

> Theory: Yielding begins when the maximum shear stress in a
stress element exceeds S, /2.



Maximum Shear Stress Theory (MSS)

e For any stress element, use Mohr’s circle to find the maximum
shear stress. Compare the maximum shear stress to S,/2.

« Ordering the principal stresses such that ;> 0, > o3

Tmax — > = 7 or oy — 03 = S). (5_])
* Incorporating a design factor n r

Sy S, T
Tmax — — or 0] — 03 = — 1/3

2n n

 Or solving for factor of safety




Maximum Shear Stress Theory (MSS)

To compare to experimental data, express .., In terms of
principal stresses and plot.

To simplify, consider a plane stress state (one of the principal
stress IS zero)

Let 0, and oy represent the two non-zero principal stresses, then
order them with the zero principal stress such that o; > o0, > o

Assuming o, > oy there are three cases to consider
o Case 1: o> 05>0
o Case 2: 0,> 02> oy

° Case 3: 0> 0,> oy



Maximum Shear Stress Theory (MSS)

e Casel: 0p> 035>0
o For this case, o; = oyand o;=0
° EQ. (5-1) reduces to 0, > S,
° op = S,/n.

o Case 2: 0,> 02> og
o For this case, oy, = o, and o3 = oy
° EQ. (5-1) reduces to o, — 05> S,
° (op— o) =S,/n.

o Case 3: 0> 0,> oy
o For this case, o; =0and o3 = op
> EQ. (5-1) reduces to o5 < S,
° og =-S,/n.



Maximum Shear Stress Theory (MSS)

Plot three cases on
principal stress axes

Case 1: op= 05>0
° OpZ Sy

Case 2: 0,=> 0> og
°© Op~ OBy
Case 3: 0> o,> o3
°© Og< Yy

Other lines are
symmetric cases

Inside envelope is
predicted safe zone

Case 1

<

LLoad line

Case 3

Fig. 57

Case 2

g A



Maximum Shear Stress Theory (MSS)

o Comparison to

experimental data 7% o
« Conservative in all o) S > ____3_4,“
guadrants pa te
// |
e Commonly used for - o
- - - s |
design situations } ) ©
s |
////K““ Max. shear L i
S R R B I oS
| 0 B 1.0 g
I //I:I
| - -
| _ 'm
I //
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Distortion Energy (DE) Failure Theory

e Also known as:
> QOctahedral Shear Stress
> Shear Energy
> Von Mises
> Von Mises — Hencky



Distortion Energy (DE) Failure Theory

 Originated from observation that ductile materials stressed
hydrostatically (equal principal stresses) exhibited yield
strengths greatly in excess of expected values.

o Theorizes that if strain energy is divided into hydrostatic
volume changing energy and angular distortion energy, the
yielding is primarily affected by the distortion energy.

fo'z frﬂ f =T,
. . y

01 Tay O1= 0y

AN ZENNVES A4

(T% = ()- av

O'|>O'2>O'3

(a) Triaxial stresses (b) Hydrostatic component (c¢) Distortional component

Fig. 5-8



Distortion Energy (DE) Failure Theory

e Theory: Yielding occurs when the distortion strain energy per
unit volume reaches the distortion strain energy per unit volume
for yield in simple tension or compression of the same material.

*%\ f%-%v
/I /I /I

o (o o,-0,,
/ / | / / d\‘ / / | d\‘
o 7, 03— 0,
0> 0,>0,
(a) Triaxial stresses (b) Hydrostatic component (c¢) Distortional component

Fig. 5-8



Deriving the Distortion Energy

 Hydrostatic stress is average of principal stresses

Ul+ﬁg+ﬁ3 (}
d

] av — -
2

« Strain energy per unit volume, u = 1[e ;01 + €207 + €303]

e Substituting Eq. (3—19) for principal strains into strain energy
equation,

I - ]
€, = = o — Vv(oy +07)
I - ]
€y = — oy — v(oy +07) (3-19)
. E | . .
LT (0x +0y)]
€. = —|o. —v(o, + o,
Z £ L2 X v) |
l ] 3 2
H = — [UT + 05 + 05 — 2v(0102 + 0203 + 0307 ]] (b)



Deriving the Distortion Energy

l 7 7
:E[UT—{—(_TE+§§—213{0102+UZU3+5351]] (b)

« Strain energy for producing only volume change Is obtained by
substituting o, for o;, 0,, and o

U, = 3:?{1 — 2v) (c)
 Substituting o, from Eq. (a),
1 —2v
6F
 QObtain distortion energy by subtracting volume changing
energy, Eq. (5-7), from total strain energy, Eqg. (b)

i

U, = (0'12 + 05 + 05 + 20105 + 20003 + 20301) (5-7)

(5-8)

14 v [(ol —07)* 4 (02 — 03)* + (03 —al)z}
Ug = U — Uy =

3E 2



Ug = U — U, =

Deriving the Distortion Energy

3E

L+ [ (01 —02)° 4 (02 —03)’ + (03 — 01)°
2
» Tension test specimen at yield has o; = S, and o0, = 03 =0

|

» Applying to Eqg. (5-8), distortion energy for tension test
specimen Is

1—|—vS2
3E Y

Ug =

(5-8)

(5-9)

» DE theory predicts failure when distortion energy, Eq. (5-8),
exceeds distortion energy of tension test specimen, Eg. (5-9)

|

(01 — 02)* + (03 — 03)* + (03 — 07)*

2

|

1/2

> S )_.‘

(5-10)



Von Mises Stress

1/2

|:(01 — 02)* + (02 — 03)” + (03 — 01)2}
2

o Left hand side 1s defined as von Mises stress

/ (01 — 02)* + (02 — 03)* + (03 — 01)° e
= > (5-12)
 For plane stress, simplifies to
1/2

o = (O’i — oA0p + O'é) / (5-13)
 In terms of xyz components, in three dimensions
— % [((0: — 0)> + (0y — 0> + (0: — 0> + 6(z2, + 2 +22)] 7 | (5-14)
 In terms of xyz components, for plane stress

o' = (02 — 0.0y + 02 +3t3,) " (5-15)




Distortion Energy Theory With Von Mises Stress

\Von Mises Stress can be thought of as a single, equivalent, or
effective stress for the entire general state of stress in a stress
element.

Distortion Energy failure theory simply compares von Mises
stress to yield strength.

o > S, (5-11)
Introducing a design factor,
S,
o =2 (5-19)
n




Failure Theory in Terms of von Mises Stress

e Equation is identical to Eg. (5-10) from Distortion Energy
approach

» ldentical conclusion for:
o Distortion Energy
> QOctahedral Shear Stress
> Shear Energy
> Von Mises
> Von Mises — Hencky



DE Theory Compared to Experimental Data

0,/S. Oct. shear

Plot von Mises stress on
principal stress axes to
compare to experimental
data (and to other failure
theories)

DE curve is typical of data

Note that typical equates to
a 50% reliability from a
design perspective
Commonly used for
analysis situations

MSS theory useful for
design situations where
higher reliability is desired

7
|-l.0 /%




Shear Strength Predictions

For pure shear loading, Mohr’s circle shows that o, = —og = 7

Plotting this equation on principal stress axes gives load line for
pure shear case

Intersection of pure shear load line with failure curve indicates
shear strength has been reached

Each failure theory predicts shear strength to be some fraction of
normal strength i

“
Pure shear load line (o, = —0p = 7)

— DE
=== NMSS




EXAMPLE 5-1

Solution

Answer

Answer

Answer

Example 5-1

A hot-rolled steel has a yield strength of Sy, = Sy = 700 MPa and a true strain at
fracture of &, = 0.55. Estimate the factor of safety for the following principal stress
states:

(a) 490, 490, 0 MPa.

(b) 210, 490, 0 MPa.

(c) 0, 490, —210 MPa.

(d) 0, —210, —490 MPa.

(e) 210, 210, 210 MPa.

Since & > 0.05 and S,, and S,, are equal, the material is ductile and the distortion-
energy (DE) theory applies. The maximum-shear-stress (MSS) theory will also be
applied and compared to the DE results. Note that cases a to d are plane stress
states.
(a) The ordered principal stresses are oa = 01 = 490. or -1—-/ go = 490, 03 = 0 MPa.

/ 2
DE From Eq. (5-13), g — (GA — 0,05 + gé)
o’ = [490% — 490(490) + 4907]'/> = 490 MPa

S, 700

MSS Case 1, using Eq. (5-4) with a factor of safety,

S, 700

= ————= ,4
¥ (o) 490 1 3
(b) The ordered principal stresses are g4 = 0 = 490, o = 02 = 210, 03 = 0 MPa.
DE o’ = [490% — 490(210) + 210%]'/2 = 426 MPa
S 7
oo B P

(5-13)



Example 5-1

MSS Case 1, using Eq. (5-4),

o (0.1

el T
(¢) The ordered principal stresses are o4 = 01 = 490, 02 = 0, op = 03 = —210 MPa.
DE o' = [490% — 490(—210) 4+ (—210)*]'/*= 622 MPa
S 700
A - _)’ — e .13
nswer n ) 1

MSS Case 2, using Eq. (5-5),

S, 700

= =1.00
o4 —op 490 — (—210)

Answer Ri=

(d) The ordered principal stresses are 01 =0, 0y = 02 = —210, op = 03 = —490 MPa.

DE o' = [(—490) — (—490)(—210) + (—210)*]'/? = 426 MPa
B <1100
Answer n—;—,—ZZ—G‘—l-“

MSS Case 3, using Eq. (5-6),

Answer ne——=————=143




Example 5-1

(¢) The ordered principal stresses are 1 = 210, 02 =210, 03 = 210 MPa
DE From Eq. (5-12),

10 — 210)% + (210 — 210)? + (210 — 21071
o [(2 0 — 210)* + (210 — 210)* + (210 — 210) ] = NP

2

Answer nzﬁz-?—@-—)OO
o' 0
MSS From Eq. (5-3),
S 700
An & R
e T T T et

A tabular summary of the factors of safety is included for comparisons.

C) (b) (<) ) (e)

DE 1.43 1.64 | 1.64 o0
MSS 1.43 1.43 1.00 1.43 o0

#




Example 5-1

A tabular summary of the factors of safety 1s included for comparisons.

(a) (b) (<) (d) (e)
DE 1.43 1.64 .13 1.64 00
MSS 1.43 1.43 1.00 1.43 00

Since the MSS theory is on or within the boundary of the DE theory, it will always pre-
dict a factor of safety equal to or less than the DE theory, as can be seen in the table.

— DE
——— MSS
=== Load lines

Shigley’s Mechanical Engineering Design



Mohr Theory

» Some materials have compressive strengths different from
tensile strengths

e Mohr theory is based on three simple tests: tension,
compression, and shear

* Plotting Mohr’s circle for each, bounding curve defines failure

envelope ) T

Mohr failure curve




Coulomb-Mohr Theory

e Curved failure curve is difficult to determine analytically

e Coulomb-Mohr theory simplifies to linear failure envelope using
only tension and compression tests (dashed circles)

Coulomb-Mohr
failure line




Coulomb-Mohr Theory

Coulomb-Mohr
failure line

e From the geometry, derive
the failure criteria

BC> — B;C;  B3C3 — By C,

0C, — 0C, 0Cs — OC;

B,C, — BiCy  B3Cs — B C
C,C, B C,C;

B1Cy = S5;/2, B,Cr = (01 — 03) /2,
and B3;C3 = S./2

g1 — O3 S; SC S;
2 2 _ 2 2
Sr_51+ﬂ3 EJFE
2 2 2 2
o o
L R |
St Se

(5-22)
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Coulomb-Mohr Theory

01 03
— —— =1 (5-22)
Sr S(?
To plot on principal stress axes, consider three cases
Case 1: op> 05>0 For this case, oy = o,and o; =0
> Eq. (5—22) reduces to
T REY (5-23)

Case 2: 0,> 0 > ogFor this case, o; = oy and o3 = oy
> Eq. (5-22) reduces to

— ——>1 (5—-24)
Case 3: 0> 0,> op For this case, o; =0and o; = oy

> Eq. (56—22) reduces to
op < —S¢ (5-25)



Coulomb-Mohr Theory

» Plot three cases on principal stress axes

» Similar to MSS theory, except with different strengths for
compression and tension

()'A

Fig. 5—14




Coulomb-Mohr Theory

« Incorporating factor of safety

O] 03 |

— — = =- (5-26)

S}‘ SC n
 For ductile material, use tensile and compressive yield strengths
 For brittle material, use tensile and compressive ultimate

strengths



Coulomb-Mohr Theory

* Intersect the pure shear load line with the failure line to
determine the shear strength

« Since failure line is a function of tensile and compressive
strengths, shear strength is also a function of these terms.

Sy Sy
SS , = - - 5_27
: S_w + S_w? ( )




Example 5-2

A 25-mm-diameter shaft is statically torqued to 230 N - m. It is made of cast 195-T6
aluminum, with a yield strength in tension of 160 MPa and a yield strength in com-
pression of 170 MPa. It is machined to final diameter. Estimate the factor of safety of

the shatft.
Solution

The maximum shear stress is given by

T =

16T

16(230)

wd3

— — 75 (10°) N/m? = 75 MPa
7 [25 (10-3)]° 19)

The two nonzero principal stresses are 75 and —75 MPa, making the ordered principal
stresses 0y = 75, 0o = 0, and 03 = —75 MPa. From Eq. (5-26). for yield,

I 1
1.10

01/Sy — 03/Sye  15/160 — (—75)/170 —

Shigley’s Mechanical Engineering Design



Example 5-2
Alternatively, from Eq. (5-27),

S r 1 160(170
5y — e = ( ; ) = 82.4 MPa
and Ty = 75 MPa. Thus,
S 82.4
- 2 = 1.10
Tmax 75
T L
Mohr's circle:
T13 pure fension

Shigley’s Mechanical Engineering Design



Example 5-3

A certain force F applied at D near the end of the 15-in lever shown in Fig. 5-16,
which is quite similar to a socket wrench, results in certain stresses in the cantilevered
bar OABC. This bar (OABC) is of AISI 1035 steel, forged and heat-treated so that it has
a minimum (ASTM) yield strength of 81 kpsi. We presume that this component would
be of no value after yielding. Thus the force F required to initiate yielding can be
regarded as the strength of the component part. Find this force.

2 in

Shigley’s Mechanical Engineering Design



Example 5-3

We will assume that lever DC 1s strong enough and hence not a part of the problem. A 1035
steel, heat-treated, will have a reduction in area of 50 percent or more and hence is a duc-
tile material at normal temperatures. This also means that stress concentration at shoulder
A need not be considered. A stress element at A on the top surface will be subjected to a
tensile bending stress and a torsional stress. This point, on the 1-in-diameter section, is the
weakest section, and governs the strength of the assembly. The two stresses are

M 32M  32(14F)

I/c xd3  w(13)
T 16T  16(15F
e = =0 = 20 _geup

J d3 7(13)
Employing the distortion-energy theory, we find, from Eq. (5-15), that

= 142.6F

Oy =

1/2

o' = (02 +372)"7 = [(142.6 F)* + 3(76.4F)*"* = 194.5F

Equating the von Mises stress to Sy, we solve for F and get

Sy 81000

~ 1945 1945

= 416 Ibf

Shigley’s Mechanical Engineering Design



Example 5-3

In this example the strength of the material at point A is Sy = 81 kpsi. The strength of
the assembly or component is F' = 416 1bf.

Let us apply the MSS theory for comparison. For a point undergoing plane stress
with only one nonzero normal stress and one shear stress, the two nonzero principal
stresses will have opposite signs, and hence the maximum shear stress 1s obtained from
the Mohr’s circle between them. From Eq. (3—-14)

2 142.6F \°
Tmax = \/(“—;) 72 = \/( S ) + (76.4F)2 = 104.5F

Setting this equal to Sy/2, from Eq. (5-3) with n = 1, and solving for F, we get

~81000/2
104.5

— 388 Ibf

which 1s about 7 percent less than found for the DE theory. As stated earlier, the MSS
theory is more conservative than the DE theory.

Shigley’s Mechanical Engineering Design



Example 5-4

The cantilevered tube shown in Fig. 5-17 is to be made of 2014 aluminum alloy treated
to obtain a specified minimum yield strength of 276 MPa. We wish to select a stock-size
tube from Table A—8 using a design factor ny = 4. The bending load is F = 1.75 kN,
the axial tension 1s P = 9.0 kN, and the torsion 1s 7 = 72 N - m. What is the realized
factor of safety?

\ x Shigley’s Mechanical Engineering Design



m = unit mass, kg/m

A = area, in” (cm?) Table A-8

I = second moment of area, in* (cm?)

J = second polar moment of area, in* (cm®) Properties of Round

k = radius of gyration, in (cm) Tubing

Z = section modulus, in® (cm?)

d, t = size (OD) and thickness, in (mm)

Size, mm m A I k ¥ 4 J
12 x 2 0.490 0.628 0.082 0.361 0.136 0.163
16 x 2 0.687 0.879 0.220 0.500 0.275 0.440
16 x 3 0.956 1.225 0.273 0472 0.341 0.545
20 x 4 1.569 2.010 0.684 0.583 0.684 1.367
25 x 4 2.060 2.638 1.508 0.756 1.206 3.015
25 x 3 2452 3.140 1.669 0.729 1.336 3.338
30 x 4 2.550 3.266 2.827 0.930 1.885 5.652
30 x 5 3.065 3.925 3.192 0.901 2.128 6.381
42 x 4 3.727 4.773 8.717 1.351 4.151 17.430
42 x 3 4.536 5.809 10.130 1.320 4.825 20.255
50 x 4 4512 5.778 15.409 1.632 6.164 30.810
50 x 3 5.517 7.065 18.118 1.601 7.247 36.226




Example 5-4

The critical stress element 1s at point A on the top surface at the wall, where the bend-
ing moment is the largest, and the bending and torsional stresses are at their maximum
values. The critical stress element is shown in Fig. 5-17b. Since the axial stress and
bending stress are both in tension along the x axis, they are additive for the normal
stress, giving

(1)

A I A 1

Jx:_+ —

P Mc_9  120075/2) _ 9 , 105,
1 a

where, if millimeters are used for the area properties, the stress is in gigapascals.
The torsional stress at the same point 1s

_Tr T2d,/2)  36d,
Y Y A

_ T:x

(2)

\X F1g° 5_ 1 7 ) Shigley’s Mechanical Engineering Design



Example 5-4

For accuracy, we choose the distortion-energy theory as the design basis. The von Mises
stress from Eq. (5-15), 1s

o' = (o7 + 31 e (3)
On the basis of the given design factor, the goal for o’ is
S 0.276
o' < =+ =—— =0.0690 GPa (4)
ng4 4

where we have used gigapascals in this relation to agree with Egs. (1) and (2).

Shigley’s Mechanical Engineering Design



Example 5-4

Programming Eqgs. (1) to (3) on a spreadsheet and entering metric sizes from
Table A—8 reveals that a 42 x 5-mm tube 1s satisfactory. The von Mises stress is found
to be o' = 0.06043 GPa for this size. Thus the realized factor of safety is

S 0.276
n=-—2—= — 4.57
o' 0.06043

For the next size smaller, a 42 x 4-mm tube, 6" = 0.07105 GPa giving a factor of
safety of
Sy 0.276

= = 3.88
o’ 0.07105

H =

Shigley’s Mechanical Engineering Design



Failure of Ductile Materials Summary

Either the maximum-shear-stress
theory or the distortion-energy
theory is acceptable for design and
analysis of materials that would fail
in a ductile manner.

For design purposes the
maximum-shear-stress theory is
easy, quick to use, and

conservative.

If the problem is to learn why a part
failed, then the distortion-energy
theory may be the best to use.

For ductile materials with unequal ..., .,
yield strengths, S/, in tensionand = o weoew

S, in compression, the Mohr RRTAEN
theory is the best available.




Maximum-Normal-Stress Theory for Brittle Materials

» The maximum-normal-stress (MNS)
theory states that failure occurs whenever
one of the three principal stresses equals
or exceeds the ultimate strength.

» For a general stress state in the ordered
form g, 2 g, 2 g;. This theory then
predicts that failure occurs whenever &

o1 = Sus or 03 < —Suc e & Su

where S, and S, are the ultimate tensile
and compressive strengths, respectively,
given as positive quantities. ~Suc

 MNS theory is not very good at predicting
failure in the fourth quadrant of the c,,
og plane. Hence not recommended for

| Uuse (has been added for historical reason)



Maximum Normal Stress Theory

Theory: Failure occurs when the maximum principal stress in a
stress element exceeds the strength.

Predicts failure when

o1 = SLH‘ or 03 = _Suc (5_28)

For plane stress,

oA > Sut or o < —Suc (5_29)
Incorporating design factor,
Su Suc
op=— of op=-— (5-30)

n n



Brittle Coulomb-Mohr

» Same as previously derived, using ultimate strengths for failure
« Failure equations dependent on quadrant

Quadrant condition Failure criteria “B
S?
Sl'.-” @"-‘,\OQ o,
o4 = opg =0 Ogp = — (5-31a) S SE
H :\0@}"
T A ap I
os = 0=>o0p — — —— = — (531}
Sut Suc N
—S,
Ly Fig. 5—-14
ue
0204 20p Oop = —=—— (5-31c)
R



Brittle Failure Experimental Data

- oy, MPa
e Coulomb-Mohr is oo
conservative in 4" quadrant | mpnemd S0
« Modified Mohr criteria S \\“ e
adjusts to better fit the data = Sep==T" =" | | I AR
. =700 -300 0 / 300
in the 4t quadrant L 4
IRy —
=300 — III @i
O Gray cast-iron data B I’I 6 :
WA
J°
=
Fig. 5-19 ™"



Modified-Mohr

Quadrant condition Failure criteria
op = 0p =0 _ Su
oA == (5-324)
OR S
> (> — < ut
o4 =>0>0p and onl = | o4 = — (5-32a)
o Suc — o o |
o4 >0>0p and 2l Ouc ) a_E__ (5-32b)
04 Sut:Sur Sur: n
SHE
(T == — m—— 5—32C
0>0y >o0p B 0 [ }
oy, MPa
300 —
- Su
R |
| | I | | S a4, MPa
-700 =300

O Gray cast-iron data
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Example 5-5

Consider the wrench 1n Ex. 5-3, Fig. 5-16, as made of cast iron, machined to dimen-
sion. The force F required to fracture this part can be regarded as the strength of the

component part. If the material 1s ASTM grade 30 cast iron, find the force F with
(@) Coulomb-Mohr failure model.

(b) Modified Mohr failure model.

Shigley’s Mechanical Engineering Design



Example 5-5

We assume that the lever DC is strong enough, and not part of the problem. Since grade
30 cast iron 1s a brittle material and cast iron, the stress-concentration factors K; and K,
are set to unity. From Table A-24, the tensile ultimate strength is 31 kpsi and the com-
pressive ultimate strength is 109 kpsi. The stress element at A on the top surface will be
subjected to a tensile bending stress and a torsional stress. This location, on the 1-in-
diameter section fillet, 1s the weakest location, and it governs the strength of the assem-

bly. The normal stress o, and the shear stress at A are given by
Table A24,
M 32M ¥32(14F) | P1046
= Ki— =K = (1)——— = 142.6F
o=k =hom = W03
Tr 16T [6(15F) .
I_I}sZKISTZKHHdS =(1)W27()4F
From Eq. (3—13) the nonzero principal stresses o4 and op are

OA, OB —

1426F +0 \/( 142.6F — 0
2 2

2
) + (76.4F)? = 175.8F, —33.2F

This puts us in the fourth-quadrant of the o4, op plane.
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Example 5-5

(a) For BCM, Eq. (5-31b) applies with n = | for failure.
op op  1158F (=33.2F)

Su S, 317103 109(103)

Solving for F yields

F =167 1bf

(b) For MM, the slope of the load line is |og/oa] =33.2/175.8 =0.189 < 1.
Obviously, Eq. (5-32a) applies.

op  II58F

Sue  31(103)

F =176 1bf

As one would expect from inspection of Fig. 5-19, Coulomb-Mohr is more conservative.
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Selection of Failure Criteria

First determine ductile vs. brittle
For ductile

> MSS Is conservative, often used for design where higher
reliability is desired

- DE 1s typical, often used for analysis where agreement with
experimental data Is desired

o If tensile and compressive strengths differ, use Ductile
Coulomb-Mohr

For brittle
> Mohr theory is best, but difficult to use
> Brittle Coulomb-Mohr is very conservative in 4" quadrant

- Modified Mobhr is still slightly conservative in 4" quadrant, but
closer to typical



Selection of Failure Criteria in Flowchart Form

Y

Ductile behavior

Y
A

Brittle behavior

A

< 0.05 20.05

Yes

Conservative?

Mod. Mohr Brittle Coulomb-Mohr Ductile Coulomb-Mohr

(MM) (BCM) (DCM)
Eq. (5-32) Eq. (5-31) Eq. (5-26) Conservative? Yes
Distortion-energy Maximum shear stress
. B (DE) (MSS)
Fig. 521 Egs. (5-15) Eq. (5-3)
and (5-19)
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